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Abstract

Let f, g be two transcendental meromorphic functions in C, let P be a polynomial of
uniqueness for meromorphic functions in C and let o be a small meromorphic function with
regards to f and g. If f'P'(f) and g’ P’(g) share a counting multiplicity, then we show that
f = g provided that the multiplicity order of zeroes of P’ satisfy certain inequalities. There is
no additional condition on «. We consider the particular case of entire functions.

1 Introduction and Main Results

Following several previous studies, the problem we consider consists of determining polynomials P
such that, if f and g are complex meromorphic functions and if « is a small meromorphic function
such that f'P’(f) and ¢’ P’(g) share « counting multiplicity, then we can conclude f = g. The first
(and hardest) step consists of showing that f'P’(f) = ¢’P’'(g), so P(f) — P(g) is a constant. The
second step consists of showing that the constant is zero. And then, if we take for P a polynomial
of uniqueness for complex meromorphic functions, we can get f = g.

Problems of uniqueness on meromorphic functions were examined first in C [8], [9], [11], [15],
[16], [17], [18], [23], [24], [26] and next in a p-adic field [1], [4], [5], [6], [7], [13], [14], [19], [20], [21],
[22]. After examining problems of the form P(f) = P(g), where P is a polynomial, several studies
were made on the equality f'P’'(f) = ¢'P’(g), or value sharing questions: if P(f) and P(g) share
a value, or a small function, do we have f = ¢?

We denote by A(C) the C-algebra of entire functions in C, by M(C) the field of meromorphic
functions in C, i.e. the field of fractions of A(C) and by C(x) the field of rational functions.

The problem of value sharing a small function for functions of the form f'P’(f) was examined
first when P was just of the form 2™ [8], [19] in both complex and p-adic contexts. More recently it
was examined when P was a polynomial such that P’ had exactly two distinct zeros [16], [18], [21],
both in complex analysis and in p-adic analysis. In [16], [18] the functions where meromorphic on
C, with a small function that was a constant or the identity. In [19], the problem was considered
for analytic functions in a complete ultrametric algebraically closed field K of characteristic 0
concerning entire functions and unbounded analytic functions in an open disk, sharing a rational
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function. In [2] the three authors considered the same problem for meromorphic functions in the
p-adic fileld K. The results obtained in that case have then suggested a similar study in C. But
several crucial lemmas obtained on a p-adic field have to be re-examined particularly because the
characteristic Nevanlinna function T'(r, f) is quite different for complex meromorphic functions
and for p-adic ones, particularly all statements involving functions m(r, f) on M(C). So, we must
develop complete proofs for all intermediate and final results.

Here we enjoy polynomials of uniqueness for complex meromorphic functions [1], [6] and we
can finally obtain results similar to those obtained in p-adic analysis: see Theorem 1[2].

The definition of polynomials of uniqueness was introduced in [17] by P. Li and C. C. Yang and
was studied in many papers [1], [10], [11] , [24] for complex functions and [5], [6], [22] for p-adic
functions.

Definition. Recall that a polynomial P € Clx] is called a polynomial of uniqueness for a class of
functions F if for any two functions f, g € F the property P(f) = P(g) implies f = g.

Now, in order to define small functions, we have to briefly recall the definitions of the classical
Nevanlinna theory in the field C. Here, for convenience, we will use notation long ago used in
p-adic analysis in order to denote the counting functions.

Let log be a real logarithm function of base > 1. Given u € R7, we denote by log™ the real
function defined as log™ (u) = max(log(u),0).

Let f € M(C). Given r> 0, we set m(r, f) = fo% log™ | f(rei?)|df. Suppose f has no zero and
no pole at 0. Let v € C. If f has a zero of order n at vy, we set w(f) = n. If f has a pole of order
n at v, we put w,(f) = —n and finally, if f(vy) # 0,00, we put w,(f) =0

We denote by Z(r, f) the counting function of zeros of f in the ball |z| < r, counting multiplicity,
i.e. we set

Zr f)= > w(f)(logr—logly]).
w~ (f)>0, |y|<r

Similarly, we denote by Z(r, f) the counting function of zeros of f in the ball |z| < r, ignoring
multiplicity, and set
Zr,fy= Y.  (logr—logly).

wy (f)>0, |y|<r

1 — —7 1

In the same way, we set N(r, f) = Z(r, ?) (resp. N(r,f) = Z(r, ?)) to denote the counting
function of poles of f in the ball |z| < r, counting multiplicity (resp. ignoring multiplicity).

If f admits a zero of order s at 0, we can make a change of origin or count the zero at 0 by
adding slogr and similarly, if f admits a pole at 0 of order s, we can make a change of origin or
count the pole at 0 by adding —slogr.

For f € M(C) having no zero and no pole at 0, the Nevanlinna function is defined by T'(r, f) =
m(r, f) + N(r, f).

Definition. Let f € M(C) such that f(0) # 0,00. A function o € M(C) having no zero and no
T
pole at 0 is called a small function with respect to f, if it satisfies liIJP TET’ jﬁi = 0. We denote
r—+o00 r,
by M;(C) the set of small meromorphic functions with respect to f in C. And we say that two
functions f, g € M(C) share a function « C.M. if f —« and g — o admit the same zeros with the
same multiplicity.
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Remark 1. For simplicity, we have kept the same notation as in p-adic analysis for the counting
function of zeros of a meromorphic function.

Now, we can give some sufficient conditions to get polynomials P such that, if f'P'(f) and
g’ P'(g) share a small meromorphic function, then f = g.

Recall the following Theorems A, B that we can get from [18]:

Theorem A. Let f,g € M(C) be transcendental. Let n € N, n > 13 and let a € C\ {0}. If
f(f —a)?f and g"(g — a)?g’ share the identical function x C.M. then f = g.

Theorem B. Let f,g € M(C) be transcendental and let a € C\ {0} and let € N, n > 12. If
f™(f —a)f’ and g"(g — a)g’ share the identical function x C.M. then either f = g or there erists

a(n+2) fh"tt -1 a(n+2) (hntt —1
h € M(C) such that f = o (hn+2_1>handg= ntl (h"”—l)'

In [2], we have obtained the following Theorem C.
Theorem C. Let K be a complete ultrametric algebraically closed field of characteristic zero. Let
1

P be a polynomial of uniqueness for M(K), let P' = b(x —a1)" H(:L’ —a;)* with b € K*, with
i=2
I>2and k; > ki1, 2 <i<I1—1, wheneverl > 2 and let k = Zé:z k;. Suppose P satisfies the

following conditions:
l

n>10+ Zmax(O,él —k;) + max(0,5 — ka),

n>k+ 2: ’

ifl=2, thenn # 2k, 2k+1, 3k +1,

if l=3, thenn #2k+1, 3k; — k Vi =2,3.

Let f,g € M(K) be transcendental and let oo € M(K) N My(K) be non-identically zero. If
f'P'(f) and ¢'P'(g) share o C.M., then f = g.

Next, several particular applications were given when the small function is a constant or a
Moebius function. Here we can’t get similar refinements because the complex Nevanlinna Theory
is less accurate than the p-adic Nevanlinna Theory.

However, we aim at obtaining for complex meromorphic functions results almost similar to
those obtained for p-adic functions, thanks to theorems of uniqueness in C. Let us recall Theorems
D and E that we can extract from Theorem 3 [1] and Corollary 9.1 [6] respectively.

Notation: Let L be an algebraically closed field and let P € L[x] \ K and let Z(P) be the set of
zeros ¢ of P’ such that P(c) # P(d) for every zero d of P’ other than c. We denote by ®(P) its
cardinal.

In [1], Theorem 3 is stated under the general condition that the polynomial P we consider
is injective on the set of zeros of its derivative. Here we reduce that hypothesis to a hypothesis
concerning ®(P). Particularly, the following Theorem D (concerning the case when P’ only has
two distinct zeros) comes fromTheorem 3 [1], but actually, it is useless to assume the general
hypothesis that the restriction of P on the set of zeros of P’ is injective because in that case, such
a polynomial P necessarily satisfies P(c;) # P(c2) with the two zeros ¢y, co of P’, as shown in
Lemma 10 of [6].
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Remark 2. The hypothesis ®(P) > 4 is weaker than the hypothesis: "the restriction of P on the
set of zeros of P’ is injective” as soon as the number of distinct zeros of P’ is at least 6.

Theorem D Let P € Clx] be such that P’ has exactly two distinct zeros 1 of order ¢1 and o
of order ¢y with min{cy,ca} > 2 and max(cy,c2) > 3. Then P is a polynomial of uniqueness for

M(C).

Theorem E Let P € C[z] be such that P’ has exactly three distinct zeros v1 of order ¢1, v2 of order
co, v3 of order cs with max{cy,ca,c3} > 2, satisfying further ®(P) = 3. Then P is a polynomial
of uniqueness for M(C).

We can find Theorem F in [6] (Corollary 9.1, p. 226):
Theorem F. Let P € Clz]|. If ®(P) > 4 then P is a polynomial of uniqueness for M(C).

We can now state our main theorems on the problem f'P’(f), ¢’ P’(g) sharing a small function.

l
Theorem 1. Let P be a polynomial of uniqueness for A(C), let P' = b(z — ay)" H(x — ;)" with
i=2
beC*, 1>2, and k; > kiy1, 2<i<I1l—1 whenl > 2 and let k = 2222 k;. Suppose P satisfies
the following conditions:
n>k+2
l

n>>5+ Zmax(o,él — k;) + max(0,5 — ka),

i=3
Let f,g € A(C) be transcendental and let « € Af(C)NA,(C) be non-identically zero. If f'P'(f)
and g'P'(g) share o C.M., then f = g.

By Theorem F, we can derive Corollary 1.1:

l
Corollary 1.1 Let P € C[z] be such that P'(x) = b(x — a1)" H(CL‘ —a;)k with b € C*, &(P) > 4,
=2
and k; > kg1, 2<i1<l—1 andlet k = Zi:z k;. Suppose P satisfies the following conditions:

n>k+2,
!

n>>5+ Zmax(O,éL — k;) + max(0,5 — ka).

i=3
Let f,g € A(C) be transcendental and let o € Ay (C)NAy(C) be non-identically zero. If f'P'(f)
and g'P'(g) share « C.M., then f = g.

By Theorem E, we can drive Corollary 1.2:

Corollary 1.2 Let P € C[z] be such that P'(x) = b(x — a1)"(z — a2)*(z — a3)** with b € C*,
ko > ks, ®(P) = 3. Suppose P satisfies the following conditions:

n Z k2 + k?) + 27

n > 5+ max(0,4 — k3) + max(0,5 — k).

Let f,g € A(C) be transcendental and let o € Af(C)NAy(C) be non-identically zero. If f'P'(f)
and g'P'(g) share « C.M., then f = g.

Theorem 2. Let P be a polynomial of uniqueness for A(C) such that P’ is of the form
1

b(x —ar)” H(az —a;) with 1 >3, be C*, satisfying, n > 1+ 5.
i=2
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Let f,g € A(C) be transcendental and let o € Af(C) N A4(C) be non-identically zero. If f'P'(f)
and g'P'(g) share « C.M., then f = g.

By Theorem F we have Corollary 2.1:

1
Corollary 2.1 Let P € C[z] be such that P'(x) = b(x — a1)" H(x —a;) with ®(P) >4, be C*,
i=2
satisfying n > 1 + 5.
Let f,g € A(C) be transcendental and let o € Af(C) N A4(C) be non-identically zero. If f'P'(f)
and g'P'(g) share « C.M., then f = g.
And by Theorem E we have Corollary 2.1:

Corollary 2.2 Let P € Cz] be such that P'(x) = b(x — a1)"(x — az)"(z — a3)** with ®(P) =3
, be C*, satisfying n > 8.

Let f,g € A(C) be transcendental and let o € Af(C) N A4(C) be non-identically zero. If f'P'(f)
and g'P'(g) share « C.M., then f = g.

1
Theorem 3. Let P be a polynomial of uniqueness for M(C), let P' = b(x —aq)" H x—a;)"

1=2
withb € C*, and 1 > 2, k; > kiy1, 2 <i<1—1 whenl > 2 and let k = 21:2 k;. Suppose P
satisfies the following conditions:

l

n>10+ > max(0,4 — k;) + max(0,5 — ky),

n>k+ 3: ’

ifl=2, thenn # 2k, 2k +1, 3k+1,

ifl=23, thenn#2k+1, 3k; — k, Vi=2, 3.

Let f,g € M(C) be transcendental and let o« € Mz(C) N My(C) be non-identically zero. If
f'P'(f) and ¢'P'(g) share o C.M., then [ = g.

By Theorem F, we have Corollary 3.1:

!
Corollary 3.1 Let P € C[x] be such that P'(z) = b(x — a1)" H(sc — )k with b € C*, ®(P) > 4,
=2
ki>kiy1 and2<:<[l—1 and let k = Zi=2 k;. Suppose P satisfies the following conditions:
!
n>10+ Y max(0,4 — k;) + max(0,5 — ky),
=3

n>k+ 3.

Let f,g € M(C) be transcendental and let o € Mf(C) N My(C) be non-identically zero. If
f'P'(f) and ¢'P'(g) share « C.M., then f = g.

And by Theorem D we also have Corollary 3.2

Corollary 3.2 Let P € Clz] be such that P’ is of the form b(x — ay)™(x — az)* with k > 2.
Suppose that P satisfies the further conditions:

n > 10 + max(0,5 — k),

n# 2k, 2k+1, 3k+ 1.
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Let f,g € M(C) be transcendental and let o« € Mz(C) N My(C) be non-identically zero. If
f'P'(f) and ¢’ P'(g) share « C.M., then f = g.

$16 2x15 1‘14

Example: Let P(x) = STREET + 7R Then P'(z) = x'3(z — 1)2. Given f, g € M(C)
transcendental such that f'P’(f) and ¢’P’(g) share a small function & € M(C) C.M., we have
f=g

By Corollary 3.2 we can also derive Corollary 3.3:

Corollary 3.3 Let f, g € M(C) be transcendental and let o« € M ¢(C)NM4(C) be non-identically
zero. Let a € C*. If f'f*(f —a)? and g'g"(g — a)? share the function o C.M. and if n > 13, then

f=y
By Theorem E, we can also derive Corollary 3.4:

Corollary 3.4 Let P € Clz] be such that P'(x) = b(x — a1)"(z — a2)* (z — a3)*® with b € C*,
®(P) =3, k; > kit1 and i =2, 3. Suppose P satisfies the following conditions:
!

n>10+ Zmax(0,4 — k2) + max(0,5 — k3),
i=3
n > ko + ks + 3.
Let f,g € M(C) be transcendental and let o« € Mz(C) N My(C) be non-identically zero. If
f'P'(f) and ¢'P'(g) share o C.M., then [ = g.

When all k; are equal to 1, we can obtain a better formulation:

Theorem 4. Let P be a polynomial of uniqueness for M(C) such that P’ is of the form
1

b(m—al)”H(x—ai) with 1 >3, be C*, withn > 1+ 10.

1=2
Let f,g € M(C) be transcendental and let & € M¢(C)NMy(C) be non-identically zero. If f'P'(f)
and g'P'(g) share « C.M., then f = g.

By Theorem F, we have Corollary 4.1:

Corollary 4.1 Let P € C[z] be such that P’ is of the form
!

P'(z) =b(x —ay)" H(x —a;), with ®(P) > 4, b € C* satisfying:
i=2
n > 1+ 10.
Let f,g € M(C) be transcendental and let « € M(C)NMy(C) be non-identically zero. If f'P'(f)
and g'P'(g) share o C.M., then f = g.

18 9,17 16 9,15
Example: Let P(x) = % - f—? - % + 2 Then P'(x) = x!7 — 2216 — 215 4 221 =
z14(z — 1)(z 4+ 1)(z — 2). We check that: P(0), P(1), P(—1), P(2) are all distinct. Consequently
®(P) = 4. So, P is a polynomial of uniqueness for M(C). Moreover, we have n = 14, | = 4, so we
can apply Corollary 4.1.

Given f, g € M(C) transcendental such that f'P’(f) and ¢'P’(g) share a small function

a € M(C) C.M., we have f = g.
And by Theorem E we have Corollary 4.2
Corollary 4.2 Let P € C[z] be such that P’ is of the form
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P'(z) =b(x — a1)"(x — a2)(x — a3) with ®(P) = 3, b € C*, satisfying n > 13.
Let f,g € M(C) be transcendental and let o € M(C)NMy(C) be non-identically zero. If f'P'(f)
and g'P'(g) share o C.M., then f = g.

Example: Consider the general form of a polynomial P such that P’ has 3 distinct zeros, one
of them being 0 of order n and the two others a and b of order 1. We can obviously suppose that
P(0) = 0. And then we have

P(z) = 2" (n+2)(n+1) — 2" (a1 + az)(n + 3)(n + 1) + 2" (ayaz)(n + 3)(n + 2)

and therefore
P(z)=(n+1)(n+2)(n+3)x"(x —a1)(z — as).
Now we can check that P(a;) = P(0) = 0 if and only if “_ n—i—i) and that P(a;) = P(ag) if
as
and only if [a?"3 — a3 3)(n 4 1) = [a1a2(a?™ — a3 ™™)](n + 3). Particularly, the last equality is

satisfied when n is odd and as = —a;.
3 1
Consequently, if Z—; * ZI 1 and Z—; #+ 213 and if

@™ = azJ(n+ 1) # [araz(ai ™ — az*)](n +3)

then P is a polynomial of uniqueness for complex meromorphic functions. Moreover, if n > 13,
then we can apply Corollary 4.2.

Conversely, suppose for instance n is odd and as = —ay. Then we can check that P(f) = P(—f)
for every function, therefore P is not a polynomial of uniqueness for M(C).

Theorem 5. Let f, g € M(C) be transcendental and let o € M¢(C) N My(C) be non-identically
zero. Let a € C*. If f'f™(f — a) and ¢'g"(g — a) share the function « C.M. and if n > 12,

. B . _a(n+2) (htt—1 B
then either f = g or there exists h € M(C) such that f = m——— (h”+2— 1>h and g =
a(n+2)(h”+1—1>

n+1 \prt2—-1/°

Remark 3. In Theorem 5, the second conclusion is well known to occur [5], [24]. Indeed, let

n+2 "t —1
h € M(C) and let us define f and g as: g = (n—l— 1)(h”+2 — 1) and f = hg. We can see that

1 1
the polynomial P(y) = ?ynw o 1y"+1 satisfies P(f) = P(g), hence f'P'(f) = ¢'P'(g),
n n
therefore f'P'(f) and ¢g'P'(g) trivially share any function.

Remark 4. On a p-adic field, we obtained conclusions with hypotheses slightly more general when
the small function « is either a Moebius function or a constant, thanks to a very accurate Second
Main Theorem. On the field C, we cannot do the same.

2 Basic and specifc results:

Notation: Given f € M(C), we will denote by S¢(r) a function in r defined in ]0, +o0o[ such

that lim, 4 g{r(})) = 0 out of a subset J of |0, +-o00[ of finite measure.

Let us recall a few classical lemmas [12]:
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Lemma 1. Let f,g € M(C), let a € C and let P(f) € Clz] be of degree q. Then T(r,f + g) <
T(r, f)+T(r,9) + OQ), T(r,fg) < T(r,f) +T(r,g), T(r,f —a)=T(r,f)+0Q1), T(r, %)
T(r, f)+O(1), T(r, P(f)) = qT'(r, f) + O(1).

Lemma 2. Let f, g € M(C). Then Z(r,f—a) <T(r,f)+0(Q) VaeC, m(r,fg) <m(r,f) +
m(r,g), N(r,f') = N(r,f) + N(r,f), Z(r,f') < Z(r, f) + N(r, f) + Sy(r). Let Q € C[z] be of
degre q. Then Z(r, f'Q(D)) = Z(r.Q(f)) and N(r. QD) = (a + DN(r.J) + N(r. /).

By Milloux’s Theory we have the following lemma (Theorem 3.1 in [12]).

/

Lemma 3. Let f € M(C). Then m(r,f7) = S¢(r) and T(r, f') < T(r,f) + N(r, f) + S¢(r).
Moreover, if f € A(C) then T(r, f') < T(r, f) + Sf(r).
The statements of Lemma 4 are known and used in [18]:

Lemma 4. Let f € M(C). Then m(r, %) > m(r, %) + Sy(r). Moreover, T(r,f) — Z(r, f) <
T(r, f') = Z(r, ') + S¢(r).

Notation: Let f € M(C) satisfy f'(0) # 0,00. Let S be a finite subset of C and r €]0, +o0[.
We denote by Z5 (r, f') the counting function of zeros of f' in C which are not zeros of any f — s
for s € S. This is, if (7, )nen is the finite or infinite sequence of zeros of f’ in C that are not zeros
of f — s for s € S, with multiplicy order ¢,, respectively, we set

Z5(r ) = an(logr —log |val)-

[n|<r

Theorem N. [12] Let ay,...,a, € C withn > 2,n € N, and let f € M(C). Let S = {a1,...,an}.
Assume that none of f, f' and f —a; with 1 < j < n, equals 0 or oo at the origin. Then, for
r > 0 we have

(n—1)T <ZZ )+ N f) = Z5 (r f') + Sy (r).

We will also need the following Lemma 5 which is specific to the complex case.

Lemma 5. Let Q € Clz] and let f € M(C) be transcendental. Then T(r,Q(f)) < T(r, f'Q(f)) +

m(r, —,) and T(r,Q(f)) < T(r,f) + N(r, f) + T(r, f'Q(f)) + S¢(r), r €]0,+0c[. Moreover, if
deg(Q) >3, then M;(C) C Myiq5)(C).

Proof: We have T'(r, Q(f)) = N(r, Q(f))+m(r, f'GP) < N(r, Q) +N(r, f))+m(r, f'Q(f)+
m(r, %) Now, since the poles of f' are those of Q(f) (with different multiplicities), we have
N(r,Q(f))+N(r, f') = N(r, f'Q(f)) and therefore N (r, Q(f))+N (r, f')+m(r, f'Q(f))+m(r, 1) =
N(r, f'Q(f)) +m(r, f'Q(f)) +m(r, %) T(r, f'Q(f)) +m(r, f,) which proves the first mequahty
Next, m(n%) < T(r, f") 4+ S¢(r) = m(r, f') + N(r, f') + S¢(r). But by Lemma 3 m(r, f') <

(r
m(r,f)—l—Sf(r),hencem( f')<m( )+N(7”,f)+5f(7“):m(T‘,f)—I—N(T,f)—‘rﬁ(’l“,f)—l-Sf(?“)
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and therefore T'(r, Q(f)) < T(r, f'Q(f))+T(r, f)+N(r, f)+S¢(r) < T(r, f'Q(f))+2T(r, f)+S¢(r),
which finishes proving the second inequality. Particularly, if deg(Q) > 3, the last statement is an

immediate consequence of both inequalities.

On a p-adic field, the following lemma 6 is only proven for meromorphic functions [2]. Here we
must consider the particular case of entire functions which will be useful in the proof of Theorem
1.

Lemma 6. Let Q € Clz] and let f, g € M(C) (resp. f, g € A(C)) be transcendental. Let
P(x) = 2" Q(x) be such that n > deg(Q) + 3 (resp. n > deg(Q) +2). If P'(f)f = P'(g)g’ then
P(f) = P(g)-

Proof : Set k = deg(Q). Since P'(f)f' = P'(g)g’, there exists ¢ € C such that P(f) = P(g) +c.
Suppose that ¢ # 0. Then by Theorem N, we have

T(r,P(f)) < Z(r, P(f)) + Z(r, P(f) = ¢) + N(r, P(f)) + S¢ (7). (1)

) = Z(r, f*Qf)) = Z(r, fQ(f)
Q O(1) and then Z(r, ) <|(
Z(r,g9) + Z(r,Q(g)) < Then by Lemma
1

T )
). Notice that N(r, P(f)) = N(r, f) < T(r, f) + O(1) then

Obviously we see that Z(r, P(f)
1 we have T(r, fQ(f)) = (k+1)T(r
have Z(r. P(f) — ¢) = Z(r, P(g)) <
1, Z(r, P(f) - ¢) < (k+ D)T(r, 9) + O
by (1) we obtain

3
Tﬁ

T(r,P(f)) < (k+2)T(r, f) + (k+ 1D)T(r,g) + S¢(r) (2)
(resp.

T(r, P(f)) < (k+1T(r, f) + (k+ 1)T(r,g) + S¢(r) (3))
According to Lemma 1 we have T'(r, P(f)) = (n+ k+ 1)T(r, f) + O(1). Then by (2) we have

nT(r, f) <T(r, f) + (k+ )T (r,9) + S¢(r). (4)
(resp.
nT(r, f) <T(r, f) + (k+ 1T (r,9) + S5 (7). (5))
Similarly we obtain
nT(r,9) <T(r,g) + (k+1)T(r, f) + S(r). (6))
(resp.
nT(r,g) < (k+1)T(r, f) + S¢(r). (7))

Hence adding (6) and (7) we have

n(T(r, f) + T(r,9)) < (k+2)(T(r, f) + T(r,9)) + S;(r)

and then
0< (k+2—n)(T(r, f) +T(r,g)) + S;(r)

(resp.
0< (k+1—=n)(T(r,f)+T(r,g)) + S¢(r))

In the general case, that leads to a contradiction because n > k+3 and lim,—, oo (T'(r, f)+T(r, g)) =
+0o outside a subset J of 0, +00[ of finite measure. Thus ¢ = 0 and consequently P(f) = P(g).
And when f, g €€ A(C) we have contradiction when n > k + 2.



Complex meromorphic functions f'P(f), g’ P'(g) sharing a small function 10

Notation: Given two meromorphic functions f, g € M(C). We set

That function was already used in several previous papers, particularly [18].

The following Lemma was proved in [25].

Lemma 7. Let F,G € M(C) be non-constant, having no zero and no pole at 0 and sharing the
value 1 C.M. Suppose that ¥y, =0 and that

2, )+ 2009 + N )+ Ning) |
max(T(r, ), T(r,9))

lim sup
r—400

outside a set of finite measure. Then either f =g or fg=1.

Lemma 8 is similar to Lemma 9 [2] for complex meromorphic functions. But here, we can get
a better result for entire functions.

Lemma 8. Let P(z) = (x — a1)" HiZQ(I —a;)ki € Cla] (a; # aj, Vi # j) with 1 > 2 and n >
max{ke, ...k} and let k = 2222 k;. Let f, g € M(C) be transcendental and let 6 = P(f)f P(g)g
If 6 belongs to My(C) N My(C), then we have the following :

if 1 = 2 then n belongs to {k, k+1, 2k, 2k+1, 3k + 1},

if | = 3 then n belongs to {£,k + 1,2k + 1,3ks — k, 3ks — k},

ifl >4 thenn=Fk+1.

Moreover, if f, g belong to A(C), then 6 does not belong to As(C).

Proof: Without loss of generality, we can assume a; = 0. Suppose f,g € M(C) satisfy

l l
I = a)™) " ([J (o = a*)g' =6 (1)
i=2 i=2

Let ¥ be the set of zeros and poles of §. We will first show that P'(f) and P’(g) admit zeros
or poles out of ¥. Indeed, suppose that none of the zeros and the poles of f'P’(f) belong to
Y. So, every zero and every pole of f'P’(f) must be either a zero or a pole of §. Therefore,
Z(r, f'P'(f)) + N(r, f'P'(f)) < 2T(r,0). Actually, each zero of f'P'(f) is either a zero of f" or of
P'(f) because the poles of P'(f) are the poles of f’. Consequently, Z(r, P'(f))+N(r, f) < 2T(r,0)
and therefore 22:1 Z(r, f —ai)) + N(r, f) < 2T'(r,0) But now by Theorem N we have

l
(1—1)T(r, f) SZer—az )+ N(r, f) + Ss(r)

hence (I—1)T(r, f) < 2T(r,0) + S¢(r), a contradiction. Consequently, P’(f) admits zeros or poles
that do not belong to X. Similarly, P’(g) admits zeros or poles that do not belong to X.

Now, suppose that f, g belong to A(C). Since both f, g have no pole, all zeros of both must
belong to . Then, we have

l

Z(r, f'P'(f)g'P'(9)) = +Zkz D+ Z0rg)+ Y kiZ(r.g —ai),

=1
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therefore l
>N " Z(r, f —ai) = (1= V)T(r, f) + Sy(r) + Sy(r)
i=1

a contradiction to hypothesis again. Consequently, f'P’'(f)g'P’(g) cannot belong to A¢(C) or
Ay(C).

Now, let us go back to the general case and suppose that f, g are meromorphic functions. Let
v € C\ X be a zero of g of order s. Clearly, by (1), v is a pole of f of order, for example, ¢. And
since 7 is neither a zero nor a pole of § we can derive the following relation

s(n+1)=tn+k+1)+2 (2)

Now, suppose that for i € {2,..,1}, g — a; has a zero v € C\ X of order s;. It is a pole of f of order
t;. So, by (2), we obtain
si(ki +1) =ti(n+k+1)+2 (3)

By (2) and (3) it is obvious that s > ¢ and s; > ;.

Consider now a pole v € C\ X of f. Either it is a zero of g, or it is a zero of g — a; for some
i €{2,..,1}, or it is a zero of ¢’ that is neither a zero of g nor a zero of g — a; (Vi € {2,..,1}). Let
Zy(r, g’) be the counting function of zeros of ¢’ that are neither a zero of g nor a zero of g — q;
for all i € {2,..,1} (counting multiplicity) and let Zy(r, g’) be the counting function of zeros of g’
that are neither a zero of g nor a zero of g — a; for all i € {2,..,1}, ignoring multiplicity. Since
T(r,0) = Sy(r) = Sg(r), we have

l
N(r, ) < Z(r,9) + Y Z(r,g — a;) + Zo(r,g') + S5 (r) + S,(r)(r) (4)
=2

Now, by Theorem N, we have (I—1)T(r, f) < Z(r, f) —|—Zi:2 Z(r,f—a;))+N(r, )= Zo(r, f')+
S¢(r), hence by (4), we obtain

1 l
(l_l)T( ZZ f az +Z 7” g Z T, g_ai)+70(r?g/)_Z0(T’ f/)+Sf(T)+Sg(T)
i=2
()
And similarly,
l !
(I-1)T(r,g) DY Z(r,g—ai)+Z(r, )+ Z(r, f=ai)+Zo(r, f') = Zo(r, g )+Ss(r)+Sy(r)
i=2 =2
(6)
Hence, adding (5) and (6), we obtain
! !
(I=1)(T(r, /)+T(r,9)) < Z rg—ai)+Z(r, f)+Y_ Z(r, f—ai) +S5(r)+S,(r) (7)
i=2 i=2
Case [ = 2:

Without loss of generality, we can assume as = 1. Suppose now that all zeros of f, f—1, g, g—1
are at least of order 5, except maybe those lying in X: then

(r; f) + S5 (r) + Sg(r),

70, ) £ ST £) + 85(0)+ S,0), Z(r.f=1) < 2T
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Z(r,9) < §T(r,g) + 5;0) + ,(r), Zlr,g—1) <

1
ST(r,9) + S5(r) + S4(r),
a contradiction to (7), proving the statement of the Lemma. So, we will look for pairs (n, k) leading
to zeros of f or g out of X, of order < 4.

Consequently, we will examine all situations leading to zeros of order < 4 for f, f—1, g, g—1.
Actually, since f and g play the same role with respect to n and k, it is sufficient to examine the
situation, for instance, when g or ¢ — 1 has a zero of order s < 4. In each case we denote by ¢ the
order of the pole of f which is a zero of g or g — 1. Recall that when f has a pole of order 4, g or
g — 1, if it has a zero, must have a zero of order > 5. Consequently, we only have to examine zeros
of g or g — 1 that are poles of f of order 1, 2, 3.

Supppose first g has a zero v ¢ ¥ of order s = 2. Then
2n+1) =t(k+n+1)+2 (8)

By (8) if ¢ = 1 we find a solution:
n=k+1 (9)

Next, if t > 2, we check that 2n + 2 < t(k 4+ n + 1) + 2, hence (9) is the only solution.
Supppose now g has a zero v ¢ X of order s = 3. Then
3n+1)=tk+n+1)+2 (10)

By (10) if ¢ = 1 we find no solution because k < n.
If t =2 we find
n=2k+1 (11)

If t > 3 we have 3(n +3) < 3(k+n+ 1)+ 2 hence (11) is the only solution.
Supppose now g has a zero of order s = 4. Then
4n+1)=tk+n+1)+2 (12)

If t =1, since k <n, we have 4(n + 1) > t(k+n+1) + 2.
If t = 2, by (12) we have a solution

n==~k (13)

If t = 3, we have another solution
n=3k+1 (14)

Consequently, by (9), (11), (12), (14), all possibilities for g to have a zero of order s < 4 are as
follows:

n=k+1, s=2, n=2k+1,s=3, n=k,s=4, n=3k+1,5s=4. (15)
Now, we will examine zeros of g — 1 v ¢ ¥ of order < 4. So, the order s of g — 1 satisfies

stk+1)=t(k+n+1)+2 (16)

Supppose first g — 1 has a zero v ¢ X of order s = 2. Then by (16), we have

2k+1) =tlk+n+1)+2 (17)
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Since k < n, we find no solution neither when ¢ = 1 that would lead to K = n + 1, nor when ¢t > 2
because 2(k+1) <t(k+n+1)+2.

Suppose now that s = 3.
If t =1 we find a solution:
n =2k (18)

If t > 2, we have no solution with k¥ < n because 3(k+1) <t(k+n+1)+2

Suppose now that s = 4.
If t = 1 we find a solution:
n=3k+1 (19)

If ¢ = 2 we find another solution:
n==k (20)

If ¢t > 3, we find no solution with k < n because 4(k+ 1) < t(k+n+1)+ 2.
Consequently, by (18), (19), (20), all possibilities for g — 1 to have a zero v ¢ 3 of order s < 4
are as follows:
n=2k, s=3, n=3k+1,s=4, n=ks=4. (21)

Thus, we have proved that when n # k, k+ 1,2k, 2k + 1,3k + 1, none of the zeros of f, f —1,
g, g — 1 out of ¥ is of order < 4 and therefore the statement of the Lemma is proved in the case
=2

Case [ = 3 : Suppose that all zeros of f, g, f—a;, g—a; Vi =2, 3 are at least of order 4, except
maybe those lying in 3: then

Z(r, 1) < {00 + Sy + So(r), and ¥i=2, 3, Zr, [ — ) < 170 f) + 57(0) + 5,(r),,

e

Z(r,g) < iT(r,g) +8p(r) + Sy(r), and Vi=2,3 Z(r,g—a;) < =T(r,g) + S;(r) + Sy(r).

o~ =

Then by (7) we obtain [ < 2, a contradiction.

Consequently, we will examine all n and k; (i € {2,3}) leading to zeros out of ¥ of order < 3
for f, g, f —ai, g— a; for i = 2, 3. Actually, since f and g play the same role, it is sufficient to
examine the situation, for instance, when g or some g — a; has a zero of order less than 3. In each
case we denote by t the order of the pole of f which is a zero of g or g — a; for some i. Recall
that when f has a pole of order 3, g or g — a;, if it has a zero, must have a zero of order > 4.
Consequently, we only have to examine zeros of g or g —a; (Vi € {2,3}) that are poles of f of order
1, 2.

Supppose first g has a zero v ¢ X of order s = 2. By (2) we have
2n+ 1) =t(k+n+1)+2 (22)

By (22) if ¢ = 1 we find a solution:
n=k+1 (23)

Next, if ¢ = 2, we check that 2n +2 < 2(k +n 4 1) + 2, hence (23) is the only solution.
Supppose now g has a zero v ¢ ¥ of order s = 3. Then

3n+1)=tk+n+1)+2 (24)
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By (24) if t = 1 we find a solution :
n=— (25)
If t =2 we find
n=2k+1 (26)

Consequently, by (23), (25), (26) all possibilities for g to have a zero of order s < 3 are as
follows:

k
n=k+1, s=2,t=1, n:? s=3,t=1, n=2k+1,5=3, t=2.

Consider now zeros of g — a; v ¢ ¥ of order s; < 3. So, the order s; of g — a; satisfies

si(ki+1)=tk+n+1)+2 (27)

Supppose first g — a; has a zero v ¢ ¥ of order s; = 2. Then by (28), we have
2ki+1) =tk +n+1)+2 (28)
Since k; < n and k; < k we have 2(k; + 1) < t(k 4+ n + 1) + 2. Hence we find no solution for (28).

Suppose now that s = 3.
If t =1 we find a solution:
3ki=n+k (29)

If ¢t = 2, we have no solution because 3k; < 2(n + k).

Consequently, the unique possibility for g — a; to have a zero v ¢ X of order s; < 3 is :

n+k=3k;, s=3,t=1

Thus, we have proved that when n # k41, % 2k +1, 3k; — k none of the zeros of f, g, f —ay,
g—a; (Vi=2, 3) out of ¥ is of order < 3 and therefore the statement of the Lemma is proved in

the case [ = 3.
Casel >4 :

Suppose now that all zeros of f, g, f —a;, g—a; Vi € {2,..,1} are at least of order 3, except
maybe those lying in 3: then

Z(Ta f) < %T(T,f) + Sf(r) + Sg(r)a and Vi € {Qa "al}’ 7(7“,f - ai) < T(T, f) + Sf(r) + Sg(r)a

1 _
Z(r,g) < §T(T’ g) + Sp(r)+ Se(r), andVie{2,..,1}, Z(r,g—a;) <

Wl W=

T(r,g) + S5(r) + S,(r).
Then using (7) we obtain [ < 3 a contradiction.

Consequently, we will examine all n and k; (i € {2,..,1}) leading to zeros out of ¥ of order < 2
for f, g, f—a;, g—a; foralli € {2,..,1}. Actually, since f and g play the same role, it is sufficient
to examine the situation, for instance, when g or some g — a; has a zero of order less than 2. In
each case we denote by ¢ the order of the pole of f which is a zero of g or g — a; for some i. Recall
that when f has a pole of order 2, g or g — ay, if it has a zero, must have a zero of order > 3.
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Consequently, we only have to examine zeros of g or g — a; (Vi € {2,..,1}) that are poles of f of
order 1.

Supppose first g has a zero v ¢ ¥ of order s = 2. Then + is a pole of f of order ¢ = 1. Then
by (2) we have
2n+1)=(k+n+1)+2 (30)

We find a solution :
n=k+1 (31)

Let ¢ € {2,..,1} and suppose g — a; has a zero v ¢ 3 of order s; = 2. Then 7 is a pole of f of order
t =1. So by (3) we have :
2ki+1)=(n+k+1)+2

That means 2k; = n+ k + 1. Since k; < n and k; < k, we find no solution when s; =2 and t = 1.
Consequently, by (31), the only possibility for g or some g — a; to have a zero v ¢ X of order
<3is:
n==k+1.

This completes the proof of Lemma 8.

Lemma 9 is known and easily checked (Theorems 2,3 [5] and [24]):

Lemma 9. Let f, g € M(C) be transcendental satisfy (f —a)f™ = (g — a)g™ with a € C and let

h= i If h is not identically 1, then
9

e T Ty
I =it ) T o

Notation: Let f € M(C) be such that f(0) # 0,00. We denote by Zy(r, f) the counting function
of the zeros of f each being counted with multiplicity when it is at most 2 and with multiplicity 2
when it is bigger.

We can extract the following Lemma 10 from a result that is proved in several papers and
particularly in Lemma 3 [15].

Lemma 10. Let f,g € M(C) be such that f(0) # 0,00 and share the value 1 CM. If ¥y, is not
identically zero, then,

max(T'(r, f),T(r,g)) < Nigj(r, f) + Zig) (7, f) + Ny (7, 9) + Zp1 (1, 9) + S (r) + Sy(r)

3 Proof of Theorems

The polynomial P is the one we considered in theorems 1, 2, 3, 4 and we can assume a; = 0. In
/Pl

Theorem 5 we call P the polynomial such that P(0) =0 and P'(z) = 2™ (z —a). Set F = FP)
«

IP/

and G = 29 (9)
@

that so are F' and G. Recall that

. Clearly F and G share the value 1 C.M. Since f, g are transcendental, we notice



Complex meromorphic functions f'P(f), g’ P'(g) sharing a small function 16

We will prove that under the hypotheses of each theorem, ¥ ¢ is identically zero.
Set F' = P(f), G = P(g). We notice that P(z) is of the form z"*1Q(z) with @ € Clxz] of
degree k. Now, by Lemma 4, we have

~

T(r,F) = Z(r,F) < T(r,F") — Z(r,F') + Sp(r)

~

Consequently, since (F)' = aF, we have

T(r,F) < T(r,F) + Z(r, F) = Z(r, F) + T(r, ) + S;(r), (1)
hence, by (1), we obtain

l
T(r,F) < T(r, F)+(n+1)Z(r, ))+Z(r, Q) —nZ(r, /)= ki Z(r, f=a;)—Z(r, f')+T(r, )+ Sy (r)

i=2
i.e.

l

T(r,F) <T(r,F)+ Z(r, f) + Z(r,Q(f)) = > _kiZ(r, f — ai) = Z(r, f') + T(r,0) + Sy(r).  (2)
=2

and similarly,

l
T(r, @) <T(r,G)+ Z(r,g) + Z(r, Q(g)) — Z kiZ(r,g—a;) — Z(r,g")+T(r,a) + S¢(r).  (3)

i=2
Now, it follows from the definition of F' and G that

l
Zp)(r, F) + Nig(r, F) <2Z(r, f) + 2 Z(r, f — a;) + Z(r, ') + 2N(r, ) + T(r, ) + Sy(r) (4)
=2

and similarly

1
Zj9)(r, G) + Ny (r,G) < 2Z(r, g) + 22 Z(r,g—ai)+ Z(r,g') + 2N(r,g) + T(r,a) + Sy(r) (5)

i=2
And particularly, if k; = 1, Vi € {2,..,1}, then

l
Zig)(r, F) + Nigg(r, F) < 2Z(r, f) + Y Z(r, f —a;) + Z(r, ') + 2N(r, f) + T(r, ) + S(r)  (6)
=2

and similarly

!
Zj9)(r, G) + Ny (r,G) < 2Z(r, g) + Z Z(r,g—ai)+ Z(r,g") + 2N(r,g) + T(r,a) + S,(r) (7)

=2

Suppose now that ¥ ¢ is not identically zero. Now, by Lemma 10, we have

T(T7 F) < Z[Q] (T, F) =+ N[Q] (r, F) + Z[g] (7", G) + N[Q] (T, G) + Sf(?") + Sg(’l“>
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hence by (2), we obtain

T(r, ﬁ) < Zpg)(r, F) + Nigy (1, F) + Zg1 (1, G) + Nigy(r, G) + Z(r, f) + Z(r, Q(f))

!
—ZkiZ(r,f —a;)) = Z(r, )+ T(r,a)+ Sg(r) + Sy(r)

and hence by (4) and (5):

l l
T(r,F) <2Z(r, f)+2>_ Z(r, f—a;)+ Z(r, )+ 2N(r, f) +2Z(r, 9) +2>_ Z(r,g—a;)+ Z(r, g')+
=2 =2

l
2N(T7 g) + Z(Tv f) + Z(T7 Q(f)) - Z kiZ(rv f - ai) - Z(Ta f/) + 2T(7’,Oé) + Sf(’f') + Sg(r) (8)

i=2
and similarly,

l l
T(r,G) < 2Z(r,g)+2 Y Z(r, g—a;)+Z(r, g )+2N(r, g)+2Z(r, )42y Z(r, f—ai)+Z(r, f')+2N(r, f)
=2 1=2

1
+2Z(r,9) + Z(r,Q(9)) — Z kiZ(r,g — a;) = Z(r,g") + 2T(r, a) + Sy (r) + Sy(r) (9)
Consequently,
!
T(r, F)+T(r,G) < 5(Z(r, f)+Z(T,g))+Z(4—ki)(Z(hf—ai)+Z(7ﬁ9—ai))+(Z(T7 +2(r.g"))+
AN(r, f) + N(r,9) + (Z(r, Q(f)) + Z(r,Q(9))) + Sy (r) + Sy(r)- (10)
Moreover, if k; = 1, Vi € {2,..,1}, then by (6) and (7) we have
1 !
T(r,F) < 2Z(r, f) + Z Z(r, f —a;) + Z(r, f') + 2N(r, f) + 2Z(r, g) + Z Z(r,g — a;)+

l
Z(T,g/) +2N(T,g) +Z(T’f) +Z(T’Q(f)) _ZZ(T7f_ai) —Z(T,f’)—FSf(’I") +S(J(T)

=2
and similarly,
N ! o !
T(r,G) <2Z(r,9) + Y Z(r,g — a;) + Z(r,g') + 2N(r,9) +22(r, ) + > Z(r, f — ai)+

l
Z(r, f') + 2N(r, f) + Z(r,9) + Z(r,Q(9)) = Y_ Z(r,g — a;) = Z(r,g') + Sp(r) + Sy(r).

i=2
Consequently,

l
T(r, F)+T(r,G) < 5(Z(r, f)+ 2(r,9)) + Y _(Z(r, f —ai) + Z(r,g —a;)) + Z(r, Q(f)) + Z(r, Q(9)) +

=2



Complex meromorphic functions f'P(f), g’ P'(g) sharing a small function 18

(Z(r, f') + Z(r.g")) + A(N(r, ) + N(r,9)) + Sy (r) + Sy(r) (11)
Now, let us go back to the general case. By Lemma 2, we can write Z(r, f') + Z(r,g') <
Z(r,f —a2)+ Z(r,g —as) + N(r, f) + N(r,g) + S¢(r). Hence, in general, by (10) we obtain
T(r, F) +T(r,G) <

l
5(Z(r, )+ Z(r,g))+ Y _(4=k)(Z(r, f —ai) + Z(r, g — ) + (5= ka) ((Z(r, [ —a2) + Z(r, g— az))

=3

+5(N(r, f) + N(r,9)) + (Z(r,Q(f)) + Z(r,Q(9))) + Sy (r) + Sy(r)-
And hence, since T(r, Q(f)) = kT (r, f) + O(1) and T(r,Q(g)) = kT(r,g) + O(1), we have

T(r, ﬁ) + T (r, é) <

MN

5(T(’I“,f) +T(T,g)) + (4_ ki)<Z(r7 f - ai) + Z(T,g - ai)) + (5 - k’g)(Z(’l“,f _a2) + Z(T,g— a2))

w

+5(N(r, f) + N(r,9)) + k(T (r, f) + T(r,g)) + Sy (r) + Sy(r). (12)
Now, if k; = 1, Vi € {2,..,1}, by (11) and Lemma 2 we have
!

T(r, F)+ T(r,G) < 5(Z(r, )+ Z(r.9)) + S (Z(r, f = a)) + Z(r, g — a;)) + (I = )(T(r, f) + T(r, 9))
=2

+(Z(r, f = az) + Z(r,g — a2)) + 5(N(r, f) + N(r,9)) + Sy (r) + Sy(r)
hence
T(r,F)+T(r,G) <
!
5(T(r, )+T(r, g))+Z(T(T, f—a)+T(r,g—a;))+(—=1)(T(r, )+T(r, 9))+(T(r, f—a2)+T (r, g—as))

+5(N(r, f) + N(r,9)) + Sy (r) + Sy(r)
and hence

T(r,F) +T(r,G) < (9+20)(T(r, f) + T(r, 9)) + Sy (r) + Sy(r) (13)

Now, let us go back to the general case. Since Fisa polynomial in f of degree n +k + 1, we have
T, F)=(n+k+1)T(r,f)+ O(1) and similarly, T(r,G) = (n+ k + 1)T(r,g) + O(1), hence by
(12) we can derive

(n+k+1)(T(r, f)+T(r.9) <

l
5(T(r, f)+T(r,9)) + (5= ka)(Z(r, f —a2) + Z(r, g — az)) + 2(4 —ki)(Z(r, f —ai) + Z(r,g — a;))

+5(N(r, f) 4+ N(r,g)) + k(T (r, f) +T(r,9)) + Ss(r) + Sy(r). (14)
Hence

1
(n+k+1)(T(r, f) + T(r,9)) < A0+E)(T(r, f) + T(r,9)) + Y (A= k) (Z(r, f — a;) + Z(r, g — a;))

=3
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+(5 = k2)(Z(r, f —a2) + Z(r,g — a2)) + Sy(r) + Sy(r)
and hence

l

n(T(r, f) +T(r.9)) < O(T(r, f) +T(r.9)) + Y (4= ki) (Z(r, f — ai) + Z(r,g — a;))
=3

+(5 —k2)(Z(r, f —a2) + Z(r,g — az)) + S¢(r) + Sy(r). (15)

Then at least, for each ¢ = 3, .., we have
4—k)Z(r,f —a;)+ Z(r,g — a;)) <max(0,4 —k;))(T(r, )+ T(r,g9)) + O(1) and

(5—k2)(Z(r, f —a2) + Z(r,g — a2)) < max(0,5 — k2)(T'(r, f) + T(r, 9)) + O(1).
Consequently, by (15) we have

n(T(r, f) +T(r,9)) <9(T(r, f) +T(r, 9))+

1
+ Z max (0,4 — k;)(T(r, f) + T(r,g)) + max(0,5 — ko) (T(r, f) + T(r,g)) + O(1)
i=3

and hence,
l

n < 9—|—Zmax(0,4—ki) + max(0,5 — k2). (16)
=3

Thus, we have proved that ¥ g = 0 when

1
n>10+ Z max(0,4 — k;) + max (0,5 — ks),
1=3

concerning Theorem 3.
And, if k; =1, Vi € {2,..,,1}, by (13) we have n + k + 1 < 9 + 2[, hence
n<9+1. (17)

So, if k;, =1, Vi € {2,..,1}, when n > [ 4 10 we have ¥ ¢ = 0 which concerns Theorems 4 and 5.

Now, suppose that f, g, a belong to A(C). By (14), we have

l
(n+k+1)(T(r, f)+T(r,9)) < G+R)NT0r, ) +T(r,9) + Y _(A—k)((Z(r, f —ai) + Z(r, g — a:)))
1=3
+(5 = k2)(Z(r, f —az2) + Z(r,g — a2)) + Sy(r) + Sy(r)
and hence

l

n(T(r, f) +T(r,9)) <4T(r, f)+T(r,9)) + 2(4 —k)((Z(r, f — ai) + Z(r.g — a:)))

+(5 = ko) (Z(r, f = ag) + Z(r,g — az)) + S¢(r) + Sy(r)
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and hence
n(T(r, f) +T(r,9)) <4T(r, f) +T(r,g))
!
+> max(0,4 — k) (T(r, f) + T(r, 9)) + max(0,5 — k) (T(r, ) + T(r, ) + O(1),
i=3
and hence,
I
n <4+ Zmax(O,éL — k;) + max(0,5 — ka).
i=3
l
Consequently, if n > 5—|—Z max (0,4 — k;) + max(0,5 — ko) when f, g, a belong to A(C), we have
i=3

Ve = 0, which concerns Theorem 1.

Finally, suppose that f, g, « belong to A(C) and k; =1Vi=1,...,1. We have n+k+1 < 4+21,
hence n < 4+1. Consequently, if n > 541 when f, g, o belong to A(C), we have ¥ ¢ = 0, which
concerns Theorem 2.

Thus, henceforth, we can assume that ¥y = 0 in each theorem. Note that we can write
/

_ Y F (G172 _ :
Vrpag = E with ¢ = ((F — 1)2)( ) Since U ¢ = 0, there exist A, B € C such that

Gl
—_-_"_4B (18)

and A # 0.

We notice Z(r, f) < T(r, f),
and Z(r, f') < T(r, f') < 2T(r, f) + O(1). Similarly for g and g’. Moreover, by Lemma 5, we have

,i,) + S (r). (19)

T(r,F)>(n+k)T(r, f)—m(r 7

Will consider the following two cases: B =0 and B # 0.

Case 1: B=0.
Suppose A # 1. Then, by (18), we have F = AG + (1 — A). Applying Theorem N to F, we
obtain

l
T(r,F) < Z(, F) + Z(r,F = (1= A) ) + N(r.F) + Sp(r) < Z(r, f) + Y Z(r.f — )

1=2

l
+Z(r, )+ Z(r,9) + > _Z(r.g—ai) + Z(r,g) + N(r, f) + Sp(r) + Sg(r). (20)

=2

Consequently, by (19) and (20) we obtain

) SZ0 PV Z(rF (1 4)) £ N F) + 86(0)

(n+K)T(r, f) —m(r, 7

IA
N\

l
Z 7a’L +Z( Z agfal ( g/)+N(T7f)+Sf(T)+Sg(T)

( 7f) < ( f)? Z(T»f_ai) ST(va_ai) ST(Taf)"_O(l)a i:27~~~
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therefore

l
(n+R)T(r, f) < Z(r, F)+Z (7, F= (1= A) )+ N(r, F)+m(r, ?)+SF( r) < Z(r. )+ ) Z(r.f—a)

l
T+ 20) + 3 Zlrg =) + ) + N ) + 550 + 5,0).

Here we notice that Z(r, f') + m(r, %) <T(r, %) =T(r, f")+ O(1), hence (n+ k)T (r, f) <

+Z(r, f') + m(r

l l
<Z(r f) ZZT f—a)+Z(r,g)+ ZZT g—ai))+ N, f)+Z(r, g )+T(r, f')+Ss(r)+Sy(r).
i=2 i=2

Then, considering all the previous inequalities in (21), by Lemma 3 we can derive 2y
(n+E)T(r, f) <A+ 3)T(r, f) + (1 +2)T(r,g) + Sy(r) + Sy(r). (22)
Since f and g satisfy the same hypothesis, we also have
(n+k)T(r,g) <{+3)T(r,9) + (1 +2)T(r, f) + Sp(r) + Sg(r). (23)

Hence, adding (22) and (23), we have

(n+k)[T(r, f)+T(r,g)] < @20+5)[T(r,f)+T(r,g)] + Ss(r) + Sy(r),

which leads to a contradiction whenever n + k > (21 + 6).
In the hypothesis of Theorems 3, we have

l
n>10+ > max(0,4 — k;) + max(0,5 — ky).
=3

That implies

l l l
n+k>10+ Y max(0,4 — k) + max(0,5 — ka) + » ki > 10+ Y max(k;,4) > 10+ 4(1 - 1)
i=3 =2 =2

hence
n+k>4l+6. (24)

That contradiction proves that A = 1 in Theorem 3.
In the hypothesis of Theorems 4 and 5 we have n > [ + 10 with £k = [ — 1 hence

n+k>20+9 (25)

therefore A =1 again in Theorems 4 and 5.

Consider now the situation in Theorem 1. First we notice that given a positive number ¢ we
have max(0,4 — ¢) + ¢ > 4. By (21), with help of Lemma 3, we can derive

1 l
(n+k)T(r, f) < Z(r, )+ Y Z(r, f=ai)+Z(r,g)+ Y Z(r,g—a:)+Z(r, g ) +T(r, f')+S5(r)+S,(r),
1=2 =2
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27 i) +2(r.9) Z D)+ T(r,9) + T(r, )+ Sy(r) + S (r),

with a similar inequality for g, thereby

(n+E)(T(r, f) +T(r,g)) < 20+ 2)(T(r, f) + T(r,g9))

and hence n + k < 21 + 2, which leads to a contradiction as soon as n + k > 2[ + 3. Instead of
(24) we now have n + k > 41 + 1. Consequently, the relation n + k > 20 4 3 is easily satisfied in
Theorem 1, proving A = 1 again.

And now, consider the hypothesis of Theorem 2. We have n > | + 5, hence n + k > 2l + 4
assuring that A = 1 again. R R

Thus, in case B = 0, we have proved that F = G. Now, oF = aG, i.e. (F) = (G). We
assume n > k + 3 in Theorem 3 and this is automatically satisfied in Theorems 4 and 5. Next, we
assume n > k + 2 in Theorem 1 and this is automatically satisfied in Theorems 2. Consequently,
by Lemma 6, we have F' = G, i.e. P(f) = P(g). But in Theorems 3 and 4, P is a polynomial
of uniqueness for the family of meromorphic functions we consider, hence we have f = g. And in
Theorem 5, the conclusion comes from Lemma 9. Finally, in Theorems 1 and 2, we assume P is a
polynomial of uniqueness for A(C), we have f = g again.

Case 2: B #0.

We have Z(r,F) < Z(rf) + Zi:z Z(r f — a;)) + Z(r, f") + Sp(r) and
N(r,F) < N(r, f) + S¢(r) and similarly for G, so we can derive

Z(r,F)+ Z(r,G) + N(r,F) + N(r,G) < Z(r, Z f—a)+2Z(r f)

l
27 r.g—a;)+ Z(r,g") + N(r, f) + N(r,9) + 55 (r) + Sy(r). (26)

Moreover, by (19) we have

1 1
(n+k)T(r, f) <T(r,F) 4+ m(r, ?) + S¢(r)and (n + k)T (r,g9) < T(r,G) + m(r, ?) + S4(r). Con-
sequently, by (26) we obtain

1
200, F) + 200, ) + N )+ N1, 6) < 700 )+ D7 —ai) + £)+mr, )] = m(r, )
l
Z +[2(r,g)) +m(r, )] = m(r, =) + N(r, f) + N(r, 9) + S¢(r) + Sg(r)

<U+D[Tr, f)+T(r,g)] + T(r, f') + T(r,g") = mr, ?) —m(r, ;) + 55 (r) + S54(r)

hence by Lemma 3,

Z(r,F)+Z(r,G)+N(r, F)+N(r,G) < (I4+3)(T(r, f)+T(r,g))—m(r, — ) —m(r, ;)—I—Sf(r)—i-sg(?“)

(28)

7
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Now, in Theorems 3, 4, 5 we have n+ k > min(4l + 6,20 4+ 9) hence iljs < 1, therefore by (19)
we notice that

T(r,f)+T(r,g) 1

20+ (T I e, ) — (e, =) < TG F) + T, G) 4+ Sp(r) + 8,(0)

=
Q

hence (28) yields

20+6  T(r,F)+T(r,G)

Z(r,F) + Z(r,G) + N(r. F) + N(r.G) < (L) .

)+ 55(r) 4 S(r).

Now by Lemma 5 we can derive

2+6. T(r,F)+T(rG)

Z(T7F)+7(r,G)+W(7‘,F)+N(T’G)S(n+k)( 2

)+ Sp(r) +Sa(r)  (29)
Consequently, by (29), we obtain

Z(r,F)+Z(r,G)+ N(r,F)+ N(r,G) -1
max(T(r,F),T(r,G))

lim sup
r——4o00

outside a set of finite measure and hence, by Lemma 7, we have F = G or FG = 1.

Suppose FG = 1, hence f'P'(f)g'P'(g) = o. In Theorem 3 we have assumed that n > k + 3
and in Theorems 4 and 5 this hypothesis is automatically satisfied. Next, if | = 2, then n #
2k, 2k + 1,3k + 1 and if [ = 3 then n # 2k 4+ 1,3k; — k, i = 2, 3. Moreover, these conditions
are automatically satisfied in Theorems 4 and 5. So, we have a contradiction to Lemma 8 in
Theorems 3, 4, 5. Consequently, F' = G and therefore we can conclude as in the case B = 0, that
P(f) = P(g). Now, in Theorems 3 and 4 P is a polynomial of uniqueness for M(C), hence we
have f = g. And in Theorem 5 we know that either f = g or f and g are linked by the relation
mentionned in Theorems 2, 3 [5] and in [24].

Consider now the situation in Theorems 1 and 2. By (26) and Lemma 3, here we can write

1
Z(r,F)+ Z(r,G)+ N(r,F)+ N(r,G) < Z Z (ryf —a;) +Z(r, f'Y+ Z(r,g') + Z(r,9)

l
+ 3 Z(r,g - @) + S5(r) + S,(r)

s
Il
N

1
+D Z(r,g—ai) + Sp(r) + Sy(r)
i=2

hence finally,

Z(r,F)+Z(r,G)+ N(r, F) + N(r,G) < (1 + 1)(T(r, f) + T(r,g)) — m(r, —) — m(r, l)
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As in (29) here, thanks to Lemma 5 we can obtain (30):

A2 IeD TG L 5r) 4 5alr) (30)

Z(r,F)+ Z(r,G)+ N(r,F) + N(r,G) < (

On the other hand, in Theorem 1, instead of (24) here we have n + k > 4] + 1 hence il%z <1
and hence we can apply Lemma 7 proving that either F' = G or FG = 1. But since aF, aG and «
belong to A(C), by Lemma 8 we know that (aF)(aG) = («)? is impossible. Consequently F = G.

Now in Threorem 2, we have n + k > 2l + 4 hence ff%,f < 1 and hence we can go on as in
Theorem 1. So, finally we have F' = G in Theorems 1 and 2 again. Next, we can conclude as in

the case B = 0.
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