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Order, type and cotype of growth for p-adic entire functions

We denote by IK an algebraically closed field of characteristic 0, complete with respect to an ultrametric absolute value | . |. Analytic functions inside a disk or in the whole field IK were introduced and studied in many books. Given α ∈ IK and R ∈ IR * + , we denote by d(α, R) the disk {x ∈ IK | |x -α| ≤ R}, by d(α, R -) the disk {x ∈ IK | |x -α| < R}, by C(α, r) the circle {x ∈ IK | |x -α| = r}, by A( IK) the IK-algebra of analytic functions in IK (i.e. the set of power series with an infinite radius of convergence) and by M( IK) the field of meromorphic functions in IK (i.e. the field of fractions of A( IK)). Given f ∈ M( IK), we will denote by q(f, r) the number of zeros of f in d(0, r), taking multiplicity into account and by u(f, r) the number of distinct multiple zeros of f in d(0, r). Throughout the paper, log denotes the Neperian logarithm.

Here we mean to introduce and study the notion of order of growth and type of growth for functions of order t. We will also introduce a new notion of cotype of growth in relation with the distribution of zeros in disks which plays a major role in processes that are quite different from those in complex analysis. This has an application to the question whether an entire function can be devided by its derivative inside the algebra of entire functions.

Let us shortly recall classical results [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], [START_REF] Escassut | p-adic Value Distribution[END_REF], [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF]: Similarly to the definition known on complex entire functions [START_REF] Rubel | Entire and meromorphic functions[END_REF], given f ∈ A( IK), the superior limit

Theorem A Given f ∈ A( IK)
lim sup r→+∞ log(log(|f |(r))) log(r)
is called the order of growth of f or the order of f in brief and is denoted by ρ(f ). We say that f has finite order if ρ(f ) < +∞.

The following Theorems 1, 2, 3, 4, 5, 6, 7 are proven in [START_REF] Boussaf | Growth of p-adic entire functions and applications Houston[END_REF]. Theorem 1: Let f, g ∈ A( IK). Then:

ρ(f + g) ≤ max(ρ(f ), ρ(g)), ρ(f g) = max(ρ(f ), ρ(g)), Corollary 1.1: Let f, g ∈ A( IK). Then ρ(f n ) = ρ(f ) ∀n ∈ IN * . If ρ(f ) > ρ(g), then ρ(f + g) = ρ(f ).
Remark: ρ is an ultrametric extended semi-norm.

Notation: Given t ∈ [0, +∞[, we denote by A( IK, t) the set of f ∈ A( IK) such that ρ(f ) ≤ t and we set

A 0 ( IK) = t∈[0,+∞[ A( IK, t). Corollary 1.2. For any t ≥ 0, A( IK, t) is a IK-subalgebra of A( IK). If t ≤ u, then A( IK, t) ⊂ A( IK, u) and A 0 ( IK) is also a IK-subalgebra of A( IK). Theorem 2 Let f ∈ A( IK) and let P ∈ IK[x]. Then ρ(P • f ) = ρ(f ) and ρ(f • P ) = deg(P )ρ(f ). Theorem 3: Let f, g ∈ A( IK) be transcendental. If ρ(f ) = 0, then ρ(f • g) = +∞. If ρ(f ) = 0, then ρ(f • g) ≥ ρ(g).
Theorem 4 Let f ∈ A( IK) be not identically zero. If there exists s ≥ 0 such that

lim sup r→+∞ q(f, r) r s < +∞ then ρ(f ) is the lowest bound of the set of s ∈ [0, +∞[ such that lim sup r→+∞ q(f, r) r s = 0. Moreover, if lim sup r→+∞ q(f, r) r t is a number b ∈]0, +∞[, then ρ(f ) = t. If there exists no s such that lim sup r→+∞ q(f, r) r s < +∞, then ρ(f ) = +∞.

Example:

Suppose that for each r > 0, we have q(f, r) ∈ [r t log r, r t log r + 1]. Then of course, for every s > t, we have lim sup r→+∞ q(f, r) r s = 0 and lim sup r→+∞ q(f, r) r t = +∞, so there exists no t > 0 such that q(f, r) r t have non-zero superior limit b < +∞.

Definition and notation: Let t ∈ [0, +∞[ and let f ∈ A( IK) of order t. We set

ψ(f ) = lim sup r→+∞ q(f, r) r t
and call ψ(f ) the cotype of f .

Theorem 5 Let f, g ∈ A 0 ( IK) be such that ρ(f ) = ρ(g). Then max(ψ(f ), ψ(g)) ≤ ψ(f g) ≤ ψ(f ) + ψ(g).
Theorem 6 is similar to a well known statement in complex analysis and its proof also is similar when ρ(f

) < +∞ [10] but is different when ρ(f ) = +∞. Theorem 6 Let f (x) = +∞ n=0 a n x n ∈ A( IK). Then ρ(f ) = lim sup n→+∞ n log(n) -log |a n | .
Remark: Of course, polynomials have a growth order equal to 0. On IK as on l C we can easily construct transcendental entire functions of order 0 or of order ∞. a n x n has radius of convergence equal to +∞. On the other hand,

lim n→+∞ n log n -log |a n | = 0 hence ρ(f ) = 0. Example 2: Let (a n ) n∈ IN be a sequence in IK such that -log |a n | ∈ [n √ log n, n √ log n + 1]. Then lim n→+∞ log |a n | n = -∞
again and hence the function

∞ n=0
a n x n has radius of convergence equal to +∞. On the other hand,

lim n→+∞ n log n -log |a n | = +∞ hence ρ(f ) = +∞.
Here, we must recall a theorem proven in [AMS] to characterize meromorphic admitting a primitive:

Theorem 7: Let f ∈ M( IK).
Then f admits primitives if and only if all its residues are null.

The following theorem was proven in 2011 with help of Jean-Paul Bezivin [START_REF] Bezivin | Zeros of the derivative of a p-adic meromorphic function[END_REF], [START_REF] Bezivin | Some new and old results on zeros of the derivative of a p-adic meromorphic function[END_REF]:

Theorem 8: Let f ∈ M( IK).
Suppose that there exists s ∈]0, +∞[ such that u(f, r) < r s ∀r > 1. Then, for every b ∈ IK, f -b has infinitely many zeros.

Thanks to Theorem 8, we can now prove Theorem 9:

Theorem 9: Let f = g h ∈ M( IK) with g ∈ A( IK)
and h ∈ A 0 ( IK) and ψ(h) < +∞. Then for every b ∈ IK, f -b has infinitely many zeros.

Proof: Set t = ρ(h). There exists > ψ(h) such that q(r, h) ≤ r t ∀r > 1. Consequently, taking s > t big enough, we have u(f, r) < r s ∀r > 1 and hence f satisfies the hypotheses of Theorem 8. Therefore, for every b ∈ K, f -b has infinitely may zeros.

Corollary 9.1: Let f = g h ∈ M( IK) have all its residues null, with g ∈ A( IK) and h ∈ A 0 ( IK) and ψ(h) < +∞. Then for every b ∈ IK, f -b has infinitely many zeros.

Remark: Consider a function f of the form ∞ n=1 1 (x-a n ) 2 with |a n | = n t .
Clearly f belongs to M( IK), all residues are null, hence f admits primitives. Next, primitives satisfy the hypothesis of Theorem 8. Consequently, f takes every value infinitely many times. Therefore, f cannot be of the form P h with P ∈ IK[x] and h ∈ A( IK).

Definition and notation:

In complex analysis, the type of growth is defined for an entire function of order t as

σ(f ) = lim sup r→+∞ log(M f (r)) r t ,
with t < +∞. Of course the same notion may be defined for f ∈ A( IK). Given f ∈ A 0 ( IK) of order t, we set σ(f ) = lim sup r→+∞ log(|f |(r)) r t and σ(f ) is called the type of growth of f .

Theorems 10, 11, 12 are proven in [START_REF] Boussaf | Growth of p-adic entire functions and applications Houston[END_REF].

Theorem 10: Let f, g ∈ A 0 ( IK). Then σ(f g) ≤ σ(f ) + σ(g) and σ(f + g) ≤ max(σ(f ), σ(g)). If ρ(f ) = ρ(g), then max(σ(f ), σ(g)) ≤ σ(f g) and if c|f |(r) ≥ |g|(r) with c > 0 when r is big enough, then σ(f ) ≥ σ(g).
Corollary 10.1: Let f, g ∈ A 0 ( IK) be such that ρ(f ) = ρ(g) and σ(f 

) > σ(g). Then σ(f + g) = σ(f ). Theorem 11: Let f (x) = ∞ n=0 a n x n ∈ A 0 ( IK) such that ρ(f ) ∈]0, +∞[. Then σ(f )ρ(f )e = lim sup n→+∞ n n |a n | t . Notation: Let f ∈ A( IK), let (a n ) n∈ IN be
| > r ∀n > k(r). . We set ψ(f, r) = q(f,r) r t and σ(f, r) = k(r) n=0 w n (log(r)-log(c n )) r t .
Lemma L : Let g, h be the real functions defined in ]0, +∞[ as g(x) = e tx -1

x and h(x) = 1-e -tx x with t > 0. Then: i) inf{|g(x)| |x > 0} = t. ii) sup{|h(x)| |x > 0} = t.
Theorem 12: Let f ∈ A 0 ( IK) be not identically zero. Then We will first show the inequality ρ(f )σ(f ) ≤ ψ(f ). By (1) we can derive

ρ(f )σ(f ) ≤ ψ(f ) ≤ ρ(f ) eσ(f ) -σ(f ) . Moreover, if ψ(f ) = lim r→+∞ q(f,r) r ρ(f ) or if σ(f ) = lim r→+∞ log(|f |(r)) r ρ(f ) , then ψ(f ) = ρ(f )σ(f ).
σ(f, r) ≤ k(re -α ) n=0 w n (log(r) -log(re -α )) r t + k(re -α ) n=0 w n (log(re -α -log(c n )) r t + α k(re -α )<n≥k(r) w n r t hence σ(f, r) ≤ α k(re -α ) n=0 w n r t + k(re -α ) n=0 w n (log(re -α -log(c n )) r t + α k(re -α )<n≥k(r) w n r t σ(f, r) ≤ α k(re -α ) n=0 w n r t + k(re -α ) n=0 w n (log(re -α -log(c n )) r t + α k(re -α )<n≥k(r) w n r t hence σ(f, r) ≤ α k(re -α ) n=0 w n r t + e -tα k(re -α ) n=0 w n (log(re -α -log(c n )) (re -α ) t +α 0≤n≤k(r) w n r t -α 0≤n≤k(re -α ) w n r t , hence σ(f, r) ≤ e -tα k(re -α ) n=0 w n (log(re -α ) -log(c n )) (re -α ) t + α 0≤n≤k(r)
w n r t .

Thus we have σ(f, r) ≤ e -tα σ(f, re -α ) + αψ(f, r).

Passing to superior limits on both sides, we obtain σ(f ) ≤ e -tα σ(f ) + αψ(f ) therefore

σ(f )(1-e tα ) α
≤ ψ(f ). That holds for every α > 0, hence by Lemma L ii), we obtain

(2) ψ(f ) ≥ ρ(f )σ(f ).
We will now show the inequality ψ(f

) ≤ ρ(f )(eσ(f ) -σ(f )). Let us fix α > 0. We can write σ(f, r) = k( r e α ) n=0 w n (log(r) -log( r e α )) r t + k( r e α ) j=0 w j (log( r e α ) -log(c n )) r t + k( r e α )<j≤k(r) w j (log(r) -log(c j )) r t hence σ(f, r) ≥ α k( r e α ) n=0 w n r t + k( r e α ) j=0 w j (log( r e α ) -log(c n )) r t hence σ(f, r) ≥ αe -tα k( r e α ) n=0 w n (re -α ) t +e -tα k( r e α ) j=0 w n (log( r e α ) -log(c n )) (re -α ) t
and hence σ(f, r) ≥ αψ(f, re -α ) + e -tα σ(f, re -α ).

Therefore, we can derive

αe -tα ψ(f ) ≤ lim sup r→+∞ σ(f, r) -e -tα σ(f, re -α ))
and therefore αe -tα ψ(f ) ≤ σ(f ) -e -tα σ(f )).

That holds for every α > 0 and hence, when tα = 1, we obtain ψ(f ) ≤ ρ(f ) eσ(f ) -σ(f ) which is the left hand inequality of the general conclusion. . That holds for every α > 0 and then by Lemma L i) we obtain ψ(f ) ≤ tσ(f ), i.e. ψ(f ) ≤ ρ(f )σ(f ) and hence by [START_REF] Bezivin | Some new and old results on zeros of the derivative of a p-adic meromorphic function[END_REF],

ψ(f ) = ρ(f )σ(f ). Now, suppose that ψ(f ) = lim r→+∞ k(r) n=0 w n r t = lim r→+∞ ψ(f, r).
We can obviously find a sequence (r n ) n∈ IN in ]0, +∞[ of limit +∞ such that σ(f ) = lim n→+∞ σ(f, r n e -α ). Then, by [START_REF] Bezivin | Zeros of the derivative of a p-adic meromorphic function[END_REF] we have

σ(f, r n ) ≥ αe -tα ψ(f, r n e α ) + e -tα σ(f, r n e α ) hence lim sup n→+∞ σ(f, r n ) ≥ αe -tα ψ(f ) + e -tα σ(f ) and hence σ(f ) ≥ αe -tα ψ(f ) + e -tα σ(f ) therefore ψ(f ) ≤ e tα -1 α σ(f ). Finally, by Lemma L i) again we have, ψ(f ) ≤ ρ(f )σ(f )
and hence by (2), ψ(f ) = ρ(f )σ(f ).

Corollary 12.1: Let f ∈ A 0 ( IK) be not identically zero. Then

ρ(f )σ(f ) ≤ ψ(f ) ≤ eρ(f )σ(f ).
Corollary 12.2: Let f ∈ A 0 ( IK) be not identically zero. Then ψ(f ) is finite if and only if so is σ(f ).

Remark: The conclusions of Theorem 12 hold for ψ(f ) = σ(f ) = +∞.

We will now present Example 3 where neither ψ(f ) nor σ(f ) are obtained as limits but only as superior limits: we will show that the equality ψ(f ) = ρ(f )σ(f ) holds again. 

Conjecture 1: Let f ∈ A 0 ( IK) be such that either σ(f ) < +∞ or ψ(f ) < +∞. Then ψ(f ) = ρ(f )σ(f ).
Although we can't yet prove Conjecture C1, we will give ψ(f ) two bounds.

Notation: Henceforth, we will denote by β(t) the solution of E. Now, by Corollary 9.1, we can also state Corollary 13.3:

Corollary 12.3: Let f = g h ∈ M( IK)
, with g, h ∈ A( IK) not identically zero and be such that h has finite order of growth and and finite type of growth. Then f takes every value b ∈ IK infinitely many times.

We will now consider derivatives.

Theorem 13: Let f ∈ A( IK) be not identically zero. Then ρ(f ) = ρ(f ).

Corollary 13.1

The derivation on A( IK) restricted to the algebra A( IK, t) (resp. to A 0 ( IK)) provides that algebra with a derivation.

In complex analysis, it is known that if an entire function f has order t < +∞, then f and f have same type. We will check that it is the same here. Theorems 14, 15, 16 are proven in [START_REF] Boussaf | Growth of p-adic entire functions and applications Houston[END_REF].

Theorem 14: Let f ∈ A( IK) be not identically zero, of order t ∈]0, +∞[. Then σ(f ) = σ(f ).
By Theorems 12, 14, 15 we can now derive Corollary 14.1: Let f ∈ A 0 ( IK) be not identically zero, of order t < +∞. Then

ρ(f )σ(f ) ≤ ψ(f ) ≤ eρ(f )σ(f ), |ψ(f ) -ψ(f )| ∞ ≤ (e -1)ρ(f )σ(f ), 1 e-1 ≤ ψ(f ) psi(f ) ≤ e -1.

Corollary 14.2:

Let f ∈ A 0 ( IK) be not identically zero, of order t < +∞. Then

ρ(f )σ(f ) ≤ ψ(f ) ≤ eρ(f )σ(f ). If ψ(f ) = lim r→+∞ q(f, r) t or if ψ(f ) = lim r→+∞ q(f , r) r t , then ψ(f ) ≤ ψ(f ).
Moreover, in each of the following hypothesis, we have Let f = g h ∈ M( IK) be not identically zero, with g, h ∈ A( IK), having all residues null and such that h has finite order of growth and finite type of growth. Then f takes every value b ∈ IK infinitely many times.

ψ(f ) = ψ(f ) = eρ(f )σ(f ): i) ψ(f ) = lim
Conjecture 1 suggests and implies the following Conjecture 2:

Conjecture 2: ψ(f ) = ψ(f ) ∀f ∈ A 0 ( IK).
Theorem 15: Let f, g ∈ A( IK) be transcendental and of same order t ∈ [0, +∞[. Then for every > 0, lim sup r→+∞ r q(g, r) q(f, r) = +∞.

Remark: Comparing the number of zeros of f to this of f inside a disk is very uneasy. Now, we can give some precisions. By Theorem 14 we can derive Corollary 16.1.

Corollary 15.1: Let f ∈ A 0 ( IK) be not affine. Then for every > 0, we have lim sup r→+∞ r q(f , r) q(f, r) = +∞ and lim sup r→+∞ r q(f, r) q(f , r) = +∞.

Corollary 15.2: Let f ∈ A 0 ( IK). Then ψ(f ) is finite if and only if so is ψ(f ).

We can now give a partial solution to a problem that arose in the study of zeros of derivatives of meromorphic functions: given f ∈ A( IK), is it possible that f divides f in the algebra A( IK)?

Theorem 16: Let f ∈ A( IK) \ IK[x]
. Suppose that for some number s > 0 we have lim sup r→+∞ |q(f, r)|r s > 0 (where |q(f, r)| is the absolute value of q(f, r) defined on IK). Then f has infinitely many zeros that are not zeros of f . Remark: It is possible to deduce the proof of Theorem 14 by using Lemma 1.4 in [START_REF] Boussaf | Growth of p-adic entire functions and applications Houston[END_REF].

Corollary 16.1: Let f ∈ A 0 ( IK). Then f has infinitely many zeros that are not zeros of f . Proof: Indeed, let f be of order t. By Theorem 4 lim sup r→+∞ q(f, r) r t is a finite number and therefore lim sup for some s > 0. Then f f has at least one zero.

Proof: Indeed, suppose that f f has no zero. Then f is of the form 1 h with h ∈ A( IK) and f = -h h 2 has no zero, hence every zero of h is a zero of h, a contradiction to Theorem 16 since lim sup r→+∞ |q(h, r)|r s > 0.

Remarks: Concerning complex entire functions, we check that the exponential is of order 1 but is divided by its derivative in the algebra of complex entire functions.

It is also possible to derive Corollary 17.3 from Theorem 1 in the paper by Jean-Paul Bezivin, Kamal Boussaf and me. Indeed, let g = 1 f

. By Theorem 4, lim sup r→+∞ q(f, r) r t is a finite number. Consequently, there exists c > 0 such that q(f, r) ≤ cr t ∀r > 1 and therefore the number of poles of g in d(0, r) is upper bounded by cr t whenever r > 1. Consequently, we can apply Theorem 8 and hence the meromorphic function g has infinitely many zeros. Now, suppose that f divides f in A( IK). Then every zero of f is a zero of f with an order superior, hence f f 2 has no zero, a contradiction. If the residue characteristic of IK is p = 0, we can easily construct an example of entire function f of infinite order such that f does not divide f in A( IK). Let f (x) = 

  and r > 0, we denote by |f |(r) the number sup{|f (x)| | |x| = r} and then | . |(r) is a multiplicative norm on A( IK). Suppose f (0) = 0 and let a 1 , ..., a m be the varius zeros of f in d(0, r) with |a n | ≤ |a n+1 |, 1 ≤ n ≤ m -1, each zero a n having a multiplicity order w n . Then log(|f |(r)) = log(|f (0)|) + m n=1 w n (log(r) -log(|a n |)).

Example 1 :

 1 Let (a n ) n∈ IN be a sequence in IK such that -log |a n | ∈ [n(log n) 2 , n(log n) 2 + 1]. Then clearly, lim n→+∞ log |a n | n = -∞ hence the function ∞ n=0

Proof:

  Without loss of generality we can assume that f (0) = 0. Let t = ρ(f ) and set = log(|f (0|). Let (a n ) n∈ IN be the sequence of zeros of f with |a n | ≤ |a n+1 |, n ∈ IN and for each n ∈ IN, let w n be the multiplicity order of a n . For every r > 0, let k(r) be the integer such that |a n | ≤ r ∀n ≤ k(r) and |a n | > r ∀n > k(r). Then by Theorem A, we have log(|f |(r)) = + k(r) n=0 w n (log(r) -log(|a n |)) hence σ(f ) = lim sup r→+∞ + k(r) n=0 w n (log(r) -log(|a n |)) r t . Given r > 0, set c n = |a n |, and let us keep the notations above. Then (1) σ(f ) = lim sup r→+∞ σ(f, r), ψ(f ) = lim sup r→+∞ ψ(f, r).

1 α

 1 Now, suppose that σ(f ) = lim r→+∞ log(|f |(r)) r t. Then we now havelim sup r→+∞ ψ(f, r) ≤ σ(f ) e tα -and hence ψ(f ) ≤ σ(f ) e tα -1 α

Example 3 : 4 ,

 34 Let r n = 2 n , n ∈ IN and let f ∈ A( IK) have exactly 2 n zeros in C(0, r n ) and satisfy f (0) = 1. Then q(f, r n ) = 2 n+1 -1 ∀n ∈ IN. We can see that the function h(r)defined in [r n , r n+1 [ by h(r) = q(f, r) r is decreasing and satisfies h(r n ) we have ρ(f ) = 1 and of course ψ(f ) = 2. On the other hand, we can show that σ(f ) = 2. Now, Theorem 12 and Example 3 suggest the following conjecture:

  r→+∞ ψ(f, r) and ψ(f ) = lim r→+∞ ψ(f , r), ii) σ(f ) = lim r→+∞ σ(f, r) and σ(f ) = lim r→+∞ σ(f , r), iii) ψ(f ) = lim r→+∞ ψ(f, r) and σ(f ) = lim r→+∞ σ(f , r), iv) σ(f ) = lim r→+∞ σ(f, r) and ψ(f ) = lim r→+∞ ψ(f , r). Now, by Theorems 14 and 15 we can state Corollary 14.3 Corollary 14.3:

  r→+∞ |q(f, r)|r t > 0. Corollary 16.2 Let f ∈ A 0 ( IK). Then f does not divide f in A( IK).Corollary 16.3 is a partial solution for the p-adic Hayman conjecture when n = 1, which is not solved yet.Corollary 16.3 Let f ∈ M( IK) be such that |r s > 0

Conjecture 3

 3 |α n | = n + 1. We check that q(f, n + 1) = n k=0 p k is prime to p for every n ∈ IN. Consequently, Theorem 17 shows that f is not divided by f in A( IK). On the other hand, fixing t > 0, we have q(f, n + 1)(n + 1) t ≥ p n (n + 1) t hence lim sup r→+∞ q(f, r) r t = +∞ ∀t > 0 therefore, f is not of finite order.Theorem 16 suggests the following conjecture: Given f ∈ A( IK) (other than (x -a) m , a ∈ IK, m ∈ IN) there exists no h ∈ A( IK) such that f = f h.