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New applications of the p -adic Nevanlinna

Theory

Alain Escassut and Ta Thi Hoai An

Abstract

Let IK be an algebraically closed field of characteristic 0 complete for
an ultrametric absolute value. Following results obtained in complex anal-
ysis, here we examine problems of uniqueness for meromorphic functions
having finitely many poles, sharing points or a pair of sets (C.M. or I.M.)
defined either in the whole field IK or in an open disk, or in the comple-
ment of an open disk. Following previous works in lC, we consider functions
fn(x)fm(ax + b), gn(x)gm(ax + b) with |a| = 1 and n 6= m, sharing a

rational function and we show that
f

g
is a n + m-th root of 1 whenever

n + m ≥ 5. Next, given a small function w, if n, m ∈ IN are such that
|n−m|∞ ≥ 5, then fn(x)fm(ax+b)−w has infinitely many zeros. Finally,
we examine branched values for meromorphic functions fn(x)fm(ax + b).

1 Introduction

Let IK be a complete ultrametric algebraically closed field of characteristic 0
whose ultrametric absolute value is denoted by | . |. The Nevanlinna theory,
well known for complex meromorphic functions [19], was examined over IK by Ha
Huy Khoai [9] and A. Boutabaa [3]. Next, in [4] a similar theory was made for
unbounded meromorphic functions in an “open” disk of IK, taking into account
Lazard’s problem. In [10], M. O. Hanyak and A. A. Kondratyuk constructed a
Nevanlinna theory for meromorphic functions in a set of the form lC\{a1, ..., am},
where the meromorphic functions can admit essential singularities at a1, ..., am
[10].

Here we recall the Nevanlinna theory for meromorphic functions in the com-
plement of an open disk. Next, we can apply this to obtain results on uniqueness
and branched values as it was done in similar problems [1], [2], [3], [3], [4]. We
then show new results on meromorphic functions sharing two sets and prop-
erties of meromorphic functions of the form fn(x)fm(ax + b) with regards to
branched values and Picard’s values.

02010 Mathematics Subject Classification: 12J25; 30D35; 30G06; 46S10
0Keywords: P-adic meromorphic functions, Nevanlinna’s Theory, Values distribution, small

functions, Picard values, Branched values.
0The second named author is supported by Vietnam’s National Foundation for Science and

Technology Development (NAFOSTED) under grant number 101.04-2017.320 and Vietnam
Institute Advanced Study in Mathematics



Survey on Bezout rings of p-adic analytic functions 2

All results of Paragraphs 1 to 7 were already published with all proofs in [2],
[4], [7], [8], [14]. Therefore we will only give the proofs of theorems presented in
Paragraph 8.

Notation: Given r > 0, a ∈ IK we denote by d(a, r) the disk {x ∈ IK | |x−a| ≤
r}, by d(a, r−) the disk {x ∈ IK | |x − a| < r}, and by C(a, r) the circle
{x ∈ IK | |x− a| = r}. Given r′′ > r′, we put ∆(0, r′, r′′) = d(0, r′′) \ d(0, r′−).

Henceforth, we fix R > 0, we denote by S the disk d(0, R−) and put D =
IK \ S.

Given a subset E of IK having infinitely many points, we denote by R(E) the
IK-algebra of rational functions h ∈ IK(x) having no pole in E. We then denote
by H(E) the IK-vector space of analytic elements on E, i.e., the completion of
R(E) with respect to the topology of uniform convergence on E. By classical
properties of analytic elements in [12], [7], given a circle C(a, r) and an element f

of H(C(a, r)), i.e., a Laurent series f(x) =
+∞∑
−∞

cn(x− a)n converging whenever

|x − a| = r, then |f(x)| is equal to sup
n∈ZZ

|cn|rn in all classes of C(a, r) except

maybe in finitely many. When a = 0, we put |f |(r) = sup
n∈ZZ

|cn|rn.

We denote by A(IK) the IK-algebra of entire functions in IK, by A(d(a,R−)

the IK-algebra of power series
∞∑
n=0

cn(x− a)n converging in all d(a,R−) and by

A(D) the IK-algebra of Laurent series
∞∑
−∞

cn(x− a)n converging in D. Similarly,

we denote by M(IK) the field of meromorphic functions in IK, i.e. the field
of fractions of A(IK), by M(d(a,R−)) the field of meromorphic functions in
d(a,R−) i.e. the field of fractions of A(d(a,R−)), and by M(D) the field of
meromorphic functions in D i.e. the field of fractions of A(D).

Next, we denote by Ab(d(a,R−)), the set of f ∈ A(d(a,R−)) that are
bounded in d(a,R−) and we put Au(d(a,R−)) = A(d(a,R−)) \ Ab(d(a,R−)).
We denote by Mb(d(a,R−)) the field of fractions of Ab(d(a,R−)) and put
Mu(d(a,R−)) =M(d(a,R−)) \Mb(d(a,R−)).

We denote by Az(D) the set of f ∈ A(D) admitting finitely many zeros in
D and we put A∗(D) = A(D) \ Az(D) and similarly, we denote by Mz(D) the
field of fraction of Az(D) and we put M∗(D) = M(D) \Mz(D). So, M∗(D)
is the set of meromorphic functions in D having at least infinitely many zeros
or infinitely many poles in D.

2 Nevanlinna Theory in the classical p-adic con-
text

Definition and notation: Let f ∈ M(d(0, R−)) (resp. f ∈ M(D)) and let
α ∈ d(a,R−), resp. α ∈ D). If f admits a zero of order q at α we set ωα(f) = q
and if f has no zero and no pole at α, we set ωα(f) = 0.

Let f =
h

l
∈ M(d(a,R−)), (resp. f ∈ M(D)). For each α ∈ IK (resp.

α ∈ d(a,R−), resp. α ∈ D) the number ωα(h)− ωα(l) does not depend on the
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functions h, l choosed to make f =
h

l
. Thus, we can generalize the notation by

setting ωα(f) = ωα(h)− ωα(l).
If ωα(f) is an integer q > 0, α is called a zero of f of order q. If ωα(f) is an

integer q < 0, α is called a pole of f of order −q. If ωα(f) ≥ 0, f is said to be
holomorphic at α.

Throughout the next paragraphs, we denote by I the interval [t,+∞[, by J
an interval of the form [t, R[ with t > 0. We denote by f a function that belongs
either to M(IK) or to M(S).

We have to introduce the counting function of zeros and poles of f , counting
or not multiplicity. Here we will choose a presentation that avoids assuming
that all functions we consider admit no zero and no pole at the origin.

Definitions: We denote by Z(r, f) the counting function of zeros of f in d(0, r)
in the following way.

Let (an), 1 ≤ n ≤ σ(r) be the finite sequence of zeros of f such that
0 < |an| ≤ r, of respective order sn.

We set Z(r, f) = max(ω0(f), 0) log r +
σ(r)∑
n=1

sn(log r − log |an|) and so, Z(r, f) is

called the counting function of zeros of f in d(0, r), counting multiplicity.
In order to define the counting function of zeros of f without multiplicity,

we put ω0(f) = 0 if ω0(f) ≤ 0 and ω0(f) = 1 if ω0(f) ≥ 1.

Now, set Z(r, f) = ω0(f) log r+
σ(r)∑
n=1

(log r − log |an|) and so, Z(r, f) is called

the counting function of zeros of f in d(0, r) ignoring multiplicity.
In the same way, considering the finite sequence (bn), 1 ≤ n ≤ τ(r) of poles

of f such that 0 < |bn| ≤ r, with respective multiplicity order tn, we put

N(r, f) = max(−ω0(f), 0) log r +
τ(r)∑
n=1

tn(log r − log |bn|) and then N(r, f) is

called the counting function of the poles of f , counting multiplicity.
Next, we put ω0(f) = 0 if ω0(f) ≥ 0 and ω0(f) = 1 if ω0(f) ≤ −1 and we

set N(r, f) = ω0(f) log r +
τ(r)∑
n=1

(log r − log |bn|) and then N(r, f) is called the

counting function of the poles of f , ignoring multiplicity.
Now, we can define the Nevanlinna function T (r, f) in I or J as T (r, f) =

max(Z(r, f), N(r, f)) and the function T (r, f) is called characteristic function
of f or Nevanlinna function of f .

Finally, if Y is a subset of IK we will denote by ZY (r, f ′) the counting
function of zeros of f ′, excluding those which are zeros of f − a for any a ∈ Y .

Remark: If we change the origin, the functions Z, N, T are not changed, up
to an additive constant.

Theorem 3.1: Let f ∈M(IK) (resp. f ∈M(d(0, R−))) have no zero and no
pole at 0. Then log(|f |(r)) = log(|f(0)|) + Z(r, f)−N(r, f).
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Theorem 3.2 (First Main Theorem) : Let f, g ∈ M(IK) (resp. f, g ∈
M(S)). Then Z(r, fg) ≤ Z(r, f) + Z(r, g), N(r, fg) ≤ N(r, f) +N(r, g), and
T (r, f + b) = T (r, f)+O(1), T (r, fg) ≤ T (r, f)+T (r, g), T (r, f +g) ≤ T (r, f)+

T (r, g) + O(1), T (r, cf) = T (r, f) ∀c ∈ IK∗, T (r,
1
f

) = T (r, f)), T (r,
f

g
) ≤

T (r, f)) + T (r, g). Let P (X) ∈ IK[X]. Then T (r, P (f)) = deg(P )T (r, f) +O(1)
and T (r, f ′P (f) ≥ T (r, P (f)).

Suppose now f, g ∈ A(IK) (resp. f, g ∈ A(S)). Then Z(r, fg) = Z(r, f) +
Z(r, g), T (r, f) = Z(r, f)) T (r, fg) = T (r, f) + T (r, g) +O(1) and
T (r, f + g) ≤ max(T (r, f), T (r, g)).

Moreover, if lim
r→+∞

T (r, f)− T (r, g) = +∞ then T (r, f + g) = T (r, f) when

r is big enough.

Theorem 3.3: Let f ∈ M(IK). Then f belongs to IK(x) if and only if
T (r, f) = O(log r).

Corollary 3.3.a: Let f ∈M∗(IK). Then f is transcendental over IK(x).

Theorem 3.4: Let f ∈ M(S). Then f belongs to Mb(S) if and only if
T (r, f) is bounded in [0, R[.

Corollary 3.4.a: Let f ∈Mu(S). Then f is transcendental over Mb(S).

Theorem 3.5: Let f ∈ M(IK) (resp. f ∈ M(S)). Then for all k ∈ IN∗,
we have N(r, f (k)) = N(r, f) + kN(r, f) and Z(r, f (k)) ≤ Z(r, f) + kN(r, f) −
k log(r) +O(1).

Theorem 3.6: Let f ∈ M(IK) (resp. f ∈ M(S)) and let a1, ..., aq ∈ IK be

distinct. Then (q − 1)T (r, f) ≤ max
1≤k≤q

( q∑
j=1,j 6=k

Z(r, f − aj)
)

+O(1).

Remark: The last Theorem does not hold in complex analysis. Indeed, let f
be a meromorphic function in lC omitting two values a and b, such as f(x) =
ex

ex − 1
. Then Z(r, f − a) + Z(r, f − b) = 0.

We can now state the Second Main Theorem.

Theorem 3.7: (Second Main Theorem) [3], [4], [7] Let α1, ..., αq ∈ IK,
with q ≥ 2, let Y = {α1, ..., αq} and let f ∈ M(IK) (resp. f ∈ Mu(S)). Then

(q − 1)T (r, f) ≤
q∑
j=1

Z(r, f − αj) + N(r, f) − ZY0 (r, f ′) − log r + O(1) ∀r ∈ I

(resp. ∀r ∈ J).
Moreover, if f belongs to f ∈ A(IK) (resp. f ∈ A(S)), then (q − 1)T (r, f)

≤
q∑
j=1

Z(r, f − αj)− ZY0 (r, f ′)− log(r) +O(1) ∀r ∈ I (resp. ∀r ∈ J).
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3 Nevanlinna Theory out of hole

Henceforth, we denote by L the interval [R,+∞[. According to classical prop-
erties of analytic elements on infraconnected sets and by implicitly using [7], it
is easy to have the following properties:
Proposition 4.1: Let f ∈ H(D) have no zero in D. Then f(x) is of the

form
q∑
−∞

anx
n with |aq|Rq > |an|Rn for all n < q.

Definition and notation: Let f ∈ H(D) have no zero in D, f(x) =
q∑
−∞

anx
n

with |aq|Rq > |an|Rn for all n < q and aq = 1. Then f will be called a Motzkin
factor associated to S and the integer q will be called the Motzkin index of f
and will be denoted by m(f, S) (see [2], [7], [14]). We put L = [R,+∞[.

Theorem 4.2: Let f ∈ M(D). We can write f in a unique way in the form
fSf0 with fS ∈ H(D) a Motzkin factor associated to S and f0 ∈M(IK), having
no zero and no pole in S.

Given f ∈ M(D), for r > R. If α1, ..., αm are the distinct zeros of f
in ∆(0, R, r), with respective multiplicity uj , 1 ≤ j ≤ m, then the counting
function of zeros ZR(r, f) of f between R and r will be denoted by

ZR(r, f) =
m∑
j=1

uj(log(r)− log(|αj |)). Similarly, if β1, ..., βn are the distinct poles

of f in ∆(0, R, r), with respective multiplicity vj , 1 ≤ j ≤ m, then the counting
function of poles NR(r, f) of f between R and r will be denoted by

NR(r, f) =
n∑
j=1

vj(log(r)− log(|βj |)).We put TR(r, f) = max
(
ZR(r, f), NR(r, f)

)
.

The counting function of zeros without counting multiplicity ZR(r, f) is de-

fined as: ZR(r, f) =
m∑
j=1

log(r)− log(|αj |), where α1, ..., αm are the distinct ze-

ros of f in ∆(0, R, r). Similarly, the counting function of poles without count-

ing multiplicity NR(r, f) is defined as: NR(r, f) =
n∑
j=1

log(r)− log(|βj |), where

β1, ..., βn are the distinct poles of f in ∆(0, R, r).
Finally, putting Y = {a1, ..., aq}, we denote by ZYR (r, f ′) the counting func-

tion of zeros of f ′ on points x where f(x) /∈ Y .

Theorem 4.3: Let f ∈M(D). Then, for all r ∈ L, log(|f |(r))− log(|f |(R))

= ZR(r, f)−NR(r, f) +m(f, S)(log r − logR).

Corollary 4.3.a Let f ∈ M(D). Then TR(r, f) is identically zero if and only
if f is a Motzkin factor. Let f, g ∈ A(D) satisfy log(|f |(r)) ≤ log(|g|(r)) for
all r ∈ L. Then ZR(r, f) ≤ ZR(r, g) + (m(g, S)−m(f, S))(log(r)− log(R)).

Theorem 4.4: Let f ∈ A(D). Then, ZR(r, f ′) ≤ ZR(r, f)− log(r) +O(1), (r ∈
L).
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We can now characterize the set M∗(D):

Theorem 4.5: Let f ∈M(D). The three following statements are equivalent:

i) lim
r→+∞

TR(r, f)
log(r)

= +∞ for r ∈ L,

ii)
TR(r, f)
log(r)

is unbounded,

iii) f belongs to M∗(D).

Operations on M(D) work almost like for meromorphic functions in the
whole field [3], [7].

Theorem 4.6: If f, g ∈ M(D). Then for every b ∈ IK and r ∈ L, we have
TR(r, fn) = nTR(r, f), TR(r, f.g) ≤ TR(r, f) + TR(r, g) +O(log(r)),

TR(r,
1
f

) = TR(r, f)), TR(r, f + g) ≤ TR(r, f) + TR(r, g) +O(log(r)),

TR(r, f+b) = TR(r, f)+O(log(r)), TR(r, h◦f) = TR(r, f)+O(log(r)), where
h is a Moebius function.

Moreover, if both f and g belong to A(D), then
TR(r, f + g) ≤ max(TR(r, f), TR(r, g)) + O(log(r)), TR(r, fg) = TR(r, f) +
TR(r, g). Particularly, if f ∈ A∗(D), then TR(r, f + b) = TR(r, f) +O(1).

Given a polynomial P (x) ∈ IK[x], then TR(r, P ◦ f) = deg(P )TR(r, f) +
O(log(r)).

Theorem 4.7: Every f ∈M∗(D) is transcendental over Mz(D).

Theorem 4.8: Let f ∈ M(D). Then, for r ∈ L, NR(r, f (k)) = NR(r, f) +
kNR(r, f) and ZR(r, f (k)) ≤ ZR(r, f) + kNR(r, f) +O(log(r)).

Like in the whole field, the Nevanlinna second Main Theorem is based on
the following theorem:

Theorem 4.9: Let f ∈ M(D) and let a1, ..., aq ∈ IK be distinct. Then

(q − 1)TR(r, f) ≤ max
1≤k≤q

( q∑
j=1,j 6=k

ZR(r, f − aj)
)

+O(log(r)).

Theorem 4.10: (Second Main Theorem) Let f ∈ M(D), let α1, ..., αq ∈
IK, with q ≥ 2 and let Y = {α1, ..., αq}. Then, for r ∈ L, (q − 1)TR(r, f)

≤
q∑
j=1

ZR(r, f − αj) +NR(r, f)− ZYR (r, f ′) +O(log(r)).

Particularly, if f ∈ A(D), then

(q − 1)TR(r, f) ≤
q∑
j=1

ZR(r, f − αj)− ZYR (r, f ′) +O(log(r)).

4 Immediate applications

Theorem 5.1: Let a1, a2 ∈ IK (with a1 6= a2 ) and let f, g ∈ A∗(IK) satisfy
f−1({ai}) = g−1({ai}) (i = 1, 2). Then f = g.
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Theorem 5.2: Let a1, a2, a3 ∈ IK (with ai 6= aj ∀i 6= j) and let f, g ∈
Au(d(0, R−)) (resp. f, g ∈ A∗(D)) satisfy f−1({ai}) = g−1({ai}) (i = 1, 2, 3).
Then f = g.

Theorem 5.3: Let a1, a2, a3, a4 ∈ IK (with ai 6= aj ∀i 6= j) and let f, g ∈
M∗(IK) satisfy f−1({ai}) = g−1({ai}) (i = 1, 2, 3, 4). Then f = g.

Theorem 5.4: Let a1, a2, a3, a4, a5 ∈ IK (with ai 6= aj ∀i 6= j) and let
f, g ∈ Mu(d(0, R−)) (resp. f, g ∈ M∗(D)) satisfy f−1({ai}) = g−1({ai})
(i = 1, 2, 3, 4, 5). Then f = g.

Theorem 5.5: Let Λ be a non-degenerate elliptic curve of equation
y2 = (x− a1)(x− a2)(x− a3).

There do not exist g, f ∈M(IK) such that g(t) = y, f(t) = x, t ∈ IK.
There do not exist g, f ∈ Au(d(0, R−)) such that g(t) = y, f(t) = x, t ∈

d(0, R−).
There do not exist g, f ∈ A∗(D) such that g(t) = y, f(t) = x, t ∈ D.

Theorem 5.6: Let Λ be a curve of equation yq = P (x), q ≥ 2, with P ∈ IK[x]
admitting n distinct zeros of order 1 with n ≥ 4. There do not exist g, f ∈
M(IK) such that g(t) = y, f(t) = x, t ∈ IK.

Theorem 5.7: Let Λ be a curve of equation yq = P (x), q ≥ 2, with P ∈ IK[x]
admitting n distinct zeros of order 1 with n ≥ 5. There do not exist g, f ∈
Mu(d(0, R−)) (resp. g, f ∈M∗(D)) such that g(t) = y, f(t) = x, t ∈ d(0, R−)
(resp. t ∈ D).

Another application concerns analytic functions:

Theorem 5.8: Let f, g ∈ M(d(0, R−)) (resp. f, g ∈ M(D)) satisfy gm +
fn = 1,with min(m,n) ≥ 3 and max(m,n) ≥ 4). Then f and g belong to
Mb(d(0, R−)) (resp. to Mz(D)). Moreover, if f, g ∈ A(d(0, R−) (resp. if
f, g ∈ A(D)) satisfy gm+fn = 1, with min(m,n) ≥ 2 and (m,n) 6= (2, 2), then
f and g belong to Ab(d(0, R−), (resp to Az(D)).

5 Small functions

Definitions: For each f ∈ M(IK), (resp. f ∈ M(S), resp. f ∈ M(D)), we
will denote by Mf (IK) (resp. Mf (S), Mf (D)) the set of functions h ∈M(IK)
(resp. h ∈ M(S), h ∈ M(D)) such that T (r, h) = o(T (r, f)), r ∈ I (resp.
T (r, h) = o(T (r, f)), r ∈ J , resp. TR(r, h) = o(TR(r, f))r ∈ L). Similarly,
if f ∈ A(IK) (resp. f ∈ A(S), resp. f ∈ A(D)) we will denote by Af (IK)
(resp. Af (S), resp. Af (D)) the set Mf (IK) ∩ A(IK),( resp. Mf (S) ∩ A(S),
resp.Mf (D) ∩ A(D)).

The elements of Mf (IK) (resp. Mf (S), resp. Mf (D)) are called small
meromorphic functions with respect to f . Similarly, if f ∈ A(IK) (resp. f ∈
A(S), resp. f ∈ A(D)) these functions are called small analytic functions with
respect to f .

A small function w with respect to a function f ∈M(IK) (resp. f ∈M(S),
resp. f ∈M(D)) will be called a quasi-exceptional small function for f if f −w
has finitely many zeros in D.
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Theorem 7.1: Let f ∈ M∗(IK) (resp. f ∈ Mu(S), resp. f ∈ M∗(D)).
Then f admits at most one quasi-exceptional small function. Moreover, if f
has finitely many poles, then f admits no quasi-exceptional small function.

Corollary 7.1.a: Let f ∈ A∗(IK) (resp. f ∈ Au(S), resp. f ∈ A∗(D)). Then
f has no quasi-exceptional small function.

The Second Main Theorem for Three Small Functions holds as well as in
complex analysis. Notice that this theorem was generalized to any finite set of
small functions by K. Yamanoi in complex analysis [16], through methods that
have no equivalent on a p-adic field.

Theorem 7.2: Let f ∈ M∗(IK), (resp. f ∈ Mu(S), resp. f ∈ M∗(D) and
let w1, w2, w3 ∈ Mf (IK) (resp. ∈ Mf (d(0, R−)), resp. ∈ Mf (D)) be pairwise
distinct. Then: T (r, f) ≤

∑3
j=1 Z(r, f − wj) + o(T (r, f))

(resp. T (r, f) ≤
∑3
j=1 Z(r, f−wj)+o(T (r, f)), resp. TR(r, f) ≤

∑3
j=1 ZR(r, f−

wj) + o(TR(r, f))).

Corollary 7.2.a: Let f ∈ M∗(IK) (resp. f ∈ Mu(S) resp. f ∈ M∗(D)) and
let w1, w2 ∈ Af (IK) (resp. w1, w2 ∈ Af (S) resp. w1, w2 ∈ Af (D)) be distinct.
Then T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) +N(r, f) + o(T (r, f)),
(resp. T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) + N(r, f) + o(TR(r, f)), resp.
TR(r, f) ≤ ZR(r, f − w1) + ZR(r, f − w2) +NR(r, f) + o(TR(r, f))).

Corollary 7.2.b: Let f ∈ A∗(IK) (resp. f ∈ Au(S), rtesp. f ∈ A∗(D)) and let
w1, w2 ∈ Af (S), resp. w1, w2 ∈ Af (D)) be distinct. Then

T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) + o(T (r, f)),
(resp. T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) + o(T (r, f)),
resp. TR(r, f) ≤ ZR(r, f − w1) + ZR(r, f − w2) + o(TR(r, f))).

Definitions: Let f ∈ M∗(IK) (resp. f ∈ Mu(d(0, R−)), resp. f ∈ M∗(D))
and let w ∈ Mf (IK) (resp. w ∈ Mf (d(0, R−)), resp. w ∈ Mf (D)). Then
w is called a perfectly branched function with respect to f if all zeros of f − w
are multiple except maybe finitely many [7] and w is called a totally branched
function with respect to f if all zeros of f−w are multiple, without exception [5].
Particularly, the definition applies to constants. The following Theorem 7.3, 7.4,
7.5 are proved in [7] concerning the sets f ∈M∗(IK) (resp. f ∈Mu(d(0, R−)),
f ∈ A∗(IK) (resp. f ∈ Au(d(0, R−)). The proofs concerningM∗(D) and A∗(D)
are similar to those concerning M∗(IK) and A∗(IK) respectively.

Theorem 7.3: Let f ∈M∗(IK) (resp. f ∈Mu(d(0, R−)), resp. f ∈M∗(D)).
Then f admits at most four perfectly branched values.

Theorem 7.4: Let f ∈ M∗(IK) (resp. f ∈ M∗(D)) having finitely many
poles. Then f admits at most one perfectly branched rational function.

Corollary 7.4.a: Let f ∈ A∗(IK) (resp. f ∈ A∗(D)). Then f admits at most
one perfectly branched rational function.

Theorem 7.5: Let f ∈ Mu(d(0, R−)), having finitely many poles. Then f
admits at most two perfectly branched rational functions.

Corollary 7.5.a: Let f ∈ Au(d(0, R−)). Then f admits at most two perfectly
branched rational functions.
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6 New applications of the Nevanlinna Theory

Definitions: Recall that two functions f and g meromorphic in a set B are
said to share a set X ⊂ IK, counting multiplicity, or C.M. in brief, if for each
b ∈ X, when f(x)− b has a zero of order q at a point a ∈ B, then there exists
c ∈ X such that g(x)−c also has a zero of order q at a. And the functions f and
g are said to share X ignoring multiplicity or I.M. in brief, if f−1(X) = g−1(X).

In the same way, two functions f and g meromorphic in a set B are said
to share a nonidenticaly zero function h from B to IK, counting multiplicity, or

C.M. in brief, if
f

h
and

g

h
share 1 C.M., i.e. if f − h and g − h have the same

zeros with the same multiplicity.

By Theorem 5.3, two meromorphic functions in IK sharing 4 points I.M. are
identical , by Theorem 5.4 two meromorphic functions in S or in D sharing 5
points I.M. are identical, by Theorem 5.1, two entire functions sharing 2 points
I.M. are identical and by Theorem 5.2 two meromorphic functions in S or in D
sharing 3 points I.M. are identical. Here we will first examine two meromorphic
functions sharing a few points C.M.

Theorem 8.1: Let f, g ∈ Mu(S) (resp. let f, g ∈ M∗(D)) share C.M. 4
points aj ∈ IK ∪ {∞}, j = 1, 2, 3, 4. Then f ≡ g.

Theorem 8.2: Let f, g ∈ Mu(S) (resp. let f, g ∈ M∗(D)) have finitely
many poles and share C.M. 3 points aj ∈ IK ∪ {∞}, j = 1, 2, 3. Then f ≡ g.

Corollary 8.2.a: Let f, g ∈ Au(S) (resp. f, g ∈ A∗(D)) share C.M. 3 points
aj ∈ IK, j = 1, 2, 3. Then f ≡ g.

Theorem 8.3 is not immediate and has a similar version in complex analy-
sis for meromorphic functions provided with a finite growth order that is not
integral. Here, we don’t need any hypothesis on the growth order.

Theorem 8.3: Let f, g ∈ M∗(IK) share C.M. 3 points aj ∈ IK ∪ {∞}, j =
1, 2, 3. Then f ≡ g.

In the particular case of functions f, g ∈Mu(S) or functions f, g ∈M∗(D))
having finitely many poles and sharing poles C.M., we can add this theorem:

Theorem 8.4: Let f, g ∈ Mu(S), (resp. let f, g ∈ M∗(D)) have finitely
many poles in S (resp. in D) and share C.M. two values a, b and poles. Then
f ≡ g.

Our main theorems are Theorems 8.5 and 8.6 that follow the same kind of
reasoning as in [6]. We denote by Y1 = {α1, ..., αk} and Y2 = {β1, β2} the two
sets satisfying

(H)
( k∏
j=1

(β1 − αj)
)2

6=
( k∏
j=1

(β2 − αj)
)2

.

Theorem 8.5: Let f, g ∈ M∗(IK) (resp. let f, g ∈ Mu(S), resp. let
f, g ∈ M∗(D)) have finitely many poles in IK (resp. in S, resp. in D) and
share Y1 C.M. and Y2 I.M. Then f ≡ g.
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Corollary 8.5.a: Let f, g ∈ M∗(IK) (resp. let f, g ∈ Mu(S), resp. let
f, g ∈M∗(D)) have finitely many poles in IK (resp. in S, resp in D) and share
a value α C.M. and Y2 I.M. If (α− β1)2 6= (α− β2)2, then f ≡ g.

Corollary 8.5.b: Let f, g ∈ A∗(IK) (resp. let f, g ∈ Au(S), resp. let
f, g ∈ A∗(D)) and share Y1 C.M. and Y2 I.M. Then f ≡ g.

Corollary 8.5.c: Let f, g ∈ A∗(IK) (resp. let f, g ∈ Au(S), resp. let
f, g ∈ A∗(D)) and share a value α C.M. and Y2 I.M. If (α− β1)2 6= (α− β2)2,
then f ≡ g.

Theorem 8.6: Let f, g ∈ M∗(IK) (resp. let f, g ∈ Mu(S), resp. let
f, g ∈ M∗(D)) have finitely many poles in IK (resp. in S, resp. in D) and
share Y1 I.M. and Y2 C.M. Then f ≡ g.

Corollary 8.6.a: Let f, g ∈ M∗(IK) (resp. let f, g ∈ Mu(S), resp. let
f, g ∈ M∗(D)) have finitely many poles in IK (resp. in S, resp. in D) and
share a value α I.M. and Y2 C.M. If (α− β1)2 6= (α− β2)2, then f ≡ g.

Corollary 8.6.b: Let f, g ∈ A∗(IK) (resp. let f, g ∈ Au(S), resp. let
f, g ∈ A∗(D)) and share Y1 I.M. and Y2 C.M. Then f ≡ g.

Corollary 8.6.c: Let f, g ∈ A∗(IK) (resp. let f, g ∈ Au(S), resp. let
f, g ∈ A∗(D)) and share a value α I.M. and Y2 C.M. If (α− β1)2 6= (α− β2)2,
then f ≡ g.

It is known that if two functions f, g ∈ A(IK) share separately two values
a, b ∈ IK C.M., then f ≡ g [7] (Theorem 41.1). However, here the hypothesis
f, g share Y1 and share Y2 cannot be compared: for example, concerning Y2, f
and g are not supposed to share β1 or β2 separately. The same remark applies
to meromorphic functions having finitely many poles.

Results of [11] and [13] showed the interest of complex functions of the form
f(x)f(x+b). Similar studies were made in [11] and [13] in a p-adic field. Here we
will generalize that kind of study on the field IK. In [13], it is proven that if two
complex entire functions f and g are such that f(x)nf(x+ c) and g(x)ng(x+ c)
share 1 C.M. with n ≥ 6, then either fg is a constant t1 such that tn+1

1 = 1,

or
f

g
is a constant t2 such that tn+1

2 = 1. Here, on the field IK, we can obtain

better results.
On the other hand, in [11], we can find similar results of uniqueness for

meromorphic functions on a p-adic field involving derivatives, sharing 1 C.M.
or I.M., also involving derivatives. Here we will examine functions of the form
f(x)n(f(x+ c))m, g(x)n(g(x+ c))m sharing a rational function and we will look
for branched values and quasi-exceptional values of such functions.

Notation: We denote by IN∗ the set of strictly positive integers. On ZZ, we
denote by | . |∞ the Archimedean absolute value.

Theorem 8.7: Let a ∈ C(0, 1), let b ∈ IK and let f, g ∈M∗(IK) have finitely
many poles and take m, n IN∗ with m 6= n. If fn(x)fm(ax+b) and gn(x)gm(ax+

b) share C.M. a rational function Q ∈ IK(x), Q 6≡ 0 and if n+m ≥ 5, then
f

g
is
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a constant t such that tn+m = 1. Moreover, if f, g ∈ A∗(IK), if fn(x)fm(ax+b)

and gn(x)gm(ax+ b) share C.M. a constant l 6= 0 and if n+m ≥ 4, then
f

g
is

a constant t such that tn+m = 1.

Theorem 8.8: Let a ∈ C(0, 1) and let b ∈ S (resp. let b ∈ IK) and let
f, g ∈Mu(S) (resp. let f, g ∈M∗(D)) have finitely many poles in S (resp. in
D) and take n, m ∈ IN∗ with n 6= m. If fn(x)fm(ax+ b) and gn(x)gm(ax+ b)
share C.M. a function θ ∈ M(S) (resp. a function θ ∈ M(D)) having finitely

many zeros and poles in S (resp. in D), if n ≥ 5, then
f

g
is a constant t such

that tn+m = 1.

In [15] it was shown that given a complex entire function f and b ∈ lC \ {0},
a function of the form fn(x)f(x+ b)− c (with c 6= 0) has infinitely many zeros
in lC provided n ≥ 3. On the field IK, such a result is trivial since an entire
functions and even a meromorphic function with finitely many poles (which
is not a rational function) takes every value infinitely many times. But we
can ask the question regarding in general functions f ∈ M∗(IK), f ∈ Mu(S),
f ∈M∗(D).

Theorem 8.9: Let f ∈ M∗(IK) (resp. f ∈ Mu(S), resp. f ∈ M∗(D)), let
a ∈ C(0, 1), let b ∈ IK (resp. b ∈ S, resp. b ∈ IK) and let w ∈ M(IK) (resp.
w ∈ M(S), resp. w ∈ M(D)) be a non identically zero small function with
respect to f . If n, m ∈ IN are such that |n−m|∞ ≥ 5, then fn(x)fm(ax+b)−w
has infinitely many zeros in IK (resp. in S, resp. in D).

Corollary 8.9.a: Let f ∈ M∗(IK) (resp. f ∈ Mu(S), resp. f ∈ M∗(D)), let
a ∈ C(0, 1), let b ∈ IK (resp. b ∈ S, resp. b ∈ IK). If n, m ∈ IN are such that
|n−m|∞ ≥ 5, then fn(x)fm(ax+ b) takes every nonzero value infinitely many
times in IK (resp. in S, resp. in D).

Remarks: 1) Of course, the hypothesis w 6= 0 must not be excluded. Indeed,

let h ∈ A∗(IK) and let f(x) =
1

h(x)
. Then a function of the form fn(x)f(ax+b)

has no zero in IK.

2) On the other hand, it is known and easily seen that if a = 1 and b = 0,
a function fn − w has infinitely many zeros for every n ≥ 3 and that f2 takes
every nonzero value c infinitely many times because given a square root l of c,
then f2 − c = (f − l)(f + l) and at least one of the two values l and −l is taken
infinitely many times. We can ask whether a meromorphic function of the form
f2(x)− w always has infinitely many zeros when w is not a constant.

3) Concerning Theorem 8.9, it is easily proven that if f is a meromorphic
function with finitely many poles and w a small function, then f−w has infinitely
many zeros. So it is useless here to add a corollary concerning fn(x)fm(ax +
b)− w when f has finitely many poles.

Theorem 8.10: Let f ∈ M∗(IK) (resp. f ∈ Mu(S), resp. f ∈ M∗(D)),
let a ∈ C(0, 1), let b ∈ IK (resp. b ∈ S, resp. b ∈ IK) and let n, m ∈
IN∗. If 3|n − m|∞ > 2(n + m) + 4, then fn(x)fm(ax + b) does not admit 4
distinct perfectly branched values. Moreover, if 4|n−m|∞ > 3(n+m) + 4, then
fn(x)fm(ax+ b) does not admit 3 distinct perfectly branched values.
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Further, if f belongs to M∗(IK) and if 3|n − m|∞ ≥ 2(n + m + 1), then
fn(x)fm(ax + b) does not admit 4 distinct totally branched values; moreover,
if 4|n −m|∞ ≥ 3(n + m) + 4, then fn(x)fm(ax + b) does not admit 3 distinct
totally branched values.

7 Tools and Lemmas

In the proofs of our main theorems, we will use the following lemmas:

Lemma 1: Let P (x)IK[x] have all its zeros of order 1. Let f ∈M∗(IK) (resp.
let f ∈ Mu(S), resp. let f ∈ M∗(D)) and suppose that f − b admits a zero of
order q at a point u ∈ IK (resp. at a point u ∈ S, resp. at a point u ∈ D). Then
P (f)− P (b) admits u as a zero of order q.

Lemmas 2, 3 and 4 are well known [7], Lemma 32.3, Corollary 32.6.

Lemma 2: Let f ∈ M∗(IK) have finitely many poles. Then for every Q ∈
IK(x), f −Q has inifinitely many zeros.

Lemma 3: Let f ∈M∗(IK). There exist φ and ψ ∈ A(IK) having no common

zero, such that f =
φ

ψ
. Moreover, if f has no zero and no pole then f is a

constant.

Lemma 4 is a consequence of Theorem 40.10 and Theorem 43.1 in [7]:

Lemma 4: Let w ∈ M(S) have finitely many zeros and poles in S. Then w
belongs to Mb(S). Moreover, given f ∈ Mu(S) having finitely many poles in
S, then f − w belongs to Mu(S) and has infinitely many zeros.

Lemma 5: Let f(x) ∈ A(D). Then f belongs to Az(D) if and only if it

is of the form
q∑
−∞

anx
n with q ∈ ZZ and lim

n→−∞
|an|Rn = 0. Moreover, given

f ∈ M∗(D) having finitely many poles in D and w ∈ Mz(D), then f − w has
infinitely many zeros.

Lemma 6 is immediate :

Lemma 6: Let u ∈ C(0, 1) and c ∈ IK (resp. c ∈ S, resp. c ∈ IK) and let
f ∈M(IK) (resp. f ∈M(S), resp. f ∈M(D)). Then T (r, f) = T (r, f(ux+c)),
Z(r, f) = Z(r, f(ux + c)), N(r, f) = N(r, f(ux + c)) whenever r ≥ |c| (resp.
T (r, f) = T (r, f(ux+ c)), Z(r, f) = Z(r, f(ux+ c)), N(r, f) = N(r, f(ux+ c))
whenever r ≥ |c|, resp. TR(r, f) = TR(r, f(ux+ c)) ZR(r, f) = ZR(r, f(ux+ c)),
NR(r, f) = NR(r, f(ux+ c)) whenever r ≥ |c|).

Notation: Let f, g ∈ M(IK) (resp. let f, g ∈ M(S), resp. let f, g ∈
M(D)). We set M(r, f) = max((Z(r, f), N(r, f)) − N(r, f) (resp. M(r, f) =
max((Z(r, f), N(r, f)) − N(r, f), resp. MR(r, f) = max((ZR(r, f), NR(r, f)) −
NR(r, f)).

Lemma 7 is also easily proven by the property: M(r, f) = max(log(|f |(r)), 0),
on M(IK) and on M(S) and MR(r, f) = max(log(|f |(r)), 0) on M(D).
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Lemma 7: Let f, g ∈ M(IK) (resp. let f, g ∈ M(S)). Then M(r, fg) ≤

M(r, f) +M(r, g), M(r, f + g) ≤M(r, f) +M(r, g), M(r,
f ′

f
) ≤ O(1).

Let f, g ∈ M(D). Then MR(r, fg) ≤ MR(r, f) + MR(r, g), MR(r, f + g) ≤

MR(r, f) +MR(r, g), MR(r,
f ′

f
) ≤ O(1).

Lemmas 8 and 9 are easily proven:
Lemma 8: Let f, g ∈ M∗(IK) (resp. let f, g ∈ Mu(S), resp. let f, g ∈
M∗(D)) have finitely many poles in IK (resp. in S, resp. in D). Then T (r, λf+
µg) ≤ max(T (r, f), T (r, g))+O(1) (resp. T (r, λf+µg) ≤ max(T (r, f), T (r, g))+
O(1) , resp. TR(r, λf + µg) ≤ max(TR(r, f), TR(r, g)) +O(log(r))).

Lemma 9: Let f, g ∈ M∗(IK) (resp. let f, g ∈ Mu(S), resp. let f, g ∈
M∗(D)) have finitely many poles in IK (resp. in S, resp. in D). Then

Z(r,
1
f
− 1
g

) ≤ Z(r, f − g) +O(log(r))), (resp. Z(r,
1
f
− 1
g

) ≤ Z(r, f − g) +O(1),

resp. ZR(r,
1
f
− 1
g

) ≤ ZR(r, f − g) +O(log(r)))).

8 Proof of Theorems

Proofs of Theorems 8.1 and 8.2: We will first prove Theorems 8.1 when
f and g belong to Mu(S). So, let f, g ∈ Mu(S) sharing C.M. q points aj ∈
IK, 1 ≤ j ≤ q. By Theorem 3.7, we have

(q − 1)T (r, f) ≤
q∑
j=1

Z(r, f − aj) +O(1) ≤ Z(r, f − g) +O(1))

(1) ≤ T (r, f) + T (r, g) +O(1)

and similarly

(q − 1)T (r, g) ≤
q∑
j=1

Z(r, g − aj) +O(1) ≤ Z(r, f − g) +O(1)

(2) ≤ T (r, f) + T (r, g) +O(1)

hence

(3) (q − 1)(T (r, f) + T (r, g)) ≤ 2(T (r, f) + T (r, g)) +O(1).

hence (3) implies q ≤ 3.
Suppose now that f and g have finitely many poles. If f and g belong to

Mu(S), by Lemma 8, we have Z(r, f − g) ≤ max(T (r, f), T (r, g)), hence by (1)
and (2), now we obtain

(q − 1) max(T (r, f), T (r, g)) ≤ max(T (r, f), T (r, g)) +O(1)

and hence q ≤ 2. Consequently, since q = 3, we have f ≡ g in Theorem 8.2.
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If f, g ∈M∗(D), the same reasoning holds.

Proof of Theorem 8.3: Let f, g ∈ M∗(IK) be distinct and share three
points aj ∈ IK, j = 1, 2, 3 C.M. Without loss of generality, we can assume that
a1a2 6= 0. Suppose first that f(x) 6= a3 ∀x ∈ IK, hence g(x) 6= a3 ∀x ∈ IK. Let

F =
1
f
, G =

1
g

and let bj =
1
aj

j = 1, 2. Then F and G belong to to A(IK)

and share b1 and b2 C.M and hence, by Theorem 5.1 we have F ≡ G, hence
f ≡ g.

Thus, henceforth, we can assume that f and g take each value aj , j = 1, 2, 3
at least one time, therefore

(1) Z(r, f − aj) ≥ log(r) +O(1), r ∈]0,+∞[, j = 1, 2, 3.

Now we notice that

(2)
3∑
j=1

Z(r, f − aj) ≤ Z(r, f − g) ≤ T (r, f) + T (r, g).

Suppose first that lim
r→+∞

Z(r, f − aj)
T (r, f)

= 1 ∀j = 1, 2, 3. Then there exists s > 0

such that
Z(r, f − aj)
T (r, f)

≥ 3
4
∀j = 1, 2, 3, ∀r > s.

Then for every r > s, we have

9
4
T (r, f) ≤

3∑
j=1

Z(r, f − aj) ≤ Z(r, f − g) +O(1) ≤ T (r, f) + T (r, g) +O(1)

and similarly

9
4
T (r, g) ≤

3∑
j=1

Z(r, g − aj) ≤ Z(r, f − g) +O(1) ≤ T (r, f) + T (r, g) +O(1).

Therefore, we obtain
9
4

(T (r, f) + T (r, g)) ≤ 2(T (r, f) + T (r, g)) +O(1), a con-

tradiction showing that lim inf
r→+∞

Z(r, f − aj)
T (r, f)

< 1 holds for at least one index.

Consequently, we are now led to assume there exists ε > 0 such that for a
certain k, there exists a sequence of intervals ([sn, tn])n∈IN such that sn < tn <

sn+1, lim
n→+∞

sn = +∞ and
Z(r, f − ak)
T (r, f)

≤ 1− ε ∀r ∈ [sn, tn], ∀n ∈ IN. With-

out loss of generality, we can suppose k = 3 and set M =
+∞⋃
n=1

[sn, tn]. So, when

r belongs to M , we have

(3) Z(r, f − a3) ≤ (1− ε)T (r, f) ∀r ∈M

By Lemma 3 we can write f in the form
φ

ψ
with φ, ψ ∈ A(IK) having no

common zero. Then N(r, f − a3) = N(r, f) = Z(r, ψ), hence by (3), we have

T (r, f − a3) = T (r, f) = N(r, f) ∀r ∈M.
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Now Z(r, f − aj) = Z(r, φ − ajψ), j = 1, 2, 3, N(r, f) = Z(r, ψ). Therefore
by (3), we have

(4) Z(r, φ− a3ψ) ≤ (1− ε)Z(r, ψ).

By (4) and by Theorem 3.1, we can derive log(|φ− a3ψ|(r)) ≤ (1− ε) log(|(a3−
a1)ψ|(r)) + O(1) and hence log(|φ − a3ψ|(r)) < log(|(a3 − a1)ψ|(r)) when r
is big enough in M . So, there exists u ≥ s such that log(|φ − a3ψ|(r)) <
log(|(a3− a1)ψ|(r)) ∀r ∈M, r ≥ u. Consequently, log(|φ− a1ψ|(r)) = log |(a3−
a1)ψ|(r) ∀r ∈ J, r ≥ u and hence Z(r, f − a1) ≥ Z(r, ψ) +O(1) ∀r ∈M, r ≥ u,
therefore

(5) Z(r, f − a1) = T (r, f) +O(1) ∀r ∈M, r ≥ u.

Similarly, we have

(6) Z(r, f − a2) = T (r, f) +O(1) ∀r ∈M, r ≥ u.

Consequently, by (5) and (6), we obtain Z(r, f −a1) +Z(r, f −a2) ≥ 2T (r, f) +
O(1) r ∈ J, r ≥ u and hence

∑3
j=1 Z(r, f − aj) ≥ 2T (r, f) + Z(r, f − a3) +

O(1) r ∈M, r ≥ u, therefore by (2)

2T (r, f) + Z(r, f − a3) ≤ T (r, f) + T (r, g) +O(1) r ∈M, r ≥ u

and similarly

2T (r, g) + Z(r, g − a3) ≤ T (r, f) + T (r, g) +O(1) r ∈M, r ≥ u.

Thus,

2(T (r, f)+T (r, g))+Z(r, f−a3)+Z(r, g−a3) ≤ 2(T (r, f)+T (r, g))+O(1), r ∈M, r ≥ u.

But then, by (1) we have a contradiction that finishes the proof.

Proof of Theorem 8.4: Without loss of generality, we can assume ab 6= 0.

Let F =
1
f
, G =

1
g

and let a′ =
1
a
, b′ =

1
b

. Then F and G share 0, a, b C.M.

Suppose that F and G are not identical. By Theorems 3.7 and 4.10, we have
2T (r, F ) ≤ Z(r, F ) + Z(r, F − a′) + Z(r, F − b′) + O(1) ≤ Z(r, F − G) + O(1)
(resp. 2TR(r, F ) ≤ ZR(r, F ) + ZR(r, F − a′) + ZR(r, F − b′) + O(log(r)) ≤
ZR(r, F − G) + O(log(r))) hence by Lemma 9, 2T (r, F ) ≤ T (r, f − g) + O(1)
(resp. 2TR(r, F ) ≤ TR(f−g)) and similarly, 2T (r,G) ≤ T (r, f−g)+O(1), (resp.
2TR(r,G) ≤ TR(r, f − g) + O(log(r))). Consequently, by Theorem 3.2 and 4.6
and Lemma 8, we have 2 max(T (r, f), T (r, g) ≤ max(T (r, f), T (r, g)+O(1) (resp.
2 max(TR(r, f), TR(r, g) ≤ max(TR(r, f), TR(r, g) + O(log(r))), a contradiction
since f, g belong to Mu(S), (resp. to M∗(D)). Consequently, F ≡ G, and
hence f ≡ g.

Proof of Theorem 8.5: Let H ∈ IK(x) (resp. let H ∈ Mb(S), resp. H ∈

Mz(D)) be such that the function V (x) =
H(x)

∏k
j=1(f(x)− αj)∏k

j=1(g(x)− αj)
have no pole
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and no zero in IK (resp. in S, resp. in D). Then by Lemma 3, V is a constant
in IK (resp. V belongs to Mb(S), resp. V belongs to Mz(D)).

On the other hand, since f and g have finitely many poles, in all hypotheses,
we note that N(r, f) = O(log(r)), N(r, g) = O(log(r)). Since f and g share S2

I.M., we can derive that each zero of (f(x) − β1)(f(x) − β2) in IK (resp. in S,
resp. in D) is a zero of one of the following three functions:

H−1V − 1, H−1V −
k∏
j=1

β1 − αj
β2 − αj

, H−1V −
k∏
j=1

β2 − αj
β1 − αj

.

We can then derive that one of the following three cases a), b), c) must occur:

a)
k∏
j=1

f(x)− αj
g(x)− αj

≡ 1

b)
k∏
j=1

f(x)− αj
g(x)− αj

≡
k∏
j=1

β1 − αj
β2 − αj

c)
k∏
j=1

f(x)− αj
g(x)− αj

≡
k∏
j=1

β2 − αj
β1 − αj

.

Indeed, suppose that none of the cases a), b), c) occurs. Then the following
three inequalities are satisfied:

(i)
k∏
j=1

(
f(x)− αj
g(x)− αj

) 6≡ 1

(ii)
k∏
j=1

(
f(x)− αj
g(x)− αj

) 6≡
k∏
j=1

(
β1 − αj
β2 − αj

)

(iii)
k∏
j=1

(
f(x)− αj
g(x)− αj

) 6≡
k∏
j=1

(
β2 − αj
β1 − αj

).

Suppose first, for simplicity, that f and g belong to M∗(IK). Then, by
Theorem 3.7, we have:

T (r, f) ≤ Z(r, f − β1) + Z(r, f − β2) +N(r, f) +O(log(r))

≤ Z(r,H−1V−1)+Z
(
r,H−1V−

k∏
j=1

(
β1 − αj
β2 − αj

)
)

+Z
(
r,H−1V−

k∏
j=1

(
β2 − αj
β1 − αj

)
)

+O(log(r))

≤ 3T (r,H−1V ) +O(log(r)) ≤ O(log(r))

Consequently, T (r, f) = O(log(r)) i.e. f ∈ IK(x), a contradiction. Similarly,
if f and g belong to Mu(S) or to M∗(D), following the same calculation, we
obtain f ∈ Mb(S), f ∈ Mz(D), the same contradiction. Therefore one of the
cases a), b), c) must occur. We will examine them successively.
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Suppose a) is satisfied. Since f and g share S2 I.M., thanks to Hypothsis
(H), we can see that f(x) = β1 if and only if g(x) = β1 and f(x) = β2 if and
only if g(x) = β2. Consequently, f and g share both β1 and β2 I.M. Then, by
Lemma 1 and Relation a), this implies that f and g share β1 C.M. and that
they share β2 C.M. Moreover, relation a) shows that each pole of f is a pole of
f of same order. Then by Theorem 8.4 we have f ≡ g.

Suppose case b) is satisfied. Since f and g share S2 I.M., thanks to Hypothsis
(H), we can check again that f(x) = β1 if and only if g(x) = β2 and similarly,
f(x) = β2 if and only if g(x) = β1. Next, by Lemmas 2, 4, 5, f takes every value
infinitely many times. Hence there exists u ∈ IK (resp. u ∈ S, resp. u ∈ D)
such that f(u) = β1 and hence g(u) = β2. But then, by relation b), we have

( k∏
j=1

(β1 − αj)
)2

=
( k∏
j=1

(β2 − αj)
)2

a contradiction.
Suppose finally that case c) occurs: this is exactly symmetric to case b) by

permuting β1 and β2. Consequently, case a) must occur and therefore f = g.
That finishes the proof of Theorem 8.5.

Proof of Theorem 8.6. Let F (x) =
k∏
j=1

(f(x)− αj) andG(x) =
k∏
j=1

(g(x)− αj),

let γ1 =
k∏
j=1

(β1 − αj) and γ2 =
k∏
j=1

(β2 − αj). By hypotheses of Theorem 8.6, f

and g share the set {α1, ..., αk} I.M. and the set {β1, β2} C.M. hence F and G
share 0 I.M. and share the set {γ1, γ2} C.M. Moreover, by hypothesis, we have
γ1γ2 6= 0 and γ2

1 6= γ2
2 . We notice that γ1 + γ2 6= 0, hence when F has a zero,

since G also has a zero, F (x) +G(x) cannot be equal to γ1 + γ2. Consequently,

(1) F (x) +G(x) 6≡ γ1 + γ2.

We will show that F and G share 0 C.M. The proof is obviously trivial when
F ≡ G and the case when F or G is constant is excluded by the hypotheses
f ∈ M∗(IK) and g ∈ M∗(IK) (resp. f ∈ Mu(S) and g ∈ Mu(S), resp.
f ∈ M∗(D) and g ∈ M∗(D)). Thus, in the following, we assume that neither
F nor G are constant and that F 6≡ G.

Since f and g have finitely many poles in IK (resp. in S, resp. in D),
and since F and G share {γ1, γ2} C.M., it is easily seen that the function
(F (x)− γ1)(F (x)− γ2)
(G(x)− γ1)(G(x)− γ2)

has finitely many zeros and poles which only come from

the poles of f and g. Consequently, there exists a function E ∈ IK(x) such that

the function W (x) =
E(x)(F (x)− γ1)(F (x)− γ2)

(G(x)− γ1)(G(x)− γ2)
have no zero and no pole in

IK (resp. in S, resp. in D). Consequently, W belongs to IK(x) (resp. toMb(S),
resp to Mz(D)).

We must now introduce three auxiliary functions. Put M(x) = (F (x) −
G(x))(F (x) +G(x)− γ1 − γ2) and
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φ1(x) = M(x)
( γ1(γ1 − γ2)F ′(x)
F (x)(F (x)− γ1)(F (x)− γ2)

− γ2(γ2 − γ1)G′(x)
G(x)(G(x)− γ1)(G(x)− γ2)

)
,

φ2(x) = M(x)
( γ2(γ2 − γ1)F ′(x)
F (x)(F (x)− γ1)(F (x)− γ2)

− γ1(γ1 − γ2)G′(x)
G(x)(G(x)− γ1)(G(x)− γ2)

)
φ3(x) = M(x)

( F ′(x)
F (x)(F (x)− γ1)(F (x)− γ2)

− G′(x)
G(x)(G(x)− γ1)(G(x)− γ2)

)
.

We will first prove that φ1 and φ2 are not identically zero. Suppose for simplicity
that f and g belong to M(IK).

Indeed, suppose that φ1 ≡ 0. By (1) and due to the fact that F 6≡ G, we
have

γ1(γ1 − γ2)F ′(x)
F (x)(F (x)− γ1)(F (x)− γ2)

≡ γ2(γ2 − γ1)G′(x)
G(x)(G(x)− γ1)(G(x)− γ2)

.

Let us remark that, by Lemma 2, F takes every value infinitely many times
because F has finitely many poles. Let u be a zero of F − γ1 of multiplicity
j. Since F and G share {γ1, γ2} C.M., either u is a zero of G − γ1 of same
multiplicity, or it is a zero of G− γ2 of same multiplicity.

Suppose first that u is a zero of G − γ1. By developing at u, we have
F (x) − γ1 = aj(x − u)j + aj+1(x − u)j+1ϕ(x) and G(x) − γ1 = bj(x − u)j +
bj+1(x− u)j+1ψ(x) with ϕ, ψ ∈M(IK), having no pole at u.

Then by computing we can check that the residue of
γ1(γ1 − γ2)F ′

F (x)(F (x)− γ1)(F (x)− γ2

at u is j because
γ1(γ1 − γ2)

F (u)(F (u)− γ2)
= 1 and this of

γ2(γ2 − γ1)G′

G(x)(G(x)− γ1)(G(x)− γ2)

is−jγ2

γ1
because

γ2(γ2 − γ1)
G(u)(G(u)− γ2)

= −γ2

γ1
. So, we have

γ2

γ1
= −1, hence γ2

1 = γ2
2 ,

a contradiction to the hypothesis. Therefore, u must be a zero of G−γ2 of mul-
tiplicity j. So, by developing F and G at u we obtain again expressions of the
form
F (x) − γ1 = aj(x − u)j + aj+1(x − u)j+1ϕ(x) and G(x) − γ2 = bj(x − u)j +
bj+1(x − u)j+1ψ(x) with ϕ, ψ ∈ M(IK) having no pole at u, hence we can

check that the residue at u of
γ1(γ1 − γ2)F ′

F (x)(F (x)− γ1)(F (x)− γ2)
is −jγ1

γ2
and this of

γ2(γ2 − γ1)G′

G(x)(G(x)− γ1)(G(x)− γ2)
is −jγ2

γ1
, hence we obtain again γ2

1 = γ2
2 , the same

contradiction. This finishes proving that φ1 6≡ 0. And similarly, we can see that
φ2 6≡ 0.

We will now prove that φ3 ≡ 0. Indeed, suppose that φ3 6≡ 0. We will prove
that the poles of φ3 only come from the poles of F and of G. Indeed, let a be
a pole of φ3 and suppose that it is not a pole of F and G. Then it is a zero F
and G or a zero of (F − γ1)(F − γ2) leading to a zero of (G− γ1)(G− γ2).

Suppose first that a is a zero of F . Then it is also a zero of G and hence
that makes a pole of order 1 or zero for

F ′

F (F − γ1)(F − γ2)
− G′

G(G− γ1)(G− γ2)
.

But since a is also a zero for F −G, it is not a pole for φ3. Similarly, let b be a
zero for F − γ1. It is then a pole of order 1 or zero for

F ′

F (F − γ1)(F − γ2)
− G′

G(G− γ1)(G− γ2)
.
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But since F and G share {γ1, γ2} C.M, we can check that the function

(F −G)(F +G− γ1 − γ2)

has a zero at b, hence φ3 has no pole at b. Similarly, of course, if c is a zero of
F − γ2, then φ3 has no pole at c.

This finishes proving that each pole of φ3 must be a pole of f or g. Next, if
f and g belongs to M(S) or to M(D) we can make the same reasoning. Thus,
in each hypothesis, we have N(r, φ3) ≤ O(log(r)) (resp. N(r,Φ3) ≤ O(1), resp.
NR(r, φ3) ≤ O(log(r))).

Henceforth, we will gather the two first hypotheses: f, g ∈ M(IK) and
f, g ∈M(S) and we will consider next the hypothesis f, g ∈M(D).

Let us develop φ3. We have:

φ3 =
( (F − γ1)(F − γ2)− (G− γ1)(G− γ2)

(F − γ1)(F − γ2)

)F ′
F

+
( (G− γ1)(G− γ2)− (F − γ1)(F − γ2)

(G− γ1)(G− γ2)

)G′
G

= (1− EW−1)
F ′

F
+ (1− E−1W )

G′

G
.

Therefore, by Lemma 7, we have

M(r, φ3) ≤M(r, 1−EW−1)+M(r,
F ′

F
)+M(r, 1−E−1W )+M(r,

G′

G
) ≤ 2T (r, EW−1)+O(1)

≤ O(log(r))

Now since N(r, φ3) ≤ O(log(r)), we can conclude that T (r, φ3) ≤ O(log(r))
(resp. sinceNR(r, φ3) ≤ O(log(r)), we can conclude that TR(r, φ3) ≤ O(log(r))).

Now, let us develop φ1: we have

φ1 =
(γ1(γ1 − γ2)(F − γ1)(F − γ2)− (G− γ1)(G− γ2)

(F − γ1)(F − γ2)

)F ′
F

+
(γ2(γ2 − γ1)(G− γ1)(G− γ2)− (F − γ1)(F − γ2)

(G− γ1)(G− γ2)

)G′
G

= γ1(γ1 − γ2))(1− EW−1)
F ′

F
+ γ1(γ1 − γ2)(1− E−1W )

G′

G
.

Therefore, as for φ3 we have T (r, φ1) ≤ O(log(r)) and similarly, T (r, φ2) ≤
O(log(r)).

We will estimate Z(r, F − γ1). Let u be a zero of F − γ1 of multiplicity j:
either it is a zero of multiplicity j of G − γ1 or it is a zero of multiplicity j of
G− γ2 because F and G share the set {γ1, γ2} C.M.

Suppose first that u is a zero of G − γ1 of multiplicity j. As it is a zero of
multiplicity j of F − γ1, it is a zero of multiplicity at least j of F +G+ γ1 + γ2.

On the othe hand, by developing
F ′

F (F − γ1)(F )− γ2)
− G′

G(G− γ1)(G− γ2)
at

the point u, we can check that
F ′

F (F − γ1)(F )− γ2)
− G′

G(G− γ1)(G− γ2)
has

no pole at u because u is a pole of same order for
F ′

F (F − γ1)(F )− γ2)
and for

G′

G(G− γ1)(G− γ2)
. Consequently, φ3 has a zero of order at least j at u.
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Suppose now that u is a zero of order j of G − γ1. Then u is a zero of
order at least j for F + G − γ1 − γ2. Consider now φ1: we can check that

γ1(γ1 − γ2)F ′

F (F − γ1)(F )− γ2)
− γ2(γ2 − γ1)G′

G(G− γ1)(G− γ2)
has no pole at u and hence, as pre-

viously, u is a zero of order at least j for φ1.
Consequently, if f, g belongs to M∗(IK) or to Mu(S), we have

(2) Z(r, F − γ1) ≤ Z(r, φ1) + Z(r, φ3) ≤ O(log(r)).

Similarly and symmetrically, we obtain

(3) Z(r, F − γ2) ≤ Z(r, φ2) + Z(r, φ3) ≤ O(log(r)).

Consequently, by (2) and (3), and by the second Main Theorem, we have

T (r, F ) ≤ Z(r, F − γ1) + Z(r, F − γ2) +N(r, F ) +O(log(r)) ≤ O(log(r))

and therefore F belongs to IK(x), a contradiction. Thus the hypothesis made
above: φ3 6≡ 0 is wrong.

And similarly, ifM∗(D), by the same reasoning, we obtain ZR(r, F − γ1) ≤
ZR(r, φ1) +ZR(r, φ3) ≤ O(log(r)), and ZR(r, F −γ2) ≤ ZR(r, φ2) +ZR(r, φ3) ≤
O(log(r)), therefore

TR(r, F ) ≤ ZR(r, F − γ1) + ZR(r, F − γ2) +NR(r, F ) +O(log(r)) ≤ O(log(r))

and hence F belongs to Mz(D), a contradiction. Thus the hypothesis made
above: φ3 6≡ 0 is wrong again.

Consequently, now we have

(4)
F ′(x)

F (x)(F (x)− γ1)(F (x)− γ2)
≡ G′(x)
G(x)(G(x)− γ1)(G(x)− γ2)

.

Consider a zero u of F of order j which by hypothesis is also a zero of G. The
development at u shows that G also admits u as a zero of order j and therefore
F and G share 0 C.M. But then by Theorem 8.5, we have F ≡ G. Therefore, f
and g now share the set S1 C.M., and hence, by Theorem 8.5, we can conclude
f = g.

Proof of Theorems 8.7: Suppose that fn(x)fm(ax+b) and gn(x)gm(ax+b)
share a rational function Q ∈ IK(x) C.M. and that f and g are two distinct
meromorphic functions with finitely many poles. Set F (x) = fn(x)fm(ax + b)
and G(x) = gn(x)gm(ax + b). Thus F − Q and G − Q are two meromorphic
functions with finitely many poles having the same zeros with respectively the

same multiplicity. Therefore, by Lemma 3,
F −Q
G−Q

is a rational function h ∈

IK(x), h 6≡ 1. Consequently,

(1) G(x) = hF (x) + (1− h)Q(x).

and of course

(2) F (x) =
1
h
G(x) +

Q

h
(h− 1).
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Applying Corollary 7.2.b, by (1) and (2) we have

T (r, F ) ≤ Z(r,
1
h
G) + Z(r,

1
h
G+ (h− 1)

Q

h
) +N(r, F ) + o(T (r, F ))

(3) = Z(r,G) + Z(r, F ) + o(T (r, F )).

Now, by Lemma 1, we have Z(r,G) ≤ 2Z(r, g) ∀r ≥ |c| and Z(r, F ) ≤
2Z(r, f) ∀r ≥ |c|, hence by Lemma 6 we obtain T (r, F ) ≤ 2(T (r, g)+T (r, f)) ∀r ≥
|c|. Next, by Theorems 3.2 and 4.6, we have T (r, F ) = (n+m)T (r, f)+O(log(r)),
hence (n + m)T (r, f) ≤ 2(T (r, g) + T (r, f)) + O(log(r)). Similarly, we have
(n+m)T (r, g) ≤ 2(T (r, f) + T (r, g)) +O(log(r)). Therefore (n+m)(T (r, f) +
T (r, g)) ≤ 4(T (r, f) + T (r, g)) + o(T (r, F )) + o(T (r,G)) + O(log(r)). But by
Theorems 3.2 o(T (r, F )) is equivalent to o(T (r, F )), o(T (r,G)) is equivalent
to o(T (r, g)), therefore (n + m)(T (r, f) + T (r, g)) ≤ 4(T (r, f) + T (r, g)) +
o(T (r, f))) + o(T (r, g)), which implies n + m ≤ 4. Consequently, F ≡ G since
n+m ≥ 5.

Now, suppose that Q is a nonzero constant and that f and g are entire

functions. Then
F −Q
G−Q

is a constant λ 6= 1 and we have

(4) G(x) = λF (x) +Q(1− λ).

and of course

(5) F (x) =
1
λ
G(x) +

Q

λ
(λ− 1).

We can apply Theorem 3.7 on M(IK) and obtain
(6)
T (r, F ) ≤ Z(r,G)+Z(r,G+λ−1)−log(r)+O(1) = Z(r,G)+Z(r, F )−log(r)+O(1).

On the other hand, since f, g belong to A∗(K), by Theorems 3.2, we now have
T (r, F ) = T (r, fn) + T (r, fm(ax + b)) = (n + m)T (r, f) + O(1) and similarly,
T (r,G) = (n + m)T (r, g) + O(1) . Consequently, (n + m)(Tr, f) + T (r, g)) ≤
4(Tr, f) + T (r, g)) − 2 log(r) + O(1), which implies n + m < 4. Consequently,
if f and g belong to A∗(IK), if Q is a nonzero constant and if n+m ≥ 4, then
F ≡ G.

So, we have proven that in each case, we have F ≡ G. Now, set φ(x) =
f(x)
g(x)

and ψ(x) = φ(ax + b). Then we have φn(x)ψm(x) ≡ 1, hence
1
ψm
≡ φn and

hence

(7) T (r,
1
ψm

) = T (r, φn).

But T (r, 1
ψ ) = T (r, ψ) = T (r, φ) ∀r ≥ |c|. On the other hand, by Theorems

3.2 T (r, φn) = nT (r, φ), T (r, ψm) = mT (r, ψ) hence by (7), since m 6= n, we
can see that T (r, φ) = 0. Therefore, φ is a constant t and hence f = tg.

Now, F −Q belongs to M∗(IK), has finitely many poles and, by Lemma 2,
admits infinitely many zeros that are not zeros of Q. Let c be such a zero. Then
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c is also a zero of G−Q and hence we have fn(c)fm(ac+ b) = gn(c)gm(ac+ b),
therefore fn(c)fm(ac + b) = tnfn(c)tmfm(ac + b) i.e. F (c) = tn+mF (c). But
since c is not a zero of Q, we have F (c) 6= 0, hence tn+m = 1, which ends the
proof.

Proof of Theorems 8.8: The proof of Theorem 8.8 roughly follows that of
Theorem 8.7. Suppose first that fn(x)fm(ax + b) and gn(x)gm(ax + b) share
C.M. a function θ ∈ M(S) (resp. θ ∈ M(D)) having finitely many zeros
and poles in S (resp. in D), and are two distinct functions lying in Mu(S)
(resp. in M∗(D)) and have finitely many poles in S (resp. in D). Set again
F (x) = fn(x)fm(ax + b) and G(x) = gn(x)gm(ax + b). By Lemma 4, F − θ
and G−θ belong toMu(S) (resp. toM∗(D)) and are two functions having the
same zeros with respectively the same multiplicity and have finitely many poles.

Therefore
F − θ
G− θ

belongs toM(S) (resp. toM(D)) and has finitely many zeros

and poles in S (resp. in D). Consequently, it is a function w that belongs to
Mb(S) (resp. to Mz(D)).

Suppose first f, g ∈ M(S). Then by Corollary 7.2.b, similarly to the proof
of Theorem 8.7, we obtain

T (r, F ) ≤ Z(r,G) + Z(r,G+ (
1
w
− 1)θ + o(T (r, F )) (r → R) = Z(r,G)

(1) +Z(r, F ) + o(T (r, F )) (r → R).

Now, by Lemma 1, we have again Z(r,G) ≤ 2Z(r, g) + O(1) and Z(r, F ) ≤
2Z(r, f) +O(1), hence by Lemma 6 we obtain T (r, F ) ≤ 2(T (r, g)+T (r, f)+O(1)
hence, by Theorems 3.2, (n + m)T (r, g) ≤ 2(T (r, g) + T (r, f)) + O(1) and
similarly (n + m)T (r, f) ≤ 2(T (r, f) + T (r, g)) + O(1). On the other hand,
o(T (r, F )) = o(T (r, f)), o(T (r,G)) = o(T (r, g)), therefore by (1), we obtain

(n+m)(Tr, f) + T (r, g)) ≤ 4(Tr, f) + T (r, g)) + o(T (r, f)) + o(T (r, g))

and hence n + m < 5, which is excluded by hypotheses. Consequently, we get

F ≡ G. Putting again φ(x) =
f(x)
g(x)

and ψ(x) = φ(ax + b), we have
1
ψm
≡ φn,

therefore in S we get T (r,
1
ψm

) = T (r, φn) which implies that T (r, φ) = 0 since

n 6= m. Thus φ is a constant t again and hence, since θ has finitely many zeros
in S, by Lemma 4 we can conclude as in Theorem 8.7.

Similarly, if f, g ∈ M(D) we can make the same reasonning thanks to
Lemma 5.

Proof of Theorem 8.9: Suppose first that f and w belong to M∗(IK) and
set h(x) = f(ax+ b), F (x) = f(x)nhm(x). By Corollary 7.2.a we have

(1) T (r, F ) ≤ Z(r, F ) + Z(r, F − w) +N(r, F ) + o(T (r, F )) (r → +∞).

Clearly,

(2) Z(r, F ) ≤ Z(r, f) + Z(r, h).
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and
(3)
N(r, F ) ≤ N(r, f)+N(r, h)+N(r, w) = N(r, f)+N(r, h)+o(T (r, f)) (r → +∞).

On the other hand, by Theorems 3.2, T (r, fnhm) ≥ |T (r, fn) − T (r, hm)|∞
and by Lemma 6, for every r ≥ |b| we have T (r, h) = T (r, f), Z(r, f) =
Z(r, h), N(r, f) = N(r, h), hence
T (r, F ) ≥ |n −m|∞T (r, f). Moreover, o(T (r, F )) = o(T (r, f)). Therefore, by
(1), (2) and (3) we obtain (|n−m|∞−4)T (r, f) ≤ Z(r, F −w)+o(T (r, f)) (r →
+∞) which proves the claim whenever |n−m|∞ ≥ 5.

Suppose now that f and w belong toM(S). Keeping the same notations, we
can get the same relations (1), (2), (3) and next (|n−m|∞−4)T (r, f) ≤ Z(r, F−
w) + o(T (r, f)) (r → R), which proves again the claim whenver |n−m|∞ ≥ 5.

Finally, suppose that f and w belong toM(D) and keep the same notations.
By Corollary 7.2.a now we have

(4) TR(r, F ) ≤ ZR(r, F ) + ZR(r, F − w) +NR(r, F ) + o(T (r, F )).

Next, using Theorem 4.6 instead of 3.2, we obtain here: (|n − m|∞ −
4)TR(r, f) ≤ ZR(r, F − w) + o(TR(r, f)) (r → +∞). Thus, if |n − m|∞ ≥ 5
we have TR(r, f) ≤ ZR(r, F − w) + o(TR(r, f)) (r → +∞) which shows again
that F − w has infinitely many zeros .

Proof of Theorem 8.10: The beginning of the proof is similar to that of
Theorem 8.9. Suppose first that f ∈ M∗(IK) and set h(x) = f(ax + b),
F (x) = f(x)nhm(x). Suppose that F admits 4 distinct perfectly branched
values a1, a2, a3, a4. By Theorem 3.7, we have

3T (r, F ) ≤
4∑
j=1

Z(r, F − aj) +N(r, F )− log(r) +O(1) (r → +∞),

hence
(1)

3T (r, F ) ≤
(1

2
) 4∑
j=1

Z(r, F − aj) +N(r, f) +N(r, h)− log(r) +O(1) (r → +∞),

and hence

3(|n−m|∞)T (r, f) ≤
(1

2
)
4(n+m)T (r, f)) + 2T (r, f) +O(log(r)) (r → +∞),

therefore 3|n−m|∞ ≤ 2(n+m) + 2 +λ(r), with lim
r→+∞

λ(r) = 0. Consequently,

if 3|n−m|∞ > 2(n+m+1), the function F does not admit 4 perfectly branched
values. Moreover, if F admits 4 totally branched values a1, a2, a3, a4, then by
(1) now we can get

3(|n−m|∞)T (r, f) ≤
(1

2
)
4(n+m)T (r, f))+2T (r, f)−log(r))+O(1) (r → +∞),
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therefore 3|n−m|∞ < 2(n+m)+2. Consequently, if 3|n−m|∞ ≥ 2(n+m+1),
the function F does not admit 4 totally branched values.

Suppose now that F admits 3 distinct perfectly branched values a1, a2, a3.
By Theorem 3.7, we have

(2) 2T (r, F ) ≤
3∑
j=1

Z(r, F − aj) +N(r, F )− log(r) +O(1) (r → +∞),

and hence 2(|n−m|∞)T (r, f) ≤
(1

2
)
3(n+m)T (r, f)) + 2T (r, f) + λ(r)

with lim
r→+∞

λ(r) = 0, (r → +∞), therefore 2|n−m|∞ ≤
(

3
2

)
(n+m)+2. Conse-

quently, if 4|n−m|∞ > 3(n+m) + 4, the function F does not admit 3 perfectly
branched values.

Moreover if F admits 3 totally branched values a1, a2, a3, then by (2) now
we can get

2(|n−m|∞)T (r, f) ≤
(1

2
)
3(n+m)T (r, f))+2T (r, f)− log(r)+O(1) (r → +∞),

therefore 4|n−m|∞ < 3(n+m)+4. Consequently, if 4|n−m|∞ ≥ 3(n+m)+4,
the function F does not admit 3 totally branched values.

Finally, if f belongs to Mu(S) or to M∗(D), using in each case Theorem
3.7 or 4.10, we can do the same reasoning for perfectly branched values. But
Theorem 7.2 here does not show the term − log(r) + O(1) which is essential
when we consider totally branched values. This is why we must replace ≥ by
>in each statement for functions in Mu(S) or in M∗(D) concerning totally
branched values.
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