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Contemporary Mathematics

Classical p-adic Nevanlinna theory and Nevalinna Theory
out of a hole

Alain Escassut and Ta Thi Hoai An

Abstract. In the first section called Classical theory, we recall basic prop-
erties of the analytic and meromorphic functions, Motzkin’s factoraization of

analytic elements and the classical p-adic Nevanlinna theory. The second sec-

tion is devoted to meromorphic functions in the complement of an ”open”
disk with the use of Motzkin’s factorization and we show the existence of a

Nevanlinna theory in that field of meromorphic functions. Applications are ex-

amined: Nevanlinna theory on 3 small functions, parametrization of algebraic
curves, qusai-exceptional small functions and branched small functions.

I. Classical theory

I.1 Basic definitions

We denote by IK an algebraically closed field of characteristic 0, complete with
respect to an ultrametric absolute value | . |. Analytic functions inside a disk or in
the whole field IK were introduced and studied in many books. Given α ∈ IK and
R ∈ IR∗+, we denote by d(α,R) the disk {x ∈ IK | |x − α| ≤ R}, by d(α,R−) the
disk {x ∈ IK | |x − α| < R} and by C(α, r) the circle {x ∈ IK | |x − α| = r}. We
denote by |IK| the set {|x| | x ∈ IK}.

During the forties, Mark Krasner had the idea of introducing a kind of analytic
functions based upon the following property in complex analysis. Let D be an open
bounded subset of lC. Then, by Runge’s Theorem, every holomorphic functions in
D which is continuous on the closure of D is the uniform limit on D of sequences
of rational functions with no pole in D. This property suggested Marc Krasner
defining analytic elements in a certain kind of sets called quasi-connected sets,
as the uniform limit of a sequence of rational functions with no pole in such a set.
Later, it appeared that such analytic elements may also be defined in a more general
class of sets, particularly infraconnected sets. Recall that a subset of IK is said to
be infraconnected if for every a ∈ D, the closure of the image of the function Ia
defined in D as Ia(x) = |x− a|, is an interval.

Given a closed bounded subset D of IK, we denote by D̃ the smallest closed
disk containing D i.e. if R = diam(D), then D̃ = d(a,R) with a ∈ D.
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Lemma I.1.1 ([12], Lemma 1.10): let D be a closed bounded subset of IK.
Then D̃ \D admits a partition of the form {d(ai, r−i )i∈I} where each disk d(ai, r−i )
is maximal.

Definitions and notation: Let D be a closed bounded subset of IK. The disks
d(ai, r−i ) lying in the partition of D̃ \D shown above are called the holes of D.

Let R(D) be the IK-algebra of rational functions without poles in D provided
with the norm of uniform convergence on D and let H(D) be the completion of
R(D) with respect to that norm. So, H(D) is a IK-Banach algebra.

Now consider a closed unbounded subset D of IK and let Rb(D) be the algebra
of bounded rational functions having no pole in D, provided with the norm of
uniform convergence on D. Then the completion of Rb(D) is a IK-Banach algebra
Hb(D) again whose elements are called bounded analytic elements in D. Particularly
this applies to sets of the form IK \ d(a, r−). Moreover we denote by H0(D) the
IK-Banach algebra of elements f such that lim

|x|→+∞, x∈D
f(x) = 0.

Let us recall that a filter F on a set E is said to be secant with a subset B of
E if the family of sets H ∩B, H ∈ F makes a filter on B.

Here we will not recall the theory of analytic functions due to Krasner, soon
generalized by Philippe Robba and next by Kamal Boussaf. But we have to describe
some properties of analytic elements on infraconnected sets. Properties of these
functions are nice because they derive from those of rational functions.

Particularly, the absolute value of an analytic element admits a limit along a
circular filter and so, multiplicative semi-norms on the IK-algebra of the analytic
elements on a bounded closed subset D of IK are characterized by circular filters on
D. These properties explain the behavior of analytic and meromorphic functions
in the whole field IK and inside a disk [9], [10], [12].

Notation: Throughout this chapter, D is a closed bounded infraconnected subset
of IK. We will denote by Mult(H(D), ‖ . ‖D) the set of continuous multiplicative
semi-norms ψ of the IK-algebra H(D).

Let a ∈ IK and let r′, r′′ be such that 0 < r′ < r′′. We denote by Γ(a, r′, r′′)
the annulus {x ∈ K | r′ < |x− a| < r′′} and by ∆(a, r′, r′′) the annulus
{x ∈ K | r′ ≤ |x−a| ≤ r′′}. Now, let a ∈ IK, r > 0 and consider the filter admitting
for basis the annuli Γ(b, r′, r′′) with b ∈ d(a, r) and r′ < r < r′′. This filter is called
circular filter of center a, of diameter r. Moreover if IK is not spherically complete,
each decreasing sequence of disks (Dn) whose intersection is empty also defines a
filter that is called circular filter of basis (Dn). Finally, for every a ∈ IK, the filter of
neighborhoods of a is called circular filter of neighborhoods of a and such a circular
filter is said to be punctual.

Theorem I.1.2 (B. Guennebaud, G. Garandel [E0], Theorem 13.1): Each
circular filter F on IK defines a multiplicative semi-norm on IK[x] which is a norm
if and only if it is not punctual and the semi-norm is continuous with respect to the
norm ‖ . ‖D if and only if the filter is secant with D. Each circular filter F secant
with D defines on (R(D), ‖ . ‖D) a continuous multiplicative semi-norm ϕF that
has continuation to H(D) and the mapping associating to each circular filter secant
with D, its multiplicative semi-norm ϕF is a bijection from the set of circular filters
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secant with D onto the set of continuous multiplicative semi-norms on H(D) and
on R(D). Mult(H(D), ‖ . ‖D) is compact with respect to the topology of pointwise
convergence.

The following theorem is easily proven and is given as Corollary 14.7 in [10]:

Theorem I.1.3: A set D is infraconnected if and only if Mult(R(D), ‖ . ‖D) is
connected.

I.2. Power and Laurent series

All analytic elements in d(0, R−) are power series converging in d(0, R−). The
converse is false. However, concerning a ”closed ” disk d(0, R), we will see that the
analytic elements in d(0, R) are exactly the power series converging in this disk.

Definitions: Let f(x) =
∞∑
n=0

anx
n be a power series with coefficients in IK.

As usual, when lim sup
n→∞

n
√
|an| 6= 0, we call radius of convergence of f the

number r =
1

lim sup
n→∞

n
√
|an|

(with r = 0 when lim sup
n→∞

n
√
|an| = +∞).

When lim sup
n→∞

n
√
|an| = 0, we define the radius of convergence of f as +∞

Example: Let f(x) =
∞∑
n=1

nxn. The radius of convergence of this series is 1. This

function obviously defines the rational function
x

(1− x)2
in d(1, 1−) .

Notations and definitions: Power series whose radius of convergence is∞ are
called entire functions on IK and the set of entire functions is denoted by A(IK).

For every a ∈ IK, r ∈ IR∗+, similarly we denote by A(d(a, r−)) the set of
power series in x− a whose radius of convergence is superior or equal to r and by
Ab(d(a, r−)) the set of functions f ∈ A(d(a, r−)) that are bounded in d(a, r−). The
set A(d(a, r−)) \ Ab(d(a, r−)) will be denoted by Au(d(a, r−)).

Similarly, we denote by A(IK \ d(a, r−)) the set of Laurent series converging
whenever |x − a| ≥ r and by Ab(IK \ d(a, r−)) the IK-Banach algebra of bounded
Laurent series converging whenever |x− a| ≥ r.

Let R ∈ IR∗+ and let f ∈ A(d(a,R−)). Given r ∈]0, R[, f belongs to H(d(a, r)),
hence for every circular filter F secant with d(a, r), ϕF (f) is defined. Given
b ∈ d(a,R), if s < R, and if F is the circular filter of center b and diameter
s, we put ϕb,s(f) = ϕF (f) = ‖f‖d(b,s). Particularly, if a = 0 we put |f |(s) =
lim
F
|f(x)| = lim

|x|→s, |x|6=r
|f(x)|.

The following theorem is important in the Nevanlinna Theory:

Theorem I.2.1 ([12], Theorem 14.7): Let f ∈ A(K). The following three
statements are equivalent:
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i) lim
r→+∞

|f |(r)
rq

= +∞ ∀q ∈ IN,

ii) there exists no q ∈ IN such that lim
r→+∞

|f |(r)
rq

= 0,

iii) f is not a polynomial.

Theorem I.2.2 ([12], Theorem 14.6) : Let r ∈ IR∗+ and let D = d(0, r).

Then H(D) is the set of power series f(x) =
∞∑
n=0

anx
n such that lim

|n|∞→∞
|an|rn = 0

and we have
‖f‖

D
= max

n∈IN
|an|rn = ϕF (f).

Moreover, the norms ‖ . ‖d(0,r) and ‖ . ‖C(0,r) are multiplicative and coincide on
H(C(0, r)).

Theorem I.2.3 (Corollary 14.15): Let f ∈ A(d(0, r−)) be not identically zero.
For every α ∈ d(0, r−), f(x) is equal to a power series

∞∑
n=0

bn(α)(x− α)n.

If f is not identically zero and if α is a zero of f in d(0, r−), α is an isolated zero
and f factorizes in A(d(0, r−)) in the form (x−α)qg(x), with g ∈ A(d(0, r−)), q ∈
IN∗ g(α) 6= 0.

Definition: Let D be an infraconnected subset of IK, let f ∈ H(D), let α ∈
◦
D,

let r > 0 be such that d(α, r) ⊂ D and suppose f(x) =
∞∑
n=q

bn(x− α)n whenever

x ∈ d(α, r), with bq(α) 6= 0 and q > 0. Then α is called a zero of multiplicity order
q, or more simply, a zero of order q. In the same way, q is called the multiplicity
order of α.

Theorem I.2.4 ([12], Theorem 14.19): Let R ∈ IR∗+ and let f ∈ A(d(a,R−)).
Then f is invertible in A(d(a,R−)) if and only if f has no zero in d(a,R−).

Theorem I.2.5 ([12], Theorem 14.20): Let R ∈ IR∗+. The IK-subalgebra
Ab(d(0, R−)) of A(d(0, R−)) is a Banach IK-algebra with respect to the norm ‖ . ‖d(0,R−).
Further, this norm is multiplicative and satisfies ‖f‖d(0,R−) = lim

r→R
|f |(r) = sup

n∈IN
|an|Rn.

Let f(x) =
∞∑
n=0

anx
n ∈ A(d(0, R−)). Then f is bounded in d(0, R−) if and only

if so is the sequence (|an|Rn)n∈IN. Moreover, if f is bounded, then ‖f‖d(0,R−) =
sup
n∈IN
|an|Rn.

Corollary I.2.5.a: Let R ∈ IR∗+ and let f, g ∈ A(d(a,R−)). Then fg belongs
to Ab(d(a,R−)) if and only if so do both f and g and Ab(d(a,R−)) is IK-subalgebra
of A(d(a,R−)).
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Theorem I.2.6 ([12], Theorem 14.22): Suppose that IK has characteristic
different from 2. Let f, g ∈ A(IK) \ IK (resp. f, g ∈ Au(d(0, r−))) be distinct.
Then f2 − g2 belongs to A(IK) \ IK (resp. f, g ∈ Au(d(0, r−))).

Theorem I.2.7 ([12], Theorem 14.23): For every r ∈ IR∗+, H(d(0, r−)) is
included in Ab(d(0, r−)).

Remarks: Actually, H(d(0, r−)) is much smaller than Ab(d(0, r−)). In particular,
q
√

1 + x belongs to Ab(d(0, 1−), but does not belong to H(d(0, 1−)).

Let
+∞∑

0

anx
n be a power series whose radius of convergence is r. Suppose first

that r ∈ |IK|. If there is at least one point α ∈ C(0, r) such that the series converges
at α, then this implies that lim

n→+∞
|an|rn = 0 and hence the series converges in all

C(0, r) and defines an element of H(d(0, r)). If r does not belong to |IK|, the power
series converging in d(0, r) are just the power series converging in d(0, r−) and
hence, this is why we don’t have to consider analytic functions inside a disk d(a, r),
whenever r > 0.

I.3. The Mittag-Leffler Theorem

Throughout the paragraph I.3, D is a closed infraconnected subset of IK. The
wonderful Mittag-Leffler Theorem for analytic elements is due to Marc Krasner
who showed it on quasi-connected sets. The same proof holds on infraconnected
sets as it was shown by Philippe Robba. The theorem shows that a Banach space
H(D) is a direct topological sum of elementary subspaces and is indispensable to
have a clear image of the space H(D).

Theorem I.3.1: (M.Krasner, [19], [12], Theorem 15.1) Let f ∈ H(D).
There exists a unique sequence of holes (Tn)n∈IN∗ of D and a unique sequence
(fn)n∈IN in H(IK \ Tn) such that f0 ∈ H(D̃)(n > 0), lim

n→∞
fn = 0 satisfying

further

(1) f =
∞∑
n=0

fn and ‖f‖
D

= sup
n∈IN

‖fn‖D
.

For every hole Tn = d(an, r−n ) , we have
(2) ‖fn‖D

= ‖fn‖IK\Tn
= ϕan,rn

(fn) ≤ ϕan,rn
(f) ≤ ‖f‖

D
.

If D is bounded and if D̃ = d(a, r) we have
(3) ‖f0‖D

= ‖f0‖fD = ϕa,r(f0) ≤ ϕa,r(f) ≤ ‖f‖
D

.

Let D′ = D̃ \
( ∞⋃
n=1

Tn

)
. Then f belongs to H(D′) and its decomposition in

H(D′) is given again by (1) and f satisfies ‖f‖
D′ = ‖f‖

D
.

The Mittag-Leffler Theorem suggests some new definitions
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Definitions and notations: Let f ∈ H(D). We consider the series
∞∑
n=0

fn ob-

tained in the last Theorem, whose sum is equal to f in H(D), with f0 ∈ H(D̃), fn ∈
H(IK \ Tn) \ {0} and with the Tn holes of D. Each Tn will be called a f -hole and
fn will be called the Mittag-Leffler term of f associated to Tn, whereas f0 will be
called the principal term of f . For each f -hole T of D, the Mittag-Leffler term of
f associated to T will be denoted by fT whereas the principal term of f will be

denoted by f0. The series
∞∑
n=0

fn will be called the Mittag-Leffler series of f on the

infraconnected set D.

Example 1: Let f ∈ H(d(0, 1−)) and let (d(αm, 1−))m∈IN∗ be the family of f-
holes. Then f is of the form

(1)
∞∑
n=0

an,0x
n +

∑
m,n∈IN∗

an,m
(x− αm)n

with lim
n→∞

an,0 = 0, lim
n→∞

|an,m| = 0 whenever m ∈ IN∗ and lim
m→∞

(
sup
n∈IN∗

|an,m|
)

= 0.

On the other hand, f satisfies

‖f‖d(0,1−) = sup
m∈IN, n∈IN∗

|an,m|.

Conversely, every function of the form (1), with the αm satisfying |αm| =
|αj − αm| = 1 whenever m 6= j, belongs to H(d(0, 1−)). The norm ‖ . ‖d(0,1−) is
multiplicative and equal to ϕ0,1.

Example 2: Let r1, r2 ∈ IR+ satisfy 0 < r1 < r2. Then H(∆(0, r1, r2)) is equal

to the set of the Laurent series
+∞∑
−∞

anx
n with lim

n→−∞
|an|rn1 = lim

n→∞
|an|rn2 = 0 and

we have ∥∥∥+∞∑
−∞

anx
n
∥∥∥

∆(0,r1,r2)
= max

(
sup
n≥0
|an|rn1 , sup

n<0
|an|rn2

)
.

Example 3: Let r ∈ IR∗+. Then H(C(0, r)) is equal to the set of the Laurent series
+∞∑
−∞

anx
n with lim

|n|∞→∞
|an|rn = 0 and we have ‖

∑
anx

n‖C(0,r) = sup
n∈ZZ

|an|rn. Next,

the norm ‖ . ‖C(0,r) is multiplicative and equal to ϕ0,r.

Theorem I.3.2 ([12], Theorem 15.12): Let D1, D2 be infraconnected subsets
of IK having finitely many holes, such that D1∩D2 6= ∅ and let fj ∈ H(Dj), j = 1, 2
be such that f1(x) = f2(x) ∀x ∈ D1 ∩D2. Then the function f defined in D1 ∪D2

as f(x) = fj(x) ∀x ∈ Dj , j = 1, 2, belongs to H(D1 ∪D2).

Notation: Let E be a IK-Banach space. We will denote by E◦∗ the IK-Banach
space of continuous linear forms of E provided with its usual norm. The dual of a
Banach space H(D) was thoroughly studied by Yvette Amice (Theorem 15.13 in
[12]).
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Theorem I.3.3 (Y. Amice, [12], Theorem 15.13): Let r ∈ IR+. Given

h(t) =
∞∑
n=0

bn
tn
∈ Ab(IK \ d(0, r)) there exists a unique φh ∈ H(d(0, r))◦∗ satisfy-

ing φh(xq) = bq, (q ∈ IN). Moreover, on the space Ab(IK \ d(0, r)) provided with
the norm ‖ . ‖IK\d(0,r), the mapping h → φh is an isometric isomorphism from
Ab(IK \ d(0, r)) onto H(d(0, r))◦∗.

Theorem I.3.4 ([12], Theorem 15.17): Let f ∈ Hb(IK \ d(a, r−)), and for

each α ∈ d(a, r−), let f(x) =
∞∑
n=0

bn(α)
(x− α)n

. Then b1(α) does not depend on α in

d(a, r−).

Definition and notation: Let f ∈ Hb(D), let T be a hole of D and let a ∈ T .

Let fT (x) =
∞∑
n=1

bn(a)
(x− a)n

. Since b1(a) actually does not depend on a in T , we set

res(f, T ) = b1(a) and this number res(f, T ) will be called the residue of f on the
hole T .

I.4. Divisors of analytic functions

and Lazard’s problem

In this paragraph we shall define divisors in IK or in a disk d(a,R−). We then
shall define the divisor of an analytic function and of an ideal. Given a divisor T
on IK, there is no problem to construct an entire function whose divisor is T . But
given a divisor T on a disk d(a, r−), it is not always possible to find an analytic
function (in that disk) whose divisor is T . This is Lazard’s problem that we will
recall.

Definition: We call a divisor in IK (resp. a divisor in a disk d(a,R−)) a mapping
T from IK (resp. from d(a,R−)) to IN whose support is countable and has a finite
intersection with each disk d(a, r), ∀r > 0 (resp. ∀r ∈]0, R[). Thus, a divisor
on IK (resp. of d(a,R−)) is characterized by a sequence (an, qn)n∈IN with an ∈
IK, limn→∞ |an| = ∞, (resp. an ∈ d(a,R−), limn→∞ |an − a| = R), |an| ≤ |an+1|
and qn ∈ IN∗ ∀n ∈ IN. So, we will frequently denote a divisor by the sequence
(an, qn)n∈IN which characterizes it.

The set of divisors on IK (resp. on d(a,R−)) is provided with a natural multi-
plicative law that makes it a semi-group. It is also provided with a natural order
relation: given two divisors T and T ′, we can set T ≤ T ′ when T (α) ≤ T ′(α) ∀α ∈
d(a,R−). Moreover, if T, T ′ are two divisors such that T (α) ≥ T ′(α) ∀α ∈ d(0, R−),

we can define the divisor
T

T ′
.

Given f ∈ A(IK) (resp. f ∈ A(d(a,R−))), we can define the divisor of f ,
denoted by D(f) on K (resp. on d(a,R−)) as D(f)(α) = 0 whenever f(α) 6= 0 and
D(f)(α) = s when f has a zero of order s at α.
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Similarly, given an ideal I of A(IK) (resp. of A(d(a,R−))) we will denote by
D(I) the lower bound of the the D(f) f ∈ I and D(I) will be called the divisor of
I.

Finally, given a divisor T = (an, qn)n∈IN, we shall denote by T the divisor
(an, 1)n∈IN. Let T = (an, qn)n∈IN be a divisor on IK (resp. of d(a,R−)). For every

r > 0 (resp. r ∈]0, R[) we set |T |(r) =
∏
|aj |≤r

( r

|aj |

)qj

. The divisor T on d(a,R−) is

said to be bounded if lim
r→R
|T |(r) <∞ and then we put ‖T‖ = lim

r→R
|T |(r).

Remark: Let f ∈ A(d(a,R−)) and let (an, qn)n∈IN = D(f). Then ωan(f) =
qn ∀n ∈ IN and ωα(f) = 0 ∀α ∈ d(a,R−) \ {an | n ∈ IN}.

Theorem I.4.1 ([12], Theorem 28.1) Let a ∈ IK, R > 0. Let f, g ∈ A(IK)
(resp. f, g ∈ A((.a,R

−))) be such that D(f) ≥ D(g). Then there exists h ∈ A(IK)
(resp. h ∈ A(d(a,R−))) such that f = gh.

Corollary I.4.1.a: Let a ∈ IK, R > 0. Let I be an ideal of A(IK) (resp. an ideal
of A(d(a,R−))) and suppose that there exists g ∈ I such that D(g) = D(I). Then
I = gA(IK) (resp. I = gA(d(a,R−))).

In the whole field IK, given a divisor T , it is always possible to find an entire
function admitting T for divisor.

Theorem I.4.2 ([12], Theorem 28.4): Let T = (αn, qn)n∈IN be divisor of IK

The infinite product
∞∏
n=1

(1− x

αn
)qn is uniformly convergent in all bounded subsets

of IK and defines an entire function f ∈ A(IK) such that D(f) = T . Moreover,
given g ∈ A(IK) such that D(g) = T , then g is of the form λf .

Corollary I.4.2.a: For every divisor T on IK, there exists f ∈ A(IK) such that
D(f) = T . Moreover, if f(0) = 1, f satisfies |f |(r) = |T |(r) ∀r > 0.

So, given a divisor T on IK, we can find an entire function whose divisor is just
T . It is natural to consider the same problem inside a disk d(a, r−). Indeed, in lC,
it is known that the similar problem always admits a solution, in the whole field
lC as well as inside an open disk. Actually, in the general context of a complete
ultrametric algebraically closed field IK, given a divisor T in d(a, r−), the problem
of finding an analytic function f in d(a, r−), admitting T for divisor, has no solution
when IK is not spherically complete, in the general case, but it has a solution when
IK is spherically complete, has proven by M. Lazard [20]. On the other hand, in
the general case, we can construct an analytic function f whose divisor is a little
bit bigger than the given divisor T but narrows it.

Theorem I.4.3 ([12], Theorem 28.14): Let T = (an, qn)n∈IN be a divisor on
the disk d(a,R−) with an 6= 0 ∀n ∈ IN and let ε > 0. There exists f ∈ A(d(a,R−))
such that D(f) ≥ T , f(0) = 1 and |f |(r) ≤ |T |(r)(1 + ε) ∀r ∈]0, R[.

Remark: Here we may notice that H(d(0, R−)) is smaller than Ab(d(0, R−)).
Indeed, there exist functions f ∈ Ab(d(0, R−)) having infinitely many zeros in
d(0, R−). But any element of H(d(0, R−)) is quasi-invertible and hence has finitely
many zeros.
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Theorem I.4.4 (M. Lazard, [20], [12], Theorem 29.1 ): Let IK be not spheri-
cally complete and let (Dn)n∈IN be a decreasing sequence of disks d(un, ρn) such that
∞⋂
n=0

Dn = ∅. Let R =
1

limn→∞ ρn
. There exists sequences (cn)n∈IN of d(0, R−) such

that lim
n→∞

|cn| = R and such that no function f ∈ A(d(0, R−)) admits for divisor

the divisor T = (cn, 1)n∈IN.

Theorem I.4.5 (M. Lazard [20], [12], Theorem 29.4): Suppose IK is spheri-
cally complete. Assume that |Qm|(ρm) ≤ |T |(ρm) ∀m ∈ IN. Let R ∈]0,+∞[. There
exists f ∈ A(d(0, R−)) satisfying

i) f(0) = 1,
ii) |f |(r) ≤ |T |(r) ∀r < R,
iii) Pm divides f −Qm in A(d(0, R−)).

Corollary I.4.5.a: Suppose IK is spherically complete. Let T be a divisor on
d(a,R−). There exists f ∈ A(d(a,R−)) such that D(f) = T .

I.5. Motzkin factorization,

The idea of factorizing quasi-invertible analytic elements into a product of
singular factors is a remarkable idea due to E. Motzkin [22]. This factorization has
tight links with the Mittag-Leffler series. In the paragraph, we denote by D an
infraconnected open closed bounded subset of IK.

According to the properties of power series [12], we have first the following
lemma.

Lemma I.5.1: Let E = IK \ d(a, r−) with a ∈ IK and r > 0. Let f ∈ H(E) be

invertible in H(E). Then f(x) is a Laurent series of the form
q∑
−∞

an(x− a)n with

|aq|rq > |an|rn ∀n < q.

Theorem I.5.2 derives from Lemma I.5.1:

Theorem I.5.2 ([12], Lemma 31.1): Let T = d(a, r−), with a ∈ IK and r > 0,
let E = IK \ T and take b ∈ T . Let g ∈ H(E) be invertible in H(E). Then there
exist λ ∈ IK, q ∈ ZZ and h ∈ H(E) invertible in H(E), satisfying ‖h − 1‖

E
< 1,

lim
|x|→+∞

h(x) = 1 and g(x) = λ(x− b)qh(x). Moreover, λ, q are respectively unique,

satisfying those relations. Further, both λ, q do not depend on b in T .

Definitions: Let E = IK \ d(a, r−) with a ∈ IK and r > 0. Let f ∈ H(E) be
invertible in H(E) and let λ(x− a)qh(x) be the factorization given in the previous
theorem. The integer q will be named the index of f associated to d(a, r−) and will
be denoted by m(f, d(a, r−)). If λ = 1, the element f will be called a pure factor
associated to d(a, r−). Let GT be the group of invertible elements of H(IK \ T ).

The following Corollary is then immediate:
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Corollary I.5.2.a: Let T = d(a, r−). The set of pure factors associated to T is
a sub-multiplicative group of the group GT . Further, every element of GT is of the
form λh with h a pure factor associated to T and λ ∈ IK∗.

Definition: Let f belong to H(D). Let T be a hole of D and let h be a pure

factor associated to T . If
f

h
belongs to H(D ∪ T ) and has no zero inside T , h is

called Motzkin factor of f in the hole T and the number m(h, T ) is called Motzkin
index of f associated to T .

Theorem I.5.3 ([12], Theorem 31.16): Let f ∈ H(D). For each hole T of
D, f admits a unique Motzkin factor fT . Moreover, the set of holes T such that
fT 6= 1 is a sequence (fTn)n∈IN converging to 1 in H(D), the set of indices n such
that m(f, Tn) 6= 0 is finite and f is equal to the infinite product f0

∏
n∈I

fTn , that

converges in H(D), with f0 a power series converging in D̃ and I a countable set.

I.6. Meromorphic functions

In this chapter, we will define and examine the basic properties of meromor-
phic functions: relations with poles of analytic elements, absolute values on fields
of meromorphic functions defined by circular filters, values of the derivative on a
circular filter, developement in a Laurent series in an annulus, existence of primi-
tives.

Definitions and notation: We denote byM(IK) the field of fractions of A(IK).
The elements of M(IK) are called meromorphic functions in IK.

In the same way, given a ∈ IK and r > 0, we denote by M(d(a, r−)) (resp.
Mb(d(a, r−)), resp. Mu(d(a, r−))) the field of fractions of A(d(a, r−)) (resp. the
field of fractions of Ab(d(a, r−)), resp. the set M(d(a, r−)) \Mb(d(a, r−))). The
elements of M(d(a, r−)) are called meromorphic functions in d(a, r−).

Let b ∈ IK (resp. b ∈ d(a,R−)) and let r ∈ IR∗+ (resp. r ∈]0, R[). The absolute
value ϕb,r defined on A(IK) (resp. on A(d(a,R−))) has an immediate continuation
to M(IK) (resp. to M(d(a,R−))) that we shall denote again by ϕb,r. In the same
way, ϕ0,r will be denoted by | . |(r) on M(IK) and on M(d(0, R−)).

Let f =
h

l
∈ M(IK) (resp. f =

h

l
∈ M(d(a,R−))). For each α ∈ IK (resp.

α ∈ d(a,R−)) the number ωα(h) − ωα(l) does not depend on the functions h, l

choosed to make f =
h

l
. Thus, we can generalize the notation by setting ωα(f) =

ωα(h)− ωα(l).
If ωα(f) is an integer q > 0, α is called a zero of f of order q.
If ωα(f) is an integer q < 0, α is called a pole of f of order −q.
If ωα(f) ≥ 0, f will be said to be holomorphic at α.

Similarly as forA(IK), given f ∈M(IK) (resp. f ∈M(d(a,R−))), we can define
the divisor D(f) on IK (resp. of d(a,R−)) as D(f)(α) = 0 whenever f(α) 6= 0 and
D(f)(α) = s when f has a zero of order s at α.
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Lemma I.6.1 ([12], Lemma 32.3): Let f ∈ M(IK). There exists h ∈ A(IK)

such that D(h) = D(f) and then the function l =
h

f
belongs to A(IK). Then

D( 1
f ) = D(l) and we can write f in the form

h

l
with h, l ∈ A(IK), having no

common zero.

Theorem I.6.2 ([12], Theorem 32.4): Let f ∈M(IK) (resp. f ∈M(d(a,R−)))
have no pole in IK (resp. in d(a,R−)). Then f belongs to A(IK) (resp. to
A(d(a,R−))).

Corollary I.6.2.a: Let f, g ∈ A(IK) (resp. f, g ∈ A(d(a,R−))) be such that
D(g) ≤ D(f). There exists h ∈ A(IK) (resp. h ∈ A(d(a,R−))) such that f = gh.

Corollary I.6.2.b: Let f ∈ M(IK) (resp. f ∈ M(d(a,R−))) have no zero and
no pole in IK (resp. in d(a,R−)). Then it is a constant (resp. an invertible element
of Ab(d(a,R−))).

Theorem I.6.3 ([12], Corollary 32.10): Let IK be spherically complete, let
a ∈ IK, r ∈ IR∗+ and let f ∈ M(d(a,R−)). There exist g, h ∈ A(d(a,R−)), having

no common zero, such that f =
g

h
.

Remark: If IK is not spherically complete, in the general case, we cannot find an
analytic function h ∈ A(d(a,R−)) such that D(h) = D(f). Consequently, in a field

such as lCp, we can’t write f in the form f =
h

l
with h, l ∈ A(d(a,R−)), having

no common zero (this gap was forgotten in several works).
However, we can take an algebraically closed spherically complete extension ÎK

of IK and consider f as an analytic function on the disk d̂(a,R−) in the field ÎK:

then f may be written in the form f =
ĥ

l̂
with ĥ, l̂ ∈ A(d̂(a,R−)), with ĥ, l̂ having

no common zero.

Definitions: Let f ∈ M(IK) (resp. f ∈ Mu(d(a,R−))) and let b ∈ IK. Then b
will be said to be an exceptional value for f if f − b has no zero in IK (resp. in
d(a,R−)) and b will be said to be a pseudo-exceptional value for f if lim

r→∞
|f − b|(r) = 0

(resp. lim
r→R−

|f − b|(r) = 0).

Moreover, if f ∈ M(IK) \ IK(x) (resp. if f ∈ Mu(d(a,R−))), b will be said to
be a quasi-exceptional value for f if f − b has finitely many zeros in IK (resp. in
d(a,R−)).
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Theorem I.6.4 ([12], Theorem 32.21): Let f ∈ M(IK) \ IK, (resp. f ∈
Mu(d(a,R−))). If b is an exceptional value for f then it is a pseudo-exceptional
value for f . Let f ∈ M(IK) \ IK(x), (resp. f ∈ Mu(d(a,R−))). If b is a quasi-
exceptional value for f then it is a pseudo-exceptional value for f .

Theorem I.6.5 ([12], Theorem 32.22): Let f ∈ M(IK) \ IK, (resp. f ∈
Mu(d(a,R−))). Then f admits at most one pseudo-exceptional value. Moreover, if
f ∈ A(IK) \ IK, (resp. f ∈ A(d(a,R−))), then f has no pseudo-exceptional value.

Corollary I.6.5.a: Let f ∈ M(IK) \ IK, (resp. f ∈ Mu(d(a,R−))). Then f
admits at most one exceptional value. Moreover, if f ∈ M(IK) \ IK(x), (resp.
f ∈Mu(d(a,R−))), then f admits at most one quasi-exceptional value. Further, if
f ∈ A(IK)\IK (resp. if f ∈ Au(d(a,R−))) then f admits no exceptional value. And
if f ∈ A(IK) \ IK[x] (resp. if f ∈ Au(d(a,R−))) then f admits no quasi-exceptional
value.

Definition and notation: Let f ∈ M(IK) (resp. f ∈ M(d(0, R−)) have a pole

α of order q and let f(x) =
−1∑
k=−q

ak(x− α)k + h(x) with a−q 6= 0 and h ∈ M(IK)

(resp. f ∈ M(d(0, R−)) and h holomorphic at α. Accordingly to usual notations
the coefficient a−1 is called residue of f at α and denoted by res(f, α).

We can now compare residues on a hole defined for analytic elements and
residues at a point, we just defined for a meromorphic function:

Theorem I.6.6 ([12], Theorem 33.1): Let a ∈ IK, let R ∈ IR∗+, let f ∈
M(d(a,R−)) and let r ∈]0, R[. Let αj , 1 ≤ j ≤ q be the poles of f in d(a, r), let
ρ ∈]0,mini 6=j |αi−αj |[ and for each j = 1, ..., q, let ρj ∈]0, ρ[, let Tj = d(αj , ρ−j ). Let
D = d(α, r) \

(⋃q
j=1 Tj

)
. Then f belongs to H(D) and res(f, αj) = res(f, Tj), j =

1, ..., q.

Corollary I.6.6.a: Let f ∈ Hb(D) be meromorphic in T = d(b, r−) and admit
only one pole b inside T . Let q be the multiplicity order of b. Then the Mittag-

Leffler term of f associated to T is of the form
q∑
j=1

aj
(x− b)j

, with aq 6= 0 and also

is of the form
P

(x− aj)q
where P is a polynomial of degree s < q. Moreover, it does

not depend on r when r tends to 0.

It seems obvious that the condition for a meromorphic function to admit prim-
itives is that all residues are null. Actually, the proof is not this immediate.

Theorem I.6.7 ([12], Theorem 33.12): A function f ∈ M((IK) (resp. f ∈
M((d(a,R−)), a ∈ IK, R > 0) admits primitives inM(IK) (resp. inM((d(a,R−)))
if and only if all residues of f are nul.

Corollary I.6.7.a: Let f ∈ M((IK) (resp. f ∈ M((d(a,R−)), a ∈ IK, R > 0).
Then f ′ belongs to IK(x) if and only if so does f .
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The following Theorem is a strong improvement of the classical upper bound
of |f ′|(r) in function of |f |(r) that is due to J.P. Bézivin [2]. The theorem is
particularly useful for examining the derivative admitting no zero in IK.

Theorem I.6.8 ([12], Theorem 33.10): Let f ∈M(d(0, R−)). For each n ∈ IN
and for all r ∈]0, R[, we have

|f (n)|(r) ≤ |n!| |f |(r)
rn

.

Here, we can recall this theorem obtained in whose proof is mainly due to
Jean-Paul Bézivin [2]]:

Theorem I.6.9 ([12], Theorem 44.16): Let f ∈ M(IK) and for each r > 0,
let n(f, r) be the number of multiple poles of f in d(0, r). If there exists c > 0 and
s ∈ IN such that n(r, f) ≤ crs ∀r > 0, then f ′ admits no quasi-exceptional value.

I.7. Nevanlinna Theory in the classical context

The Nevanlinna Theory was made by Rolf Nevanlinna on complex functions in
the 1920th [23]. It consists of defining counting functions of zeros and poles of a
meromorphic function f and giving an upper bound for multiple zeros and poles of
various functions f − b, b ∈ lC.

A similar theory for functions in a p-adic field was constructed by A. Boutabaa
[4], after some previous works by Ha Huy Khoai [16]. The p-adic Nevanlinna
Theory was first stated and correctly proved by Abedelbaki Boutabaa inM(IK) in
1988. The theory was extended to functions inM(d(0, R−)) by taking into account
Lazard’s problem in 1999 [5].

Throughout the next paragraphs, we assume that, we denote by I the interval
[t,+∞[ and by J an interval of the form [t, R[ with t > 0.

We have to introduce the counting function of zeros and poles of f , counting
or not multiplicity. Here we will choose a presentation that avoids assuming that
all functions we consider admit no zero and no pole at the origin.

Definitions: We denote by Z(r, f) the counting function of zeros of f in d(0, r)
in the following way.

Let (an), 1 ≤ n ≤ σ(r) be the finite sequence of zeros of f such that 0 < |an| ≤
r, of respective order sn.

We set Z(r, f) = max(ω0(f), 0) log r +
σ(r)∑
n=1

sn(log r − log |an|) and so, Z(r, f) is

called the counting function of zeros of f in d(0, r), counting multiplicity.
In order to define the counting function of zeros of f without multiplicity, we

put ω0(f) = 0 if ω0(f) ≤ 0 and ω0(f) = 1 if ω0(f) ≥ 1.
Now, we denote by Z(r, f) the counting function of zeros of f without multi-

plicity:
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Z(r, f) = ω0(f) log r +
σ(r)∑
n=1

(log r − log |an|) and so, Z(r, f) is called the counting

function of zeros of f in d(0, r) ignoring multiplicity.

In the same way, considering the finite sequence (bn), 1 ≤ n ≤ τ(r) of poles of
f such that 0 < |bn| ≤ r, with respective multiplicity order tn, we put

N(r, f) = max(−ω0(f), 0) log r +
τ(r)∑
n=1

tn(log r − log |bn|) and then N(r, f) is called

the counting function of the poles of f , counting multiplicity.
Next, in order to define the counting function of poles of f without multiplicity,

we put ω0(f) = 0 if ω0(f) ≥ 0 and ω0(f) = 1 if ω0(f) ≤ −1 and we set

N(r, f) = ω0(f) log r +
τ(r)∑
n=1

(log r − log |bn|) and then N(r, f) is called the counting

function of the poles of f , ignoring multiplicity.
Now, we can define the Nevanlinna function T (r, f) in I or J as T (r, f) =

max(Z(r, f), N(r, f)) and the function T (r, f) is called characteristic function of f
or Nevanlinna function of f .

Finally, if S is a subset of IK we will denote by ZS(r, f ′) the counting function
of zeros of f ′, excluding those which are zeros of f − a for any a ∈ S.

Remark: If we change the origin, the functions Z, N, T are not changed, up to
an additive constant.

Lemma I.7.1 ([12], Lemma 40.1): Let ÎK be a complete algebraically closed
extension of IK whose absolute value extends that of IK and let f ∈ M(IK) (resp.
let f ∈M(d(0, R−))). Let d̂(0, R) = {x ∈ ÎK | |x| < R}. The meromorphic function
f̂ defined by f in d̂(0, R) has the same Nevanlinna functions as f .

Theorem I.7.2 ([12], Theorem 40.2): Let f ∈M(IK) (resp. f ∈M(d(0, R−)))
have no zero and no pole at 0. Then

log(|f |(r)) = log(|f(0)|) + Z(r, f)−N(r, f).

Theorem I.7.3 ([12], Theorem 40.3): Let f, g ∈ M(IK) (resp. f, g ∈
M(d(0, R−))). Then

Z(r, fg) ≤ Z(r, f) + Z(r, g), N(r, fg) ≤ N(r, f) +N(r, g),

T (r, fg) ≤ T (r, f) + T (r, g),
T (r, f + g) ≤ T (r, f) + T (r, g) +O(1)

T (r, cf) = T (r, f) ∀c ∈ IK∗, T (r,
1
f

) = T (r, f)),

T (r,
f

g
) ≤ T (r, f)) + T (r, g).

Suppose now f, g ∈ A(IK) (resp. f, g ∈ A(d(0, R−))). Then Z(r, fg) =
Z(r, f) + Z(r, g), T (r, f) = Z(r, f)) T (r, fg) = T (r, f) + T (r, g) +O(1) and
T (r, f + g) ≤ max(T (r, f), T (r, g)).
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Moreover, if lim
r→+∞

T (r, f)− T (r, g) = +∞ then T (r, f + g) = T (r, f) when r

is big enough.

Lemma I.7.4 ([12], Lemm 40.4): Let α1, · · · , αn ∈ IK be pairwise distinct, let

P (u) =
n∏
i=1

(u − αi) and let f ∈ M(d(0, R−)). Then Z(r, P (f)) =
n∑
i=1

Z(r, f − αi)

and Z(r, P (f)) =
n∑
i=1

Z(r, f − αi).

Now we can derive the following lemma:

Lemma I.7.5 ([12], Lemm 40.5): Let f ∈ M(IK). Then f belongs to IK(x) if
and only if T (r, f) = O(log r).

Corollary I.7.5.a: Let f ∈M(IK) (resp. f ∈M(d(0, R−))). Then

Z(r,
f ′

f
)−N(r,

f ′

f
) ≤ − log r +O(1).

Theorem I.7.6 ([12], Theorem 40.7): Let f ∈ A(IK) (resp. f ∈ A(d(0, R−)))
and let b ∈ IK. Then Z(r, f) = Z(r, f − b) +O(1) r ∈ I (resp. r ∈ J).

Theorem I.7.7 (First Main Theorem) ([12], Theorem 40.8):
Let f, g ∈M(IK) (resp. let f, g ∈M(d(0, R−))). Then T (r, f+b) = T (r, f)+O(1).
Let h be a Moebius function. Then T (r, f) = T (r, h◦f) +O(1). Let P (X) ∈ IK[X].
Then T (r, P (f)) = deg(P )T (r, f) +O(1) and T (r, f ′P (f) ≥ T (r, P (f)).

Suppose now f, g ∈ A(IK) (resp. f, g ∈ A(d(0, R−))). Then Z(r, fg) =
Z(r, f) + Z(r, g),
T (r, f) = Z(r, f)), T (r, fg) = T (r, f) + T (r, g) +O(1) and
T (r, f + g) ≤ max(T (r, f), T (r, g)).

Moreover, if lim
r→+∞

T (r, f)− T (r, g) = +∞ then T (r, f + g) = T (r, f) when r

is big enough.

Theorem I.7.8 ([12], Theorem 40.9): Let f ∈M(IK) (resp. f ∈M(d(0, R−))).

There exists φ, ψ ∈ A(IK) (resp. φ, ψ ∈ A(d(0, R−))) such that f =
φ

ψ
and

max(T (r, φ), T (r, ψ)) ≤ T (r, f) +O(1), r ∈ I (resp. (r ∈ J)).

Theorem I.7.9 ([12], Theorem 40.10): Let f ∈M(d(0, R−)). Then f belongs
to Mb(d(0, R−)) if and only if T (r, f) is bounded in [0, R[.

Corollary I.7.9.a: Let f ∈ Mu(d(a,R−)), and let h ∈ Mb(d(a,R−)), h 6= 0.
Then fh belongs to Mu(d(a,R−)).

We can also derive this Corollary :

Corollary I.7.9.b: Let f ∈ M(d(a,R−)) and let P ∈ IK[x]. Then P (f) belongs
to Mb(d(a,R−)) if and only if so does f .

The following theorem has proven to be very useful in certain problems of value
sharing:
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Theorem I.7.10 ([12], Theorem 40.14): Let f ∈M(IK) (resp. f ∈M(d(0, R−))).
Then Z(r, f ′) − N(r, f ′) ≤ Z(r, f) − N(r, f) − log r + O(1), r ∈ I, (resp. r ∈ J).
Moreover, N(r, f (k)) = N(r, f) + kN(r, f) +O(1), r ∈ I (resp. r ∈ J) and
Z(r, f (k)) ≤ Z(r, f) + kN(r, f)− k log r +O(1), r ∈ I (resp. r ∈ J).

Corollary: I.7.10.a Let f ∈M(IK) (resp. f ∈M(d(0, R−))). Then
T (r, f (k)) ≤ (k + 1)T (r, f) +O(1) (r ∈ I) (resp. r ∈ J).

Theorem I.7.11: Let f ∈M(IK) (resp. f ∈M(d(0, R−))). Then,

T (r, f)− Z(r, f) ≤ T (r, f ′)− Z(r, f ′) +O(1).

Lemma I.7.12 ([12], Lemma 40.17): Let f ∈M(IK) (resp.

f ∈M(d(0, R−))) and let G =
f ′

f
. Then, G satisfies

Z(r,G) ≤ N(r,G)− log r +O(1) r ∈ I (resp. (r ∈ J).

We can now prove the Second Main Theorem under different forms. The fol-
lowing Theorem is essential and directly leads to the theorems. That theorem was
first given in [21] in a different form.

Theorem I.7.13 ([12], Theorem 40.19): Let f ∈M(IK) and let a1, ..., aq ∈ IK
be distinct. Then

(q − 1)T (r, f) ≤ max
1≤k≤q

( q∑
j=1,j 6=k

Z(r, f − aj)
)

+O(1).

Corollary I.7.13.a: Let f ∈M(IK) and let a1, ..., aq ∈ IK be distinct. Then

(q − 1)T (r, f) ≤
q∑
j=1

Z(r, f − aj) +O(1).

Theorem I.7.14 ([12], Theorem 40.21): Let f ∈M(d(0, R−)) and let
τ1, ..., τq ∈Mb(d(0, R−)) be distinct. Then

(q − 1)T (r, f) ≤ max
1≤k≤q

( q∑
j=1,j 6=k

Z(r, f − τj)
)

+O(1).

Corollary I.7.14.a: Let f ∈M(d(0, R−)) and let
τ1, ..., τq ∈Mb(d(0, R−)) be distinct. Then

(q − 1)T (r, f) ≤
q∑
j=1

Z(r, f − τj) +O(1).

Theorem I.7.15 ([12], Theorem 40.23): Let α1, ..., αq ∈ IK, with q ≥ 2, let
S = {α1, ..., αq} and let f ∈M(IK) (resp. f ∈M(d(0, R−))). Then

(q−1)T (r, f) ≤
q∑
j=1

Z(r, f−αj)+Z(r, f ′)−ZS0 (r, f ′)+O(1) ∀r ∈ I (resp. ∀r ∈ J).

Moreover, if f belongs to f ∈ A(IK) (resp. A(d(0, R−))), then
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qT (r, f) ≤
q∑
j=1

Z(r, f − αj) + Z(r, f ′)− ZS0 (r, f ′) +O(1) ∀r ∈ I (resp. ∀r ∈ J).

Remark: The last Theorem does not hold in complex analysis. Indeed, let f be

a meromorphic function in lC omitting two values a and b, such as f(x) =
ex

ex − 1
.

Then Z(r, f − a) + Z(r, f − b) = 0.

Theorem I.7.16 (Second Main Theorem, [12] Theorem 40.24): Let α1, ..., αq ∈
IK, with q ≥ 2, let S = {α1, ..., αq} and let f ∈ M(IK) (resp. f ∈ Mu(d(0, R−))).
Then

(q−1)T (r, f) ≤
q∑
j=1

Z(r, f −αj) +N(r, f)−ZS0 (r, f ′)− log r+O(1) ∀r ∈ I (resp.

∀r ∈ J).
Moreover, if f belongs to f ∈ A(IK) (resp. A(d(0, R−))), then

(q − 1)T (r, f) ≤
q∑
j=1

Z(r, f − αj)− ZS0 (r, f ′) +O(1) ∀r ∈ I (resp. ∀r ∈ J).

I.8. Classical applications of the Nevanlinna Theory

Theorem I.8.1 ([12], Theorem 41.1): Let a1, a2 ∈ IK and let f, g ∈ A(IK)
(with a1 6= a2) satisfy f−1({ai}) = g−1({ai}) (i = 1, 2). Then f = g.

Theorem I.8.2 ([12], Theorem 41.2): Let a1, a2, a3 ∈ IK (with ai 6= aj ∀i 6=
j) and let f, g ∈ Au(d(a,R−)) satisfy f−1({ai}) = g−1({ai}) (i = 1, 2, 3). Then
f = g.

Theorem I.8.3 ([12], Theorem 41.3): Let a1, a2, a3, a4 ∈ IK (with ai 6=
aj ∀i 6= j) and let f, g ∈ M(IK) satisfy f−1({ai}) = g−1({ai}) (i = 1, 2, 3, 4).
Then f = g.

Theorem I.8.4 ([12], Theorem 41.4): Let a1, a2, a3, a4, a5 ∈ IK (with ai 6=
aj ∀i 6= j) and let f, g ∈ Mu(d(a,R−)) satisfy f−1({ai}) = g−1({ai}) (i =
1, 2, 3, 4, 5). Then f = g.

Defintion: A polynomial P ∈ IK[x] is called a polynomial of uniqueness for a
family of functions F if P (f) = P (g) implies f = g for all f, g ∈ F .

Theorem I.8.5 ([12], Theorem 41.9): Let

Q(x) = (n+ 2)(n+ 3)xn+3 − 2(n+ 3)(n+ 1)xn+2 + (n+ 3)(n+ 2)xn+1.

Then Q is a polynomial of uniqueness for M(IK) whenever n ≥ 2 and is a polyno-
mial of uniqueness for Mu(d(a,R−)) whenever n ≥ 3, a ∈ IK, R > 0.

(This remarkable polynomial was presented by G. Frank and M. Reinders [14])

We can now apply the Second Main Theorem to obtain results concerning
certain algebraic curves:
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Theorem I.8.6 ([12], Theorem 42.2): Let Λ be a non-degenerate elliptic curve
of equation y2 = (x − a1)(x − a2)(x − a3). There do not exist g, f ∈ M(IK) such
that g(t) = y, f(t) = x, t ∈ IK. Moreover, given a ∈ IK, R > 0 there do not exist
g, f ∈ Au(d(a,R−)) such that g(t) = y, f(t) = x, t ∈ IK.

And similarly:

Theorem I.8.7: Let ai ∈ IK, i = 1, ..., q, q ≥ 4 be pairwise distinct, let c ∈ IK
and let R be > 0. Let m ∈ IN be ≥ 2. There exist no f, g ∈ M(IK) \ IK such that
g(t)m =

∏q
i=1(f(t)− ai).

Theorem I.8.8 ([12], Theorem 42.4): Let ai ∈ IK, i = 1, ..., q, q ≥ 5 be
pairwise distinct, let c ∈ IK and let R be > 0. Let m ∈ IN be ≥ 2 and prime
to q. There exist neither f, g ∈ M(IK) \ IK nor f, g ∈ Mu(d(c,R−)) such that
g(t)m =

∏q
i=1(f(t)− ai).

Example: Let Λ be a curve of equation y2 = P (x) with deg(P ) = 5, P admitting
five distinct zeros. If two functions f, g ∈ M(K) satisfy g(t)2 = P (f(t)), then
the two both functions f, g are constant. And if f, g ∈ M(d(a,R−)) satisfy
g(t)2 = P (f(t)), then the two both functions f, g belong to Mb(d(a,R−)).

Theorem I.8.9 ([12], Theorem 42.10): Let f, g ∈ M(IK) satisfy gm + fn =
1,with min(m,n) ≥ 2 and max(m,n) ≥ 3. Then f and g are constant. Moreover,
if f, g ∈ A(IK) and satisfy gm + fn = 1,with min(m,n) ≥ 2, then f and g are
constant.

Let us now recall the famous Hayman conjecture concerning complex meromor-
phic functions. Let f be a function meromorphic on lC. W. Hayman showed that
for every n ≥ 3, f ′fn takes every value infinitely many times and he conjectured
that this was true for all n ≥ 1. That was proven for n = 2 by E. Mues and for
n = 1 by W. Bergweiler and A. Eremenko [1] and separately by H.Chen and M.
Fang [7].

On the field IK, we can consider the same problem. Jacqueline Ojeda [24] (and
separately y H. Jurvanen) solved the problem for n ≥ 3 also. Moreover, applying
the Nevanlinna theory inside a disk, Jacqueline Ojeda also proved the same for
unbounded meromorphic functions inside a disk d(a,R−). In 2013, Jacqueline
Ojeda and I proved the conjecture for meromorphic functions on IK when n = 2
[13]. The conjecture remains for n = 1.

Theorem I.8.10 ([24], [13], [12], Corollary 45.10 and Theorem 45.15,)
Let a ∈ IK and R > 0. Let f ∈ M(IK) \ IK(x) (resp. f ∈ Mu(a,R−)). For every
n ≥ 3, f ′fn takes every value infinitely many times. Given f ∈ M(IK) \ IK(x),
f ′f2 takes every value infinitely many times.
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I.9. Small functions

Small functions with respect to a meromorphic function are well known in
the general theory of complex functions. Particularly, one knows the Nevanlinna
Theorem on 3 small functions. Here we will construct a similar theory.

Definitions and notation: Throughout the chapter we set a ∈ K and R ∈
]0,+∞[. For each f ∈ M(IK) (resp. f ∈ M(d(a,R−))) we denote by Mf (IK),
(resp. Mf (d(a,R−))) the set of functions h ∈ M(IK), (resp. h ∈ M(d(a,R−)))
such that T (r, h) = o(T (r, f)) when r tends to +∞ (resp. when r tends to R).
Similarly, if f ∈ A(IK) (resp. f ∈ A(d(a,R−))) we shall denote by Af (IK) (resp.
Af (d(a,R−))) the set Mf (IK) ∩ A(IK), (resp. Mf (d(a,R−)) ∩ A(d(a,R−))).

The elements of Mf (IK) (resp. Mf (d(a,R−))) are called small meromorphic
functions with respect to f , small functions in brief. Similarly, if f ∈ A(IK) (resp.
f ∈ A(d(a,R−))) the elements of Af (IK) (resp. Af (d(a,R−))) are called small
analytic functions with respect to f small functions in brief.

Remark: In [25], Yamanoi proved a Nevanlinna theorem on n small complex mero-
morphic functions. Unfortunately, no similar theorem exists for functions in IK.

Theorem I.9.1 ([12], Theorem 43.1): Let a ∈ IK and r > 0. Af (IK) is a
IK-subalgebra of A(IK), Af (d(a,R−)) is a IK-subalgebra of A(d(a,R−)), Mf (IK) is
a subfield of M(IK) and Mf (d(a,R−)) is a subfield of field of M(a,R−)). More-
over, Ab(d(a,R−) is a sub-algebra of Af (d(a,R−) and Mb(d(a,R−) is a subfield
of Mf (d(a,R−).

Theorem I.9.2 ([12], Theorem 43.2): Let f ∈M(IK), (resp.f ∈M(d(0, R−))
) and let g ∈ Mf (IK), (resp.g ∈ Mf (d(0, R−)) ). Then T (r, fg) = T (r, f) +

o(T (r, f)) and T (r,
f

g
) = T (r, f) + o(T (r, f))

Theorem I.9.3 ([12], Theorem 43.3): Let f ∈ A(IK) (resp. let a ∈ IK and
r > 0 and let f ∈ Au(d(a, r−))). Let g, h ∈ Af (IK) (resp. let g, h ∈ Af (d(a, r−))
with g and h not identically zero. If gh belongs to Af (IK) (resp. to Af (d(a, r−))),
then so do g and h.

The following theorem is known as the Second Main Theorem on three small
functions and is proven in the same way as in lC:

Theorem I.9.4 ([12], Theorem 43.10): Let f ∈M(IK) (resp. f ∈Mu(d(0, R−)))
and let w1, w2, w3 ∈ Mf (IK) (resp. w1, w2, w3 ∈ Mf (d(0, R−))) be pairwise dis-
tinct. Then T (r, f) ≤

∑3
j=1 Z(r, f − wj) + o(T (r, f)).

Theorem 19.5 closely derives from Theorem 19.4:

Theorem I.9.5 ([12], Theorem 43.11): Let f ∈M(IK) (resp. f ∈Mu(d(0, R−)))
and let w1, w2 ∈ Mf (IK) (resp. w1, w2 ∈ Mf (d(0, R−))) be distinct. Then
T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) +N(r, f) + o(T (r, f))).

Next, by setting g = f − w1 and w = w1 + w2, we can write this Corollary:
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Corollary I.9.5.a: Let g ∈M(IK) (resp. g ∈Mu(d(0, R−))) and let w ∈Mg(IK)
(resp. w ∈ Mg(d(0, R−))). Then T (r, g) ≤ Z(r, g) + Z(r, g − w) + N(r, g) +
o(T (r, g))).

Corollary I.9.5.b: Let f ∈ A(IK) (resp. f ∈ Au(d(0, R−))) and let w1, w2 ∈
Af (IK) (resp. w1, w2 ∈ Af (d(0, R−))) be distinct. Then

T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) + o(T (r, f)).

Corollary I.9.5.c: Let f ∈ A(IK) (resp. f ∈ Au(d(0, R−))) and let w ∈ Af (IK)
(resp. u ∈ Af (d(0, R−)).) Then T (r, f) ≤ Z(r, f) + Z(r, f − w) + o(T (r, f))).

Here is now an application of that theory:

Theorem I.9.6 ([12], Theorem 43.15): Let h, w ∈ Ab(d(a,R−)) and let
m, n ∈ IN∗ be such that min(m,n) ≥ 2, max(m,n) ≥ 3. Then the functional
equation

(E) (g(x))n = h(x)(f(x))m + w(x)
has no solution in Au(d(a,R−)).

II. Nevanlinna Theory out of a hole

II.1. Definitions

We will now show that another Nevanlinna Theory exists for meromorphic
functions defined not in an ”open” disk, but on the contrary in the complement of
such a disk.

Recently, M.O. Hanyak and A.A. Kondratyuk constructed a Nevanlinna theory
for meromorphic functions in a punctured complex plane, i.e. in the set of the form
lC \ {a1, ..., am}, where we understand that the meromorphic functions can admit
essential singularities at a1, ..., am [17]. Here we consider the situation in our field
IK of characteristic 0.

So, we mean to construct a Nevanlinna theory for meromorphic functions in
the complement of an open disk thanks to the use of specific properties of the
Analytic Elements on infraconnected subsets of IK and particularly the Motzkin
Factorization [22].

Once the Nevanlinna Theory is established for such functions, we can apply it
to obtain results on uniqueness, Picard’s values and branched values as it was done
in similar problems.

Throughout that study, we fix a number R > 0 and denote by I the interval
[R,+∞[. Next, we denote by S the disk d(0, R−) and put D = IK \ S.

Recall that we denote by A(D) the IK-algebra of Laurent series converging in
D. Similarly, we will denote by M(D) the field of fractions of A(D) that we will
call field of meromorphic functions in D.
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Given f ∈ M(D), for r > R, we will denote by ZR(r, f) the counting function
of zeros of f between R and r, i.e. if α1, ..., αm are the distinct zeros of f in
∆(0, R, r), with respective multiplicity uj , 1 ≤ j ≤ m, then

ZR(r, f) =
m∑
j=1

uj(log(r)− log(|αj |)). Similarly, we denote by NR(r, f) the counting

function of poles of f between R and r, i.e. if β1, ..., βn are the distinct poles of f
in ∆(0, R, r), with respective multiplicity vj , 1 ≤ j ≤ m, then

NR(r, f) =
n∑
j=1

vj(log(r)− log(|βj |)). Finally we put

TR(r, f) = max
(
ZR(r, f), NR(r, f)

)
.

Next, we denote by ZR(r, f) the counting function of zeros without counting
multiplicity: if α1, ..., αm are the distinct zeros of f in ∆(0, R, r), then we put

ZR(r, f) =
m∑
j=1

log(r)− log(|αj |).

Similarly, we denote by NR(r, f) the counting function of poles without count-
ing multiplicity: if β1, ..., βn are the distinct poles of f in ∆(0, R, r), then we put

NR(r, f) =
n∑
j=1

log(r)− log(|βj |).

Finally, putting W = {a1, ..., aq}, we denote by ZWR (r, f ′) the counting function
of zeros of f ′ on points where f(x) /∈W .

By Theorem I.5.3 we can derive Theorem II.1.1:

Theorem II.1.1: Let f ∈ M(D). We can write f in a unique way in the form
fSf0 with fS ∈ H(D) a Motzkin factor associated to S and f0 ∈ M(IK), having
no zero and no pole in S.

Proof. Suppose first f ∈ A(D) and take V > R. Then as a quasi-invertible
element of H(∆(0, R, V )) [9], [12], by Theorem I.5.3, f admits a factorization in
the form fSf0 where fS is a Motzkin factor and f0 belongs to H(d(0, V )) and has
no zero in S. Moreover by Theorem I.5.2, fS does not depend on V . Consequently,
since fS is obviously invertible in A(D), we can factorize f ∈ A(D) in the form
fSf0 where f0 belongs to A(IK) and has no zero in S.

Consider now the general case: f =
g

h
with g, h ∈ A(D). Then we can write

g = gSg0, h = hSh0, hence f =
( gS
hS

)( g0

h0

)
. Then we check that this is the

factorization announced in the statement: fS =
gS

hS
and f0 =

g0

h0
. The uniqueness

also comes from Theorem I.5.3. �

The following lemmas are immediate:

Lemma II.1.2: Let f, g ∈ A(D). If |f |(r) > |g|(r), then |f + g|(r) = |f |(r).
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Lemma II.1.3: The set of Motzkin factors associated to S makes a multiplica-

tive group. Let f, g ∈ M(D). Then (fg)S = (fS)(gS),
( 1
f

)S
=

1
fS

, (fg)0 =

(f0)(g0),
( 1
f

)0

=
1
f0

and m(fg, S) = m(f, S) +m(g, S), m(
1
f
, S) = −m(f, S).

Proof. We have f = fSf0. Since fS has no zero and no pole in D,
by Lemma I.1 it satisfies |fS |(r)) = rm(f,S) for all r ∈ I, hence log(|fS |(r)) −
log(|fS |(R)) = m(f, S)(log r − logR) (r ∈ I). Next, since f0 has no zero and no
pole in S, we have log(|f0|(r)) − log(|f0|(R)) = ZR(r, f0) − NR(r, f0) (r ∈ I).
Therefore the statement is clear. �

Notation: We will denote by M∗(D) the set of f ∈M(D) such that f0 /∈ IK(x)
i.e. the set of f ∈M(D) admitting at least infinitely many zeros in D or infinitely
many poles in D. Similarly, we will denote by A∗(D) the set of f ∈ A(D) such
that f0 /∈ IK[x] i.e. the set of f admitting infinitely many zeros in D. Next, we set
M0(D) =M(D) \M∗(D) and A0(D) = A(D) \ A∗(D).

Theorem II.1.4 is similar to Theorem I.7.2:

Theorem II.1.4: Let f ∈M(D). Then

log(|f |(r))− log(|f |(R)) = ZR(r, f)−NR(r, f) +m(f, S)(log r − logR), (r ∈ I).

Proof. By Theorem T.I.1, we have f = fSf0. Since fS has no zero and
no pole in D, by Lemma I.1 it satisfies |fS |(r)) = rm(f,S) for all r ∈ I, hence
log(|fS |(r))− log(|fS |(R)) = m(f, S)(log r − logR) (r ∈ I). Next, since f0 has no
zero and no pole in S, we have log(|f0|(r))−log(|f0|(R)) = ZR(r, f0)−NR(r, f0) (r ∈
I). Therefore the statement is clear. �

Corollary II.1.4.a: Let f ∈M(D). Then TR(r, f) is identically zero if and only
if f f0 is a constant.

Corollary II.1.4.b: Let f ∈ A(D) and let φ ∈ H0(D). Then ZR(r, f + φ) =
ZR(r, f) +O(log(r)) (r ∈ I).

Corollary II.1.4.c: Let f, g ∈ A(D) satisfy log(|f |(r)) ≤ log(|g|(r)) ∀r ≥ R
(r ∈ I). Then ZR(r, f) ≤ ZR(r, g) + (m(g, S)−m(f, S))(log(r)− log(R)), (r ∈ I).

We can now characterize the set M∗(D):

Theorem II.1.5: Let f ∈ A(D). Then ZR(r, f ′) ≤ ZR(r, f) +O(log(r)) (r ∈ I).

Proof. Indeed, by Theorem 18.1 in [12], we have |f ′|(r) ≤ |f |(r) and hence
the conclusion comes from Theorem II.1.4. �

Corollary II.1.5.1: Let f ∈ A(D). Then ZR(
f ′

f
)−NR(r,

f ′

f
) ≤ O(log(r)).

Theorem II.1.6: Let f ∈M(D). The three following statements are equivalent:

i) lim
r→+∞

TR(r, f)
log(r)

= +∞ (r ∈ I),
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ii)
TR(r, f)
log(r)

is unbounded,

iii) f belongs to M∗(D).

Proof. Consider an increasing sequence (un)n∈IN in IR+ such that lim
n→+∞

un = +∞
and let (kn)n∈IN be a sequence of IN∗. Clearly, we have

lim
r→+∞

∑
un≤r kn(log(r)− log(un))

log(r)
= +∞.

Consequently, if a function f ∈ M∗(D) has infinitely many zeros (resp. infinitely

many poles in D) then lim
n→+∞

ZR(r, f)
log(r)

= +∞ (resp. lim
n→+∞

NR(r, f)
log(r)

= +∞) hence

in both cases, lim
n→+∞

TR(r, f)
log(r)

= +∞. Conversely, if f has finitely many zeros and

finitely many poles in D, then we check that lim
n→+∞

TR(r, f)
log(r)

< +∞. Thus the

equivalence of the three statements is clear. �

Operations onM(D) work almost like for meromorphic functions in the whole
field.

Theorem II.1.7: Let f, g ∈M(D). Then for any b ∈ IK we have
TR(r, f + b) = TR(r, f) +O(log(r)), (r ∈ I)
TR(r, f.g) ≤ TR(r, f) + TR(r, g) +O(log(r)), (r ∈ I),

TR(r,
1
f

) = TR(r, f), (r ∈ I),

TR(r, f + g) ≤ TR(r, f) + TR(r, g) +O(log(r)), (r ∈ I)
and TR(r, fn) = nTR(r, f), (r ∈ I).
Let h be a Moebius function. Then
TR(r, h ◦ f) = TR(r, f) +O(log(r)), (r ∈ I).

Moreover, if both f and g belong to A(D), then

TR(r, f + g) ≤ max(TR(r, f), TR(r, g)) +O(log(r)), (r ∈ I)

and TR(r, fg) = TR(r, f) + TR(r, g), (r ∈ I).
Particularly, if f ∈ A∗(D), then TR(r, f + b) = TR(r, f) +O(1), (r ∈ I).
Given a polynomial P of degree q, then TR(r, P ◦ f) = qTR(r, f).

Corollary II.1.7.a: Let f, g ∈M0(D). Then

TR(r,
f

g
) ≥ TR(r, f)− TR(r, g) (r ∈ I) and TR(r,

f

g
) ≥ TR(r, g)− TR(r, f) (r ∈ I).

By Theorems II.1.6 and II.1.7, now we have this immediate corollary:

Corollary II.1.7.b: M0(D) is a subfield of M(D).

Theorem II.1.8: Every f ∈M∗(D) is transcendental over M0(D).

Proof. Consider a polynomial P (Y ) =
n∑
j=0

ajY
j ∈M0(D)[Y ] with
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an = 1. Let f ∈ M∗(D) and suppose that P (f) = 0. Then fn = −
n−1∑
j=0

ajf
j .

Set Ξ =
n−1∑
j=0

ajf
j and f = f0 g

h
with g, h ∈ A(D) having no zero in S. Then

Ξ =

∑n−1
j=0 ajg

jhn−1−j

hn−1
.

Since
n−1∑
j=0

ajg
jhn−1−j belongs to A(D), by Theorem II.3 we have

TR(r,
n−1∑
j=0

ajg
jhn−1−j) ≤ (n− 1)TR(r, f) +O(log(r)), (r ∈ I)

and of course TR(r, hn−1) ≤ (n− 1)TR(r, f), (r ∈ I). Consequently

TR(r,Ξ) ≤ (n− 1)TR(r, f) +O(log(r), (r ∈ I).

But on the other hand, by Theorem II.3, TR(r, fn) = nTR(r, f). Therefore we
should have nTR(r, f) ≤ (n−1)TR(r, f) +O(log(r), (r ∈ I), which is impossible by
Theorem II.2 because f belongs to M∗(D). Consequently, the equality P (f) = 0
is impossible, which proves that f is transcendental over M0(D). �

In Theorem II.1.9 we find results already stated about derivatives, for functions
in the whole field or in an open disk. The difference only holds in the rest:

Theorem II.1.9: Let f ∈M(D). Then

NR(r, f (k)) = NR(r, f) + kNR(r, f), (r ∈ I)

and
ZR(r, f (k)) ≤ ZR(r, f) + kNR(r, f) +O(log(r)), (r ∈ I).

Proof. The inequality NR(r, f (k)) = NR(r, f) + kNR(r, f) +O(1) is obvious.
Next consider f in the form

g

h
with g, h ∈ A(IK). Recall that we can write h

in the form hh̃ with h and h̃ in A(IK), each zero of h being of order one and all
zeros of h being a zero of h. So, h′ is of the form h̃ĥ where ĥ belong to A(IK)

and none of the zeros of ĥ is a zero of h. Then f ′ is of the form
g′h− gĥ
hh

. So,

ZR(r, f ′) ≤ ZR(r, g′h− gĥ) and hence,
ZR(r, f ′) ≤ max(ZR(r, g′h), ZR(r, gĥ). (1)

On the other hand, by Theorem II.1.5, ZR(r, g′) ≤ ZR(r, g) + O(log r). Obvi-
ously, ZR(r, h) ≤ ZR(r, h) = NR(r, `) = NR(r, f) hence ZR(r, (r, g′h) ≤ ZR(r, f) +
NR(r, f).

Now, let us estimate ZR(r, ĥ). Since log(|h′|(r)) ≤ log(|h|(r))− log r, we have

ZR(r, h′) ≤ ZR(r, h) +O(log(r)).

But since h′ = ĥh̃, we have

ZR(r, ĥ) = ZR(r, h′)− ZR(r, h̃) ≤ ZR(r, h)− ZR(r, h̃) +O(log(r))
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= ZR(r, h) +O(log(r)) = NR(r, f) +O(log(r)).
Consequently,

ZR(r, gĥ) ≤ ZR(r, g) +NR(r, f) +O(log(r)) = ZR(r, f) +NR(r, f) +O(log(r)).

Thus, by (1), we have proven the claim when k = 1 and then it is immediately
derived by induction on k. �

We can now define small functions in the same way as on the full field IK or as
on the disk d(0, R−)

Definitions and notation: For each f ∈ M(D) we denote by Mf (D) the set
of functions h ∈ M(D) such that TR(r, h) = o(TR(r, f)) when r tends to +∞.
Similarly, if f ∈ A(D) we denote by Af (D) the set Mf (D) ∩ A(D).

The elements of Mf (D) are called small meromorphic functions with respect
to f , small functions in brief. Similarly, if f ∈ A(D) the elements of Af (D) are
called small analytic functions with respect to f , small functions in brief.

A function w ∈Mf (D) will be called an exceptional small function with respect
to f if f−w has no zero in D and it will be called a quasi-exceptional small function
with respect to f if f − w has finitely many zeros in D.

Theorem II.1.10: Af (D) is a IK-subalgebra of A(D), Mf (D) is a subfield of
M(D).

Let f ∈ M(D) and let g ∈ Mf (D). Then TR(r, fg) = TR(r, f) + o(TR(r, f))

(r ∈ I) and TR(r,
f

g
) = TR(r, f) + o(TR(r, f)) (r ∈ I).

Let g, h ∈ A(D) with g and h not identically zero. If gh belongs to Af (D) then
so do g and h.

Theorem II.1.11: Let f ∈ M∗(D). There exists at most one function w ∈
Mf (D), such that f −w have finitely many zeros in D. Moreover, if f has finitely
many poles, then there exists no function w ∈Mf (D), such that f−w have finitely
many zeros in D.

Proof. Suppose that f admits two distinct quasi-exceptional small functions.
Without loss of generality we may assume that these functions are 0 and w ∈
Mf (D). Let g = f − w, let fS be the Motzkin factor of f associated to S and

let gS be the Motzkin factor of g associated to S. Then f is of the form fS
P

h

with h ∈ A∗(D) and P ∈ IK[x] having all its zeros in D and g is of the form gS
Q

l
with l ∈ A∗(D) and Q ∈ IK[x] having all its zeros in D. Consequently, we have
hgSQ− lfSP = hlw. Now, by Theorem II.1.7, we have

TR(r, hgSQ− lfSP ) ≤ max(TR(r, hgSQ), TR(r, lfSP )) +O(log(r)),

≤ (TR(r, h), TR(r, l) +O(log(r)), (r ∈ I),
hence

(1) TR(r, hlw) ≤ max((TR(r, h), TR(r, l)) +O(log(r)), (r ∈ I).

Next, by Theorem II.1.7 and Corollary II.1.7.a we have

(2) TR(r, wlh) ≥ TR(r, h) + TR(r, l)− TR(r, w).
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Now, since f = fS
P

h
, clearly TR(r, f) = TR(r, h)+O(log(r)) and similarly, TR(r, g) =

TR(r, l) + O(log(r)). But since TR(r, w) = o(TR(r, f), by Theorem II.1.10 we can
check that TR(r, g) = TR(r, f) + o(TR(r, f)). Consequently, TR(r, l) = TR(r, h) +
o(TR(r, h)). Therefore by (1) we have TR(r, hlw) ≤ (TR(r, h) + o(TR(r, h), (r ∈ I)
and by (2) we obtain TR(r, wlh) ≥ 2TR(r, h) + o(TR(r, f)) (r ∈ I), a contradiction.
This proves that f cannot have two small functions w ∈ Mf (D) such that f − w
have finitely many zeros.

Suppose now that f ∈ M∗(D) has finitely many poles and admits a quasi-

exceptional small function w. Set g = f − w. Then g is of the form gS
(P
h

)
where

P is a polynomial whose zeros lie in D and h belongs to A(D) and it admits for zeros
the poles of f and those of w. Consequently, h belongs to Af (D). Therefore we
can check that TR(r, g) = o(TR(r, f). But by Corollary II.1.7.a we have TR(r, g) ≥
TR(r, f)− TR(r, w) = TR(r, f) + o(TR(r, f)), a contradiction. �

Corollary II.1.11.a: Let f ∈ A∗(D). Then f has no quasi-exceptional small
function.

Lemma II.1.12 will be necessary in the proof of Theorem II.1.13. It looks like
Corollary 2.15 in [5]:

Lemma II.1.12: Let f ∈M(D). Suppose that there exists ξ ∈ IK and a sequence
of intervals Jn = [un, vn] such that un < vn < un+1, limn→+∞ un = +∞ and

lim
n→+∞

[
inf
r∈Jn

TR(r, f)− ZR(r, f − ξ)
log(r)

]
= +∞.

Let τ ∈ IK τ 6= ξ. Then ZR(r, f − τ) = TR(r, f) + O(log(r))) ∀r ∈ Jn when n
is big enough.

Proof. Without loss of generality, we can obviously suppose that ξ = 0. By
Theorem II.1.1, f is of the form fSf0 and f0 is of the form

g

h
with g, h ∈ A(D),

having no zero in S. Set w = fS . Thus we have

lim
n→+∞

[
inf
r∈Jn

ZR(r, h)− ZR(r, g)
log(r)

]
= +∞.

Consequently, by Theorem II.1.4, we have

(1) lim
n→+∞

[
inf
r∈Jn

log(|h|(r)− log(|g|(r)
log(r)

]
= +∞.

Consider now f − τ . We have f − τ =
wg − τh

h
, hence

log(|f |(r)) = log
(
|wg − τh|(r)− log(|h|(r)).

But by (A), we have log(|τh|(r)) > log(|wg|(r)) because log(|w|(r) = O(log(r)),
therefore by Lemma II.1.2 log

(
|wg − τh|(r)

)
= log(|τh|(r)) ∀r ∈ Jn when n is big

enough and hence

(2) lim
n→+∞

[
sup
r∈Jn

log(|τh− wg|(r)− log(|h|(r)
log(r)

]
= 0.
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Consequently, by (2) and by Theorem II.1.4,

lim
n→+∞

[
sup
r∈Jn

ZR(r, τh− wg)− ZR(r, h)
log(r)

]
= 0

i.e.

lim
n→+∞

[
sup
r∈Jn

ZR(r, f − τ)− TR(r, f)
log(r)

]
= 0

which proves the claim. �

Similarly to the reasonning when we considered meromorphic functions in IK
or inside a disk d(a,R−), the Nevanlinna second Main Theorem is based on the
following theorem:

Theorem II.1.13: Let f ∈M(D) and let a1, ..., aq ∈ IK be distinct. Then

(q − 1)TR(r, f) ≤ max
1≤k≤q

( q∑
j=1,j 6=k

ZR(r, f − aj)
)

+O(log(r)) (r ∈ I).

Proof. Suppose Theorem II.1.13 is wrong. Thus, there exists f ∈M(D) and
a1, ..., aq ∈ IK such that

(q − 1)TR(r, f)− max
1≤k≤q

( q∑
j=1,j 6=k

ZR(r, f − aj)
)

admits no superior bound in ]0,+∞[. So, there exists a sequence of intervals Js =
[ws, ys] such that ws < ys < ws+1, lims→+∞ ws = +∞ and two distinct indices
m ≤ q and t ≤ q such that

lim
s→+∞

[
inf
r∈Js

(
TR(r, f)− ZR(r, f − am)

)
log(r)

]
= +∞

and

lim
s→+∞

[
inf
r∈Js

(
TR(r, f)− ZR(r, f − at)

)
log(r)

]
= +∞

But by Lemma II.1, that is impossible. This ends the proof of Theorem II.1.13. �

Corollary II.1.13.a: Let f ∈M(IK) and let a1, ..., aq ∈ IK be distinct. Then
(q − 1)TR(r, f) ≤

∑q
j=1 ZR(r, f − aj) +O(log(r)) (r ∈ I).

We can now state and prove the Second Main Theorem for M(D).

Theorem II.1.14: Let f ∈ M(D), let α1, ..., αq ∈ IK, with q ≥ 2 and let
W = {α1, ..., αq}. Then (q − 1)TR(r, f) ≤

q∑
j=1

ZR(r, f − αj) + ZR(r, f ′)− ZWR (r, f ′) +O(log(r)) (r ∈ I).

Moreover, if f belongs to A(D) then qTR(r, f) ≤

≤
q∑
j=1

ZR(r, f − αj) + ZR(r, f ′)− ZWR (r, f ′) +O(log(r)) (r ∈ I).
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Theorem II.1.15 (Second Main Theorem):
Let f ∈M(D), let α1, ..., αq ∈ IK, with q ≥ 2 and let
W = {α1, ..., αq}. Then (q − 1)TR(r, f) ≤

q∑
j=1

ZR(r, f − αj) +NR(r, f)− ZWR (r, f ′) +O(log(r)) (r ∈ I).

Corollary II.1.15.a: Let f ∈ M(D), let α1, ..., αq ∈ IK, with q ≥ 2 and let
W = {α1, ..., αq}. Then

q∑
j=1

(
ZR(r, f − αj)− ZR(r, f − αj)

)
≤ TR(r, f) +NR(r, f)− ZWR (r, f ′) +O(log(r)) (r ∈ I).

Proof. of Theorems II.1.14 and II.1.15: By Theorem II.1.13 there exists a
constant B > 0 and for each r > R there exists k(r) ∈ IN, k(r) ≤ q, such that

(q − 1)TR(r, f) ≤
q∑

j=1,j 6=k(r)

ZR(r, f − aj) +B log(r)

i.e. (q − 1)TR(r, f) ≤
∑q
j=1 ZR(r, f − aj)− ZR(r, ak(r) +O(log(r)). Now,

q∑
j=1

ZR(r, f − aj) =
q∑
j=1

ZR(r, f − aj) + ZR(r, f ′)− ZWR (r, f ′) +B log(r).

Consequently,
(1)

(q−1)TR(r, f) ≤
q∑
j=1

ZR(r, f−aj)+ZR(r, f ′)−ZWR (r, f ′)−ZR(r, f−ak(r))+O(log(r))

and this proves the first claim of Theorem II.1.14.
Particularly, if f ∈ A(D) then we have ZR(r, f−aj) = TR(r, f−aj) = TR(r, f)+

O(log(r)) ∀j = 1, ..., q, hence ZR(r, f − ak(r)) = TR(r, f) +O(log(r)) and therefore

qTR(r, f) ≤
q∑
j=1

ZR(r, f − aj) + ZR(r, f ′)− ZWR (r, f ′) +O(log(r)),

which ends the proof of Theorem II.1.14.

Consider now the situation in Theorem II.1.15. By Theorem II.1.13, for each
j = 1, ..., q, there exists a constant Bj > 0 such that ZR(r, f ′) ≤ ZR(r, f − aj) +
NR(r, f − aj) + Bj log(r)). Consequently, there exists a constant C > 0 such that
ZR(r, f ′) ≤ ZR(r, f − ak(r)) +NR(r, f − ak(r)) + C log(r) ∀r > R.

Therefore, by Relation (1) that remains true in Theorem II.1.15, we can derive

(q − 1)TR(r, f) ≤
q∑
j=1

ZR(r, f − αj) +NR(r, f)− ZWR (r, f ′) +O(log(r)) ∀r ∈ I.

�
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We can now find again a Second Main Theorem on Three Small Functions.

Theorem II.1.16: Let f ∈ M∗(D) and let w1, w2, w3 ∈ Mf (D) be pairwise
distinct. Then

TR(r, f) ≤
3∑
j=1

ZR(r, f − wj) +
3∑
j=1

T (r, wj) +O(log(r)) (r ∈ I).

Proof. of Theorem II.1.16: Let φ(x) =
(f(x)− w1(x))(w2(x)− w3(x))
(f(x)− w3(x))(w2(x)− w1(x))

. By

Theorem II.12 we have
(1) TR(r, φ) ≤ ZR(r, φ) + ZR(r, φ− 1) +NR(r, φ) +O(log(r)).

On the other hand, we have TR(r, f) ≤ TR(r, f − wj) + TR(r, wj) (j = 1, 2, 3),

hence TR(r, f) ≤ TR(r,
w3 − w1

f − w3
) + o(TR(r, f)), thereby

TR(r, f) ≤ TR(r,
w3 − w1

f − w3
+ 1) + o(TR(r, f)) = TR(r,

f − w1

f − w3
) + o(TR(r, f)).

Now, TR(r,
w2 − w1

w2 − w3
) = o(TR(r, f)). Consequently, by writing

f − w1

f − w3
=
(w2 − w1

w2 − w3

)
φ we have

TR(r,
f − w1

f − w3
) ≤ TR(r, φ) + TR(r,

w2 − w1

w2 − w3
) ≤ TR(r, φ) + o(TR(r, f))

and finally TR(r, f) ≤ TR(r, φ) + o(TR(r, f)). Thus, by (1) we obtain

(2) TR(r, f) ≤ ZR(r, φ) + ZR(r, φ− 1) +NR(r, φ) + o(TR(r, f)).

Now, we can check that

ZR(r, φ) + ZR(r, φ− 1) +NR(r, φ) ≤
3∑
j=1

ZR(r, f − wj) +
∑

1≤j<k≤3

ZR(r, wk − wj) ≤

≤
3∑
j=1

ZR(r, f − wj) + o(TR(r, f)) which, by (2), completes the proof. �

Corollary II.1.16.a: Let f ∈ M∗(D) and let w1, w2, w3 ∈ M0(D) be pairwise
distinct. Then

TR(r, f) ≤
3∑
j=1

ZR(r, f − wj) +O(log(r)) (r ∈ I).

As an easy consequence, we have

Theorem II.1.17: Let f ∈M∗(D) and let w1, w2 ∈Mf (D) be distinct. Then

TR(r, f) ≤ ZR(r, f − w1) + ZR(r, f − w2) +NR(r, f)

+TR(r, w1) + TR(r, w2) +O(log(r)) (r ∈ I).

Corollary II.1.17.a: Let f ∈M∗(D) and let w1, w2 ∈M0(D) be distinct. Then

TR(r, f) ≤ ZR(r, f − w1) + ZR(r, f − w2) +NR(r, f) +O(log(r)) (r ∈ I).
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Corollary II.1.17.b: Let f ∈ A∗(D) and let w1, w2 ∈ A0(D) be distinct. Then

TR(r, f) ≤ ZR(r, f − w1) + ZR(r, f − w2) +O(log(r)) (r ∈ I).

Proof. of Theorem II.1.17 Let g =
1
f
, hj =

1
wj
, j = 1, 2, h3 = 0. Clearly,

TR(r, g) = TR(r, f), TR(r, hj) = TR(r, wj), j = 1, 2,

so we can apply Theorem II.13 to g, h1, h2, h3. Thus we have:

TR(r, g) ≤ ZR(r, g − h1) + ZR(r, g − h2) + ZR(r, g) + o(TR(r, g)).

.
But we notice that ZR(r, g − hj) = ZR(r, f − wj) for j = 1, 2 and ZR(r, g) =

NR(r, f). Moreover, we know that o(TR(r, g)) = o(TR(r, f)). Consequently, the
claim is proven when w1w2 is not identically zero.

Now, suppose that w1 = 0. Let λ ∈ IK∗, let l = f + λ and τj = uj + λ, (j =
1, 2, 3). Thus, we have TR(r, l) = TR(r, f) + O(log(r)), TR(r, τj) = TR(r, wj) +
O(log(r)), (j = 1, 2), NR(r, l) = NR(r, f). By the claim already proven whenever
w1w2 6= 0 we may write TR(r, l) ≤ ZR(r, l−τ1)+ZR(r, l−τ2)+NR(r, l)+o(TR(r, l)))
hence TR(r, f) ≤ ZR(r, f − w1) + ZR(r, f − w2) +NR(r, l) + o(TR(r, f))). �

II.2. Applications of the Nevanlinna Theory out of a hole

Theorems II.2.1 and II.2.2 are similar to Theorems I.8.2 and I.8.4:

Theorem II.2.1: Let a1, a2, a3 ∈ IK (with ai 6= aj ∀i 6= j) and let f, g ∈ A∗(D)
satisfy f−1({ai}) = g−1({ai}) (i = 1, 2, 3). Then f = g.

Theorem II.2.2: Let a1, a2, a3, a4, a5 ∈ IK (with ai 6= aj ∀i 6= j) and let
f, g ∈M∗(D) satisfy f−1({ai}) = g−1({ai}) (i = 1, 2, 3, 4, 5). Then f = g.

Proof. of Theorems II.2.1 and II.2.2: In both Theorems, we suppose that f
and g are two different functions. Let us remark that since f, g belong toM∗(D),

by Theorem II.1.6 we have lim
r→+∞

TR(r, f)
log(r)

= +∞ and lim
r→+∞

TR(r, g)
log(r)

= +∞.

Now, for each j = 1, ..., n, let Yj be the set of all zeros of f−aj (without taking
multiplicities into account). Since ai 6= aj ∀i 6= j, we have Yi∩Yj = ∅ ∀i 6= j. Next,
we notice that f(x) = aj implies f(x)− g(x) = 0. Consequently, we check that

(1)
n∑
j=1

ZR(r, f − aj) ≤ ZR(r, f − g).

By applying Theorem II.1.15 to f we obtain

(n− 1)TR(r, f) ≤
n∑
j=1

ZR(r, f − aj) +NR(r, f) +O(log(r)) ≤

≤ nZR(r, f − g) +NR(r, f) +O(log(r)) (r ∈ I)
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hence by (1),

(n− 1)TR(r, f) ≤ TR(r, f − g) +NR(r, f) +O(log(r)) (r ∈ I)

and finally

(n− 1)TR(r, f) ≤ TR(r, f − g) +NR(r, f) +O(log(r)) (r ∈ I).

Similarly,

(n− 1)TR(r, g) ≤ TR(r, f − g) +NR(r, g) +O(log(r)) (r ∈ I),

therefore we obtain

(n− 1) max(TR(r, f), TR(r, g))

(2) ≤ TR(r, f − g)) + max(NR(r, f), NR(r, g)) +O(log(r)) (r ∈ I).

Assume first we are in the hypothesis of Theorem II.2.1. We have NR(r, f) =
NR(r, g) = 0, and by Theorem II.1.7, TR(r, f − g) ≤ max(TR(r, f), TR(r, g)) +
O(log(r)). Consequently,

(n− 1) max(TR(r, f), TR(r, g)) ≤ max(TR(r, f), TR(r, g)) +O(log(r)) (r ∈ I).

Then by the remark at the beginning of the proof, we can see that the inequality
does not hold with n = 3, when r goes to +∞. Consequently, f = g.

Assume now the hypothesis of Theorem II.2.2. Since

max(NR(r, f), NR(r, g)) ≤ max(TR(r, f), TR(r, g)),

by (2) and by Theorem II.1.7 we have

(n− 1) max(TR(r, f), TR(r, g)) ≤ 3 max(TR(r, f), TR(r, g)) +O(log(r)) (r ∈ I).

The inequality does not hold with n = 5, when r goes to +∞, hence f = g. �

We can now apply the Second Main Theorem to obtain results concerning
certain algebraic curves:

Theorem II.2.3: Let Λ be a curve of equation yq = P (x) with P ∈ IK[x]. If Λ
admits a parametrization of the form y = g(t), x = f(t) with f, g ∈ M(D) and if
f (resp. g) belongs to M0(D), then g (resp. f) also belongs to M0(D).

Proof. Let a1, ..., an be n distinct zeros of P . Suppose that two functions
f, g ∈ M(D) satisfy the equation g(t)q = P (f(t)). If f belongs to M0(D), then
by Theorem II.1.6, g also belongs to M0(D). Conversely, if g belongs to M0(D),
then f satisfies P (f)− gq = 0, hence by Theorem II.1.6, f belongs to M0(D). �

Theorem II.2.4: Let Λ be a non-degenerate elliptic curve of equation
y2 = (x − a1)(x − a2)(x − a3). There do not exist g, f ∈ A∗(D) such that g(t) =
y, f(t) = x, t ∈ IK.
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Proof. Indeed, suppose that there exist g, f ∈ A∗(D) such that g(t) =
y, f(t) = x, t ∈ IK. Since for each j = 1, 2, 3, f − ai must have infinitely
many zeros in D, each one is a zero of g2 and hence it is a zero of even order, hence

ZR(r, f − aj) =
ZR(r, f − aj)

2
. Consequently, by Theorem II.1.15 , we have

2TR(r, f) ≤
3∑
j=1

ZR(r, f − aj)
2

+O(log(r)) ≤ 3TR(r, f)
2

+O(log(r)),

a contradiction when f ∈ A∗(D). �

Theorem II.2.5: Let Λ be a curve of equation yq = P (x) with P ∈ IK[x] ad-
mitting n distinct zeros of order 1. If Λ admits a parametrization of the form

y = g(t), x = f(t) with f, g ∈ M∗(D) and t ∈ D, then n ≤ 2q
q − 1

. Moreover, if

deg(P ) = n and if n and q are relatively prime, then n ≤ q + 1
q − 1

.

Proof. Let a1, ..., an be n distinct zeros of P . Suppose that two functions
f, g ∈ M∗(D) satisfy the equation (g(t))q = P (f(t)). Let α ∈ D be a zero of
f − aj of order s. It is a zero of order l of g− aj , hence lq = s therefore q divides s.

Consequently, for each j = 1, ..., n, we have ZR(r, f − aj) ≤
1
q
ZR(r, f − aj),

therefore, by Theorems II.1.7 and II.1.15 we have

(1) (n− 1)TR(r, f) ≤ n

q
TR(r, f) +NR(r, f) +O(log(r)).

Since f, g belong to M∗(D), that implies n ≤ 2q
q−1 .

Suppose now that deg(P ) = n and that n and q are relatively prime. Let β be
a pole of f of order l in D. Since deg(P ) = n, all zeros of P are of order 1 and β
is a pole of gq of order ln. But since n and q are relatively prime, q must divide l.
Consequently, by (1) now we have

(n− 1)TR(r, f) ≤ n

q
TR(r, f) +

1
q
TR(r, f) +O(log(r))

hence (n − 1)TR(r, f) ≤ (
n+ 1
q

)TR(r, f) + O(log(r)). And since f, g belong to

M∗(D), that implies n ≤ q+1
q−1 . �

By Theorems II.2.3 and II.2.5, we can get these corollaries:

Corollary II.2.5.a: Let Λ be a curve of equation yq = P (x) with q ≥ 2, P ∈ IK[x]
admitting n distinct zeros of order 1. If Λ admits a parametrization of the form

y = g(t), x = f(t) with f, g ∈ M(D) and t ∈ D and if n >
2q
q − 1

then the two

both functions f and g belong to M0(D).

Corollary II.2.5.b: Let Λ be a curve of equation yq = P (x) with q ≥ 2 relatively
prime to n and P ∈ IK[x] of degree n admitting n distinct zeros. If Λ admits a

parametrization of the form y = g(t), x = f(t) with f, g ∈M(D) and if n >
q + 1
q − 1

,

then the two both functions f and g belong to M0(D).
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Particularly Corollary II.2.5.b applies to hyper-elliptic curves.

Example: Let Λ be a curve of equation y2 = P (x) with deg(P ) = 5, P admitting
five distinct zeros. If two functions f, g ∈ M(D) satisfy g(t)2 = P (f(t)), then the
two both functions belong to M0(D).

Another application concerns analytic functions:

Theorem II.2.6: Let f, g ∈M(IK) satisfy gm+fn = 1,with min(m,n) ≥ 3 with
(m,n) 6= (3, 3). Then f and g belong to M0(D). Moreover, if f, g ∈ A(D) and
satisfy gm + fn = 1, with min(m,n) ≥ 2 and (m,n) 6= (2, 2), then f and g belong
to, A0(D).

Concerning the Hayman conjecture we can easily have a theorem that looks
like this one for a disk, by following a similar way as in [24].:

Theorem II.2.7: Let f ∈ M(D). For every n ≥ 3, f ′fn takes every value
infinitely many times.

However, so far, here we don’t have a theorem concerningM(D) in case n = 2.

We can now consider the problem of branched functions.

Definition: Let f ∈ M∗(D) and let w ∈ Mf (D). Then w is called a perfectly
branched function, with respect to f if all zeros of f −w are multiple except maybe
finitely many. Particularly, the definition applies to constants that are then called
branched values.

Theorem II.2.8: Let f ∈ M∗(D). Then f admits at most 4 perfectly branched
values.

Proof. Suppose f has q perfectly branched values bj with j = 1, ..., q. For

each j, let sj be the number of simple zeros of f − bj and let s =
q∑
j=1

sj . Applying

Theorem II.1.15 , we have

(1) (q − 1)TR(r, f) ≤
q∑
j=1

ZR(r, f − bj) +NR(r, f) +O(log r).

But since f − bj has sj simple zeros, we have

ZR(r, f − bj) ≤
ZR(r, f − bj) + sj(log r − logR)

2
+O(1)

≤ TR(r, f) + sj(log r − logR)
2

+O(1) ∀j = 1, ..., q

hence, by (1), we have

(2) (q − 1)TR(r, f) ≤ qTR(r, f)
2

+ TR(r, f) +O(log(r)).

By (2) clearly we have q ≤ 4 in all cases, which shows the statement of Theorem
II.2.8 whenever f ∈M(D). �
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In the proof of Theorem II.2.10, we will use the following lemma:

Lemma II.2.9. Let Θ(x) =
0∑
−∞

anx
n ∈ A(D), with a0 = 1, have no zero in D.

Take R′ = 4R and set D′ = IK \ d(0, R′−). Then there exists a function f ∈ A(D′)
such that (f(x))2 = Θ(x).

Proof. Since Θ belongs to A(D) and has no zero in D, while a0 = 1, we have
|an|R−n < 1 ∀n > 0 and lim

n→−∞
|an|R−n = 0. Then, there exists a unique function

` ∈ A(d(1, ( 1
4 )−)) with value in d(1, 1−) such that (`(u))2 = u ∀u ∈ d(1, ( 1

4 )−)

(see for instance Theorem 31.23 in [12]). Here, we put u =
0∑
−∞

anx
n. Since Θ

has no zero in D, we have
|an|
Rn

< 1 ∀n > 0, hence
|an|

(4R)n
<

1
4
∀n > 0, therefore

Θ(x) ∈ d(1, 1
4 )−). Consequently, we can apply ` to Θ(x) in D′. Then, putting

f(x) = `(Θ(x)), we have f(x)2 = Θ(x) ∀x ∈ D′. �

The following Theorem II.2.10 generalizes Theorem 50.12 in [12].

Theorem II.2.10: Let f ∈ M∗(D) have finitely many poles. Then f admits at
most one perfectly branched function in M0(D).

Proof. Suppose that f admits two perfectly branched rational functions w1

and w2. If we consider the function g = f −w1, we can see that g has two perfectly
branched rational functions 0 and w1 − w2. So, without loss of generality, we may
assume that f admits two perfectly branched rational functions that are 0 and
w(x) 6= 0.

Suppose first that f has infinitely many zeros of order ≥ 3. Then ZR(r, f) −
2ZR(r, f) is a function ζ(r) such that

(1) lim
r→+∞

ζ(r)
log r

= +∞.

therefore

ZR(r, f) ≤ TR(r, f)− ζ(r)
2

.

On the other hand, by Theorem II.1.17, we have

TR(r, f) ≤ ZR(r, f) + ZR(r, f − w) +NR(r, f) + o(TR(r, f)).

Consequently by (1), we can see a contradiction proving that f cannot admit 0 and
w as branched rational functions.

Suppose now that all zeros of both f and f − w are of order 2 except finitely
many. Since f has infinitely many zeros in D and since w ∈ M0(D), there exists
R′ > 4R satisfying the following properties:
i) all poles of f in D lie in ∆(0, R,R′)
ii) |f |(r) > |w|(r) ∀r ≥ R′,
iii) all zeros of f and of f − w in D \∆(0, R,R′) are of order 2 exactly.

Let S′ = d(0, R′−) and let D′ = IK \ S′. Then f obviously belongs to M(D′).
Therefore, by Theorem II.1.1, f admits a Motzkin factor of the form xsθ with
s = m(f, S′) and then we can write f in the form xsθg2 and g ∈ A(IK), having
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no zero in S′. Similarly, f − w admits a Motzkin factor of the form xtτ with
t = m(f − w, S′) and we can then write f − w in the form xtτh2 and h ∈ A(IK),
having no zero in S′.

Since |f |(r) > |w|(r) ∀r ≥ R′, we can check that f and f − w have the same
number of zeros on each circle C(0, r) (r ≥ R′) and |f |(r) = |f − w|(r) ∀r ≥ R′.
Consequently, s = t. We have the equality

(2) g2 − τ

θ
h2 =

b

xsθ
.

Now,
τ

θ
is a Motzkin factor of index zero, hence by Lemma II.2.9, it admits a square

root Ξ ∈ H(D′) of the form
0∑
−∞

anx
n with |an|Sn < |a0| ∀n < 0. Then by (2) we

have

(3) (g − Ξh)(g + Ξh) =
w

xsθ
.

We will check that this equality is impossible. Indeed, both functions g − Ξh and
g + Ξh belong to A(D′). Suppose ZR′(r, g − Ξh) = O(log(r)). Then g + Ξh =
(g − Ξh) + 2Ξh satisfies ZR′(r, g − Ξh) + ZS(r,Ξh) = ZR′(r,Ξh) + O(log(r)) and
consequently,

lim
r→+∞

[ZR′(r, (g − Ξh)(g + Ξh))
log(r)

]
= +∞

because

lim
r→+∞

[ZR′(r,Ξh)
log(r)

]
= +∞.

But on the other hand, by construction, ZR′(r,
w

xsθ
) is of the form O(log(r)), which

shows that (3) is impossible. That ends the proof of Theorem II.2.10. �

Corollary II.2.10.a: Let f ∈ A∗(D). Then f admits at most one perfectly
branched function in M0(D).

Notation Let h ∈ M(IK) \ IK (resp. h ∈ E(x) \ E) and let Λ(h) be the set of
zeros c of h′ such that h(c) 6= h(d) for every zero d of h′ other than c. If Λ(h) is
finite, we denote by Υ(h) its cardinal and if Λ(h) is not finite, we put Υ(h) = +∞.

Given a property Q satisfied by h, we will denote by ZR(r, h′ | Q) the counting
function of zeros of h′ whenever Q is satisfied.

In the proof of Theorems II.2.13 and II.2.14 we will need the following lemma
which is similar to Lemma 10 in [11] (see also Lemma 53.1 in [12]):

Lemma II.2.11: Let P (x) ∈ IK[x]\ IK and let f, g ∈M(D) satisfy P ◦f = P ◦g.
Let W = {c1, ..., cl} be the set of zeros of P ′.

For each j = 1, ..., k (k ≤ l) let qj = ωcj
(P ′). We assume that P (cj) 6=

P (cn) ∀j = 1, ..., k, ∀n ≤ l. Then f, g satisfy

NR(r, f)+
k∑
j=1

ZR(r, f−cj) ≤ ZR(r,
1
f
− 1
g

)+
k∑
j=1

1
qj
ZR(r, g′ | f(x) = cj , g(x) /∈W ).

Furthermore, if f, g ∈ A(D), then
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k∑
j=1

ZR(r, f − cj) ≤ ZR(r, f − g) +
k∑
j=1

1
qj
ZR(r, g′ | f(x) = cj , g(x) /∈W ).

Proof. Without loss of generality, we may assume that 0 /∈ S and that

cn 6= 0 ∀n ≤ j. Let P(f) be the set of poles of f and let φ =
1
f
− 1
g

. Since

P ◦ f = P ◦ g, each pole α of f is a pole of same order of g and hence, we have
φ(α) = 0. Therefore

(1) NR(r, f) ≤ ZR(r, φ | x ∈ P(f)).

Let us fix j ∈ {1, ..., k} and let α ∈ D satisfy f(α) = cj . Suppose first that
g(α) lies in W . Thanks to the hypothesis P (cn) 6= P (cj) ∀n 6= j, if g(α) 6= cj
then P (g(α)) 6= P (cj), a contradiction to P (g(α)) = P (f(α)). So we have g(α) =
f(α) = cj and since cj 6= 0, then φ(α) = 0. Consequently,

(2) ZR(r, f − cj | g(x) ∈W ) ≤ ZR(r, φ | f(x) = cj)

and similarly if f, g ∈ A(D)

(3) ZR(r, f − cj | g(x) ∈W ) ≤ ZR(r, f − g | f(x) = cj).

Consequently, by (1) and (2) we can derive

(4) NR(r, f) +
k∑
j=1

ZR(r, f − cj | g(x) ∈W ) ≤ ZR(r, φ).

Similarly, if f, g ∈ A(D), by (3) we have

(5)
k∑
j=1

ZR(r, f − cj | g(x) ∈W ) ≤ ZR(r, f − g).

In order to complete the proof, we will show

(6) ZR(r, f − cj | g(x) /∈W ) ≤ 1
qj
ZR(r, g′ | f(x) = cj , g(x) /∈W ).

Indeed, consider α such that g(α) /∈W
Since P ′(f(α)) = P ′(cj) = 0, we notice that f ′(α)P ′(f(α)) = g′(α)P ′(g(α)) =

0. But since g(α) /∈ W , we have P ′(g(α)) 6= 0, hence g′(α) = 0. Consequently, we
obtain

(7) ZR(r, f − cj | g(x) /∈W ) ≤ ZR(r, g′ | f(x) = cj , g(x) /∈W ).

On the other hand, since f(α) = cj , we see that ωα(f ′(x)P ′(f(x))) ≥ qj hence

(8) ωα(g′(x)P ′(g(x))) ≥ qj .
But since g(α) /∈ W , we have P ′(g(α)) 6= 0, hence by (8), ωα(g′) ≥ qj , and

consequently

(9) ZR(r, g′ | f(x) = cj , g(x) /∈W ) ≤ 1
qj
ZR(r, g′ | f(x) = cj , g(x) /∈W ).
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Thus, by (24) and (26) we obtain (23) which, by (4) proves

NR(r, f) +
k∑
j=1

ZR(r, f − cj) ≤ ZR(r,
1
f
− 1
g

) +
k∑
j=1

1
qj
ZR(r, g′ | f(x) = cj , g(x) /∈W ).

Similarly, if f, g ∈ A(D), by (5) and (6) we have

k∑
j=1

ZR(r, f − cj) ≤ ZR(r, f − g) +
k∑
j=1

1
qj
ZR(r, g′ | f(x) = cj , g(x) /∈W ).

�

Lemma II.2.12: Let P ∈ IK[x] and let f, g ∈ A∗(D) satisfy P ◦ f = P ◦ g. Then
TR(r, f) = TR(r, g) +O(log(r)) r > R).

Proof. Let q = deg(P ). By Theorem T.II.5, we have TR(r, P◦f) = qTR(r, f)+
O(log(r)) and TR(r, P ◦ g) = qTR(r, g) + O(log(r)). But since, P ◦ f = P ◦ g that
means TR(r, f) = TR(r, g) +O(log(r)). �

Theorem II.2.13: Let P ∈ IK[x] be such that Υ(P ) ≥ 2. Then P is a polynomial
of uniqueness for A∗(D).

Remark: One can show that when a polynomial is of degree 3 and such that P ′

has 2 distinct zeros, then the condition Υ(P ) = 2 is automatically satisfied.

Example: Without loss of generality we can assume that P ′ is of the form 3x2−b,
hence P (x) = x3 − bx+ c. Then P (b) = b3 − b2 + c, P (−b) = −b3 + b2 + c 6= P (b).

Theorem II.2.14: Let P ∈ IK[x] be such that Υ(P ) ≥ 4. Then P is a polynomial
of uniqueness for M∗(D).

Example: 1) Let P (x) =
x4

4
+
x3

3
− x2. Then

P ′(x) = x(x− 1)(x+ 2).

And P (0) = 0, P (1) =
1
4

+
1
3
− 1, P (2) =

8
3

.

Thus the three zeros aj of P ′ satisfy P (ai) 6= P (aj) ∀i 6= j. Consequently, Υ(P ) = 3
and hence P is a polynomial of uniqueness for A∗(D).

2) Let P (x) =
x5

5
− 5x3

3
+ 4x. Then

P ′(x) = (x− 1)(x+ 1)(x− 2)(x+ 2). P (1) =
1
5
− 5

3
+ 4,

P (−1) = −P (−1), P (2) =
32
5
− 24

3
+ 8 = −P (−2).

Thus the four zeros aj of P ′ satisfy P (ai) 6= P (aj) ∀i 6= j. Consequently, Υ(P ) = 4
and hence P is a polynomial of uniqueness for M∗(D).
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Proof. of Theorems II.2.13 and II.2.14 Suppose that f and g are not iden-
tical. Let W be the set of zeros of P ′ and let c1, ..., ck lie in W . Clearly by applying
Theorem II.1.15 we obtain respectively in Theorems II.2.13 and II.2.14

(1) (k−1)TR(r, f) ≤
k∑
j=1

ZR(r, f−cj)+NR(r, f)−ZWR (r, f ′)+O(log(r)), (r > R),

(2) (k−1)TR(r, g) ≤
k∑
j=1

ZR(r, g−cj)+NR(r, g)−ZWR (r, g′)+O(log(r)), (r > R).

Now, let φ =
1
f
− 1
g

and for each j = 1, ..., k, let qj = ωcj (P ′). By (1) and (2)

and by Lemma II.2.11 we obtain

(k − 1)TR(r, f) ≤ ZR(r, φ) +
k∑
j=1

1
qj
ZR(r, g′ | f(x) = cj , g(x) /∈W )

(3) −ZR(r, f ′ | f(x) /∈W +O(log(r))

and similarly:

(k − 1)TR(r, g) ≤ ZR(r, φ) +
k∑
j=1

1
qj
ZR(r, f ′ | g(x) = cj , f(x) /∈W )

(4) −ZR(r, g′ | g(x) /∈W +O(log(r)).

By adding in each case the two inequalities by (3) and (4) in Theorems II.2.13 and
II.2.14, we obtain:

(k − 1)(TR(r, f) + TR(r, g)) ≤ 2ZR(r, φ)+

+
k∑
j=1

1
qj

[ZR(r, f ′ | g(x) = cj , f(x) /∈ S + ZR(r, g′ | f(x) = cj , g(x) /∈W )]

(5) −ZR(r, f ′ | f(x) /∈W )− ZR(r, g′ | g(x) /∈W ) +O(log(r)).

Now, in each inequality (5), we notice that in the left side member we have the
term:

k∑
j=1

1
qj

[ZR(r, f ′ | g(x) = cj , f(x) /∈ S)]− ZR(r, f ′ | f(x) /∈W )

which is clearly less than or equal to zero and similarly

k∑
j=1

1
qj

[ZR(r, g′ | f(x) = cj , g(x) /∈ S)]− ZR(r, g′ | g(x) /∈W ) ≤ 0.
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Consequently, by Lemma II.2.11, in Theorems II.2.14 we obtain

(k − 1)(TR(r, f) + TR(r, g)) ≤ 2ZR(r, φ) +O(log(r))

and hence

(6) (k − 1)(TR(r, f) + TR(r, g)) ≤ 2ZR(r, f − g) +O(log(r)).

Now, by Theorem II.1.7 we have ZR(r, φ) ≤ TR(r, f)+TR(r, g)+O(log(r)) therefore
k ≤ 3 and hence, if Υ(P ) ≥ 4, we have f = g.

Now assume the hypotheses of Theorem II.2.13. By Lemma II.2.11 we can re-
place ZR(r, φ) by ZR(r, f − g). Next, by Lemma II.2.12, TR(r, f) = TR(r, g) +
O(log(r)), hence, by Theorem II.1.7, we can derive TR(r, f − g) ≤ TR(r, f) +
O(log(r)) = TR(r, g) +O(log(r)). Consequently in place of (6), in Theorem II.2.13
we obtain

(k−1)(TR(r, f)+TR(r, g)) ≤ 2ZR(r, f−g)+O(log(r)) ≤ TR(r, f)+TR(r, g)+O(log(r)).

Thus we can conclude that k ≤ 2 in Theorem II.2.13 and hence, if Υ(P ) ≥ 3, we
have f = g. �

Remark: The hypothesis Υ(P ) ≥ 4 however is not necessary to prove that a
polynomial P is a polynomial of uniqueness for M∗(D), as shows Theorem II.2.16
below. The proof is similar to that of Theorem 41.9 in [12] and first came from
[14]:

In the proof of Theorem II.2.16 we will need the following basic Lemma II.2.15
(stated in [12]).

Lemma II.2.15: Let E be an algebraically closed field of characteristic 0 and let
P (x) = (n− 1)2(xn − 1)− n(n− 2)(xn−1 − 1)2 ∈ E[x]. Then P admits 1 as a zero
of order 4 and all other zeros uj (1 ≤ j ≤ 2n− 6) are simple.

Theorem II.2.16: Let

Q(x) =
(

(n+ 2)(n+ 1)xn+3 − 2(n+ 3)(n+ 1)xn+2 + (n+ 3)(n+ 2)xn+1
)

with b ∈ IK∗. Then Q is a polynomial of uniqueness for M∗(D) for every n ≥ 3.

Proof. Suppose f, g ∈ M(D) and suppose that Q(f) = Q(g). Let h =
f

g
.

We can derive

(n+2)(n+1)(hn+3−1)g2−2(n+3)(n+1)(hn+2−1)g+(n+3)(n+2)(hn+1−1) = 0.

If h is a constant, it is 1, a contradiction. So, we suppose h is not constant.
Let P (x) = (n+ 2)2(xn+3)−1)− (n+ 3)(n+ 1)(xn+2−1)2 ∈ IK[x]. By Lemma

II.2.15 P admits 1 as a zero of order 4 and all other zeros uj (1 ≤ j ≤ 2n) are
simple. By change of variable, we can obviously assume that h − uj has no zero
and no pole at 0. Consequently, we check that

(
g −

(n+ 3
n+ 2

)(hn+2 − 1
hn+3 − 1

))2

=
(n+ 3)(h− 1)4

∏2n
j=1(h− uj)

(n+ 2)2(n+ 1)(hn+3 − 1)2
.
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Since
(n+ 3)(h− 1)4

∏2n
j=1(h− uj)

(n+ 2)2(n−+1)(hn+3 − 1)2
is equal to a square, clearly each zero of h −

uj , (1 ≤ j ≤ 2n) has order at least 2. Consequently

2n∑
j=1

ZR(r, h− uj) ≤
1
2

2n∑
j=1

ZR(r, h− uj) ≤
1
2

(2n)TR(r, h) +O(1) (r > R).

Then, applying Theorem II.1.15 to h at the points uj (1 ≤ j ≤ 2n), we obtain

(2n− 1)TR(r, h) ≤
2n∑
j=1

ZR(r, h− uj) +NR(r, h) +O(log(r)) ≤

≤ 1
2

2n∑
j=1

ZR(r, h− uj) +NR(r, h) +O(log(r))

≤ 1
2

(2n)TR(r, h) +NR(r, h) +O(log(r)) (r > R)

and therefore (2n − 1)TR(r, h) ≤ nTR(r, h) + TR(r, h) + O(log(r)) (r > R). Now,

since f, g belong toM∗(D), by Theorem II.1.6 we have lim
r→+∞

TR(r, h)
log(r)

= +∞ and

hence we can conclude that n ≤ 2. That finishes the proof of Theorem II.2.16. �

Notation: Following Theorem II.2.16, given n ∈ IN and let c ∈ IK) we denote by
Pn,c the polynomial introduced in [12] and also used in [11]:
Pn,c(x) = (n− 1)(n− 2)xn − 2n(n− 2)xn−1 + n(n− 1)xn−2 + c
and by L(n, c) be the set of zeros of Pn,c in IK.

In the proof of Theorems II.2.19 and II.2.20, we will also need the following
lemmas given in [5]: and [14]:

Lemma II.2.17: Let F, G ∈ M(D) have the same poles, ignoring multiplicitiy,

and let H =
F ′′

F ′
− G′′

G′
. Every pole of H has multiplicity order 1. Let α be a pole

of F and G. If α has same multiplicity for F and G, then H has no pole at α.
Moreover, if α has a multiplicity order 1 for both F and G, then α is a zero of H.

Lemma II.2.18: Let f, g ∈M(D)) be two different non-constant functions sat-

isfying
f ′′

f ′
=
g′′

g′
. Then f and g are linked by a relation of the form f = ag + b.

Theorem II.2.19: Let f, g ∈ M∗(D) be two different non-constant functions
satisfying f−1(L(n, c)) = g−1(L(n, c)). Then n ≤ 16. Moreover, if f, g ∈ A∗(D),
then n ≤ 9.

Corollary II.2.19.a: Let n ≥ 17. Then L(n, c) is an ursim for M∗(D). Let
n ≥ 10. Then L(n, c) is an ursim for A∗(D).

In order to state Theorem II.2.20, we need to recall the notation E used with
URSCM. Given a subset B of IK and f ∈ M(D) we denote by E(f,B) the set in
IK×IN∗:
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a∈B
{(z, q) ∈ IK×IN∗| z a zero of order q of f(x)− a}.

And given a subset B the projective space of dimension 1 on IK, IP1(IK),
containing {∞} and f ∈ M(D), we denote by E(f,B) the subset of IK×IN∗:
E(f, S ∩ IK) ∪ {(z, q) z a pole of order q of f}.

Theorem II.2.20: Let f, g ∈ M∗(D) be two distinct non-constant functions
satisfying E(f, L(n, c)) = E(g, L(n, c)). Then n ≤ 10. Moreover, if f, g ∈ A∗(D)
then n ≤ 6.

Corollary II.2.20.a: For every n ≥ 11, L(n, c) is an urscm for M∗(D) and for
every n ≥ 7, L(n, c) is an urscm for A∗(D).

Proof. of Theorems II.2.19 and II.2.20: In order to simplify the notation,
we will just denote by P the polynomial Pn,c and by L the set L(n, c).

We then consider two distinct non-constant meromorphic functions f, g ∈
M(D) and we assume f−1(L) = g−1(L) in Theorem II.2.19 and E(f, S) = E(g, S)
in Theorem II.2.20.

Let F =
1

P (f)
G =

1
P (g)

and H =
F ′′

F ′
− G′′

G′
.

We first suppose that H is identically 0. By Lemma II.2.18, it is immediate

to derive that there exist A ∈ IK∗ and B ∈ IK such that P (f) =
P (g)

BP (g) +A
.

Therefore, by Theorems II.1.7 we have: (1) TR(r, f) = TR(r, g) + O(log(r)) (r ∈

]0, R[).

We can check that P (X) + c is of the form bXn−2(X − e1)(X − e2) + c, with
b, e1, e2 ∈ IK, (resp. b, e1, e2 ∈ IK) and e1e2 6= 0, e1 6= e2.

We have to distinct three cases: i) B 6= 0, ii) B = 0, A = 1, iii) B = 0, A 6= 1.

i) Since AB 6= 0, every zero of P (g) +
A

B
is a pole of P (f) and therefore is a

zero of order at least n of P (g) +
A

B
. On the other hand, we check that whenever

A, B ∈ IK∗, the polynomial P (X)+
A

B
admits at least two distinct zeros b1 and b2 of

order 1 and therefore it admits another zero l of order at most n−2. Consequently,
every zero of g−b1 or g−b2 has order at least n and every zero of g− l has order at
least 2. By a change of variable, we can obviously assume that g, g− l, g−b1, g−b2
have neither any zeros nor any poles at 0. Then, by applying Theorem II.1.15, we
obtain:

2TR(r, g)−NR(r, g) ≤ ZR(r, g − l) + ZR(r, g − b1) + ZR(r, g − b2) +O(log(r)) ≤

≤ 1
2
ZR(r, g − l) +

1
n

(ZR(r, g − b1) + ZR(r, g − b2)) +O(log(r)) (r ∈ J)

which leads to n ≤ 4. ii) In this case we have P (f) = P (g). But by Theorem

II.2.15, P is a polynomial of uniqueness, for Mu(d(0, R−)), hence f = g.

iii) Let λ =
1
A

. We will check that at least one of the two polynomials

Q1(X) = (n− 1)(n− 2)Xn − 2n(n− 2)Xn−1 + n(n− 1)Xn−2 + c(λ− 1) and
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Q2(X) = (n− 1)(n− 2)Xn − 2n(n− 2)Xn−1 + n(n− 1)Xn−2 + c(
1
λ
− 1) admits n

distinct zeros. Indeed, suppose this not true. We notice that
Q′1(X) = Q′2(X) = P ′(X) = n(n− 1)(n− 2)Xn−3(X − 1)2. Consequently, if both
Q1 and Q2 admit at least one zero of order > 1, then this must be 1, because it

cannot be 0. But then, we have c(λ− 1) = c(
1
λ
− 1) = −2. Since c 6= 0, and since

λ 6= 1, this implies λ = −1, and c = 1, which is excluded by hypothesis.

Now, since λ and
1
λ

play symmetric roles, without loss of generality we can
assume that Q1 admits n distinct zeros b1, ..., bn. Thus, putting
γ(X) = λXn−2(n− 1)

(
(n− 2)X2 − 2n(n− 2)X + n(n− 1)

)
, we have

(2) Q1(f) = γ(g).
So, applying Theorem II.1.15, we obtain

(n− 1)TR(r, f) ≤
n∑
j=1

ZR(r, f − bj) +NRr, f) +O(log(r)) (r ∈ J).

On the other hand, we have
n∑
j=1

ZR(r, f − bj) ≤ ZR(r,Q1(f)) = ZR(r, g) + ZR(r, g − e1) + ZR(r, g − e2)

≤ 3TR(r, g) +O(log(r)).
But by (2) it is seen that TR(r, g) ≤ TR(r, f) +O(log(r)) (r ∈ J), hence finally

(3) (n− 1)TR(r, f) ≤ 3TR(r, f) +NR(r, f) +O(log(r)) (r ∈ J).

Consequently, we have n ≤ 5. Moreover, if f, g ∈ A(d(0, R−)), then NR(r, f) = 0,
and then (3) leads to n ≤ 4. That finishes proving the claims of the Theorems
when H = 0.

Henceforth, we suppose that H is not identically 0 and we will apply Fujimoto’s
method [15]. Let α be a zero of f−aj , for some j. Then both P (f) and P (g) vanish

at α. So, we have
n∑
j=1

ZR(r, f − aj) = ZR(r, P (f)) = ZR(r, P (g)). According to

Lemma II.2.17, if both P (f), P (g) have a zero of order one, then H also has a zero.
Else, at least one of the two functions P (f) and P (g) admits α as a zero of order
strictly greater than 1, and then, (since all zeros of P are simple), at least one of
the two functions f ′, g′ has a zero at α, while α is a zero f − ai for some i and a
zero of g − aj for some j. Consequently, we obtain

(3A)
n∑
j=1

ZR(r, f − aj) ≤ ZR(r,H) +ZR(r, f ′) +ZR(r, g′)−ZSR(r, f ′)−ZSR(r, g′).

Moreover, in the hypothesis of Theorems II.2.20, since any zero α of f − ai is
a zero of certain g− aj with the same multiplicity order, we have ωα(f ′) = ωα(g′).
Consequently,we obtain this improvement of (3A):

(3B)
n∑
j=1

ZR(r, f − aj) ≤ ZR(r,H) +
1
2

[ZR(r, f ′) + ZR(r, g′)− ZSR(r, f ′)− ZSR(r, g′)].
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By Corollary II.1.5.1 we know that ZR(r,H) ≤ NR(r,H) + O(log(r)), (r ∈ J),
hence
n∑
j=1

ZR(r, f−aj) ≤ NR(r,H)+ZR(r, f ′)+ZR(r, g′)−ZSR(r, f ′)−ZSR(r, g′)+O(log(r))

(r ∈ I), and similarly
n∑
j=1

ZR(r, g−aj) ≤ NR(r,H)+ZR(r, f ′)+ZR(r, g′)−ZSR(r, f ′)−ZSR(r, g′)+O(log(r))

(r ∈ I), hence

n∑
j=1

ZR(r, f − aj) + ZR(r, g − aj)

(4A) ≤ 2NR(r,H) + 2[ZR(r, f ′) + ZR(r, g′)− ZSR(r, f ′)− ZSR(r, g′)] +O(log(r)).

And in the hypothesis of Theorem II.2.20, by (3B) we obtain

n∑
j=1

ZR(r, f − aj) + ZR(r, g − aj)

(4B) ≤ 2NR(r,H) + [ZR(r, f ′) + ZR(r, g′)− ZSR(r, f ′)− ZSR(r, g′)] +O(log(r)).

Consider now NR(r,H), and let η be a pole of H. Either η is a zero of F ′G′ or
it is a pole of FG. Let ζ be the counting function of the poles of H occuring when
FG has a pole. So, we have

(5) N(r,H) = ZR(r, F ′G′) + ζ(r)

Suppose first η is a zero of F ′ but is not a pole of FG. Either η is a zero of f ′,
or it is a zero of P ′(f), or it is a pole of f . Consequently, η is not a zero of P (f)
and we have ZR(r, F ′) ≤ ZSR(r, f ′) + ZR(r, P ′(f)) +NR(r, f). Since

P ′(X) = n(n− 1)(n− 2)(X − 1)2Xn−3,

we have ZR(r, P ′(f)) ≤ 2TR(r, f), ZR(r, P ′(g)) ≤ 2TR(r, g), and therefore

(6) ZR(r, F ′) ≤ ZSR(r, f ′) + 2T (r, f) +NR(r, f).

Similarly, if η is a zero of G′ but is not a pole of FG, we have

(7) ZR(r,G′) ≤ ZSR(r, g′) + 2T (r, g) +NR(r, g).

Suppose now η is a pole of FG. Then η is a zero of P (f) and P (g) (we notice
that when η is a zero of P (f), it is a zero of P (g), and vice-versa), and then by
Lemma II.2.17, it may not be a pole of H when it is a zero of same order of P (f)
and P (g). Consequently, in the hypothesis of Theorem II.2.19 ζ(r) satisfies

ζ(r) ≤ ZR(r, f ′)− ZSR(r, f ′) + ZR(r, g′)− ZSR(r, g′),

and therefore by (5), (6) and (7) we obtain

NR(r,H) ≤ ZSR(r, f ′) + Z
S

R(r, g′) + 2T (r, f) + 2T (r, g) +NR(r, f) +N(r, g)

+ZR(r, f ′)− ZSR(r, f ′) + ZR(r, g′)− ZS0 (r, g′),
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hence

NR(r,H) ≤ 2T (r, f) + 2T (r, g) +NR(r, f) +NR(r, g) + ZR(r, f ′) + ZR(r, g′).

Thus by (4A), in the hypothesis of Theorems II.2.19, we obtain

(8A)
n∑
j=1

ZR(r, f − aj) + ZR(r, g − aj) ≤

4(T (r, f)+T (r, g))+2(NR(r, f)+2NR(r, g))+4(ZR(r, f ′)+ZR(r, g′))+O(log(r)).
Now, in the hypotheses of Theorem II.2.20 since the order of a zero is the same for
P (f) and P (g), the counting function ζ is identically 0, so by, (5) (6), (7) we have

NR(r,H) ≤ 2TR(r, f) + 2TR(r, g) +NR(r, f) +N(r, g) + Z
S

R(r, f ′) + Z
S

R(r, g′),

and therefore by (4B) we obtain
n∑
j=1

ZR(r, f − aj) + ZR(r, g − aj) ≤ 4(TR(r, f) + TR(r, g)) + 2(N(r, f)

(8B) +2N(r, g)) + (ZR(r, f ′) + ZR(r, g′)) + (Z
S

R(r, f ′) + Z
S

R(r, g′)) +O(log(r)).

Now, applying Theorem II.1.15 to f and g at the points aj (1 ≤ j ≤ n), we have:

(n− 1)TR(r, f) ≤ N(r, f) +
n∑
j=1

ZR(r, f − aj)− ZSR(r, f ′) +O(log(r)) (r ∈ I),

(n−1)TR(r, g) ≤ NR(r, g)+
n∑
j=1

ZR(r, g−aj)−ZSR(r, g′)− log r+O(log(r)), (r ∈ I)

hence,
(n− 1)(TR(r, f) + TR(r, g)) ≤ NR(r, f) +NR(r, g)

+
n∑
j=1

ZR(r, f − aj) + ZR(r, g − aj)− ZSR(r, f ′)− ZSR(r, g′) +O(log(r)) (r ∈ I).

hence by (8A), in the hypotheses of Theorems II.2.19, we obtain

(n− 1)(TR(r, f) + TR(r, g)) ≤ 3(NR(r, f) +N(r, g))

(9A) +4(T (r, f) + T (r, g)) + 4(ZR(r, f ′) + ZR(r, g′)) +O(log(r)) (r ∈ I)

So, by Theorem II.1.9 we can derive: (n− 1)(TR(r, f) + TR(r, g))

≤ 3(NR(r, f) +NR(r, g)) + 4(TR(r, f) + TR(r, g)) + 4(ZR(r, f) + ZR(r, g))

+4(NR(r, f) +NR(r, g)) +O(log(r)) (r ∈ I)
(resp. r ∈ J .)

Therefore we obtain n ≤ 16 and if f, g belong to A∗(D), then n ≤ 9.
Next, by (8B), in the hypotheses of Theorem II.2.20, we obtain

(n− 1)(TR(r, f) + TR(r, g)) ≤ 3(NR(r, f) +NR(r, g)) + 4(TR(r, f) + TR(r, g))

+ZR(r, f ′) + ZR(r, g′) +O(log(r)) (r ∈ I) (resp. r ∈ J)

Hence by Theorem II.1.9 we obtain:
(n− 1)(TR(r, f) + TR(r, g)) ≤ 3(NR(r, f) +NR(r, g)) + 4(TR(r, f) + TR(r, g))
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+(ZR(r, f) + ZR(r, g)) + NR(r, f) + NR(r, g) + O(log(r)) (r ∈ I) (resp. r ∈ J)
Consequently, n ≤ 10 in Theorem II.2.20. Moreover, if f, g belong to A(IK) or to

A∗(D), then we obtain n ≤ 6. �
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