N

N

Order, type and cotype of growth for p-adic entire
functions
Kamal Boussaf, Abdelbaki Boutabaa, Alain Escassut

» To cite this version:

Kamal Boussaf, Abdelbaki Boutabaa, Alain Escassut. Order, type and cotype of growth for p-adic
entire functions. p-Adic Numbers, Ultrametric Analysis and Applications, 2018. hal-01920435

HAL Id: hal-01920435
https://uca.hal.science/hal-01920435
Submitted on 13 Nov 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://uca.hal.science/hal-01920435
https://hal.archives-ouvertes.fr

Order, type and cotype of growth
for p-adic entire functions

Kamal Boussaf, Abdelbaki Boutabaa
and Alain Escassut

We denote by IK an algebraically closed field of characteristic 0, complete with respect
to an ultrametric absolute value | . |. Analytic functions inside a disk or in the whole field
IK were introduced and studied in many books. Given a € IK and R € IR, we denote
by d(a, R) the disk {z € K | |x — a| < R}, by d(a, R™) the disk {z € K | |z — o] < R},
by C(a,r) the circle {x € K | |z—a| =71}, by A( K) the K-algebra of analytic functions
in IK (i.e. the set of power series with an infinite radius of convergence) and by M( IK)
the field of meromorphic functions in IK (i.e. the field of fractions of A( KK)). Given
f € M( IK), we will denote by ¢(f,r) the number of zeros of f in d(0, r), taking multiplicity
into account and by u( f, r) the number of distinct multiple zeros of f in d(0, 7). Throughout
the paper, log denotes the Neperian logarithm.

Here we mean to introduce and study the notion of order of growth and type of growth
for functions of order t. We will also introduce a new notion of cotype of growth in relation
with the distribution of zeros in disks which plays a major role in processes that are quite
different from those in complex analysis. This has an application to the question whether
an entire function can be devided by its derivative inside the algebra of entire functions.

Let us shortly recall classical results [4], [5], [6]:
Theorem A Given f € A( K) and r > 0, we denote by |f|(r) the number
sup{|f(z)| | |x| = r} and then | . |(r) is a multiplicative norm on A( IK). Suppose f(0) # 0
and let ay, ..., an, be the varius zeros of f in d(0,r) with |a,| < |apt1], 1 <n < m—1,
each zero a, having a multiplicity order w,,. Then

log(|£1(r)) = 1og(|.f(0)]) + D _ wn(log(r) — log(|an))-

Similarly to the definition known on complex entire functions [7], given f € A( IK),
the superior limit

. log(log(.f[(r)))
lim sup ( og(r) )

is called the order of growth of f or the order of f in brief and is denoted by p(f). We
say that f has finite order if p(f) < +oc.

r——+oo

The following Theorems 1, 2, 3, 4, 5, 6, 7 are proven in [3].
Theorem 1: Let f, g € A( K). Then:

p(f + g) <max(p(f),p(g)),



p(fg) = max(p(f), p(9)),

Corollary 1.1: Let f, g € A(K). Then p(f™) = p(f) Vn € IWN*. If p(f) > p(g), then
p(f +9) = p(f)-

Remark: p is an ultrametric extended semi-norm.

Notation: Given ¢t € [0,+4o00[, we denote by A( IK,¢) the set of f € A( IK) such that
p(f) <t and we set
A(K) = | A(K1).

te[0,+o0]

Corollary 1.2. For anyt > 0, A( K,t) is a K-subalgebra of A(K). Ift < u, then
A(K,t) c A( K, u) and A°( K) is also a K-subalgebra of A( IK).

Theorem 2 Let f € A(K) and let P € K[z]. Then p(Po f) = p(f) and
p(f o P) = deg(P)p(f)-

Theorem 3: Let f, g € A(IK) be transcendental. If p(f) # 0, then p(f o g) = +o0. If
p(f) =0, then p(f o g) = p(g).

Theorem 4 Let f € A( IK) be not identically zero. If there exists s > 0 such that

lim sup
r—+00

<q(f, r)

s ><+oo

then p(f) is the lowest bound of the set of s € [0, +oo[ such that

lim sup <@> =0.

r—-+00

Moreover, if

lim sup (@)

r—400

is a number b €]0,+o0], then p(f) =t. If there exists no s such that

(q(f, r)

> < +00,
,rS

lim sup
r——+oo

then p(f) = +o0.

Example:  Suppose that for each r > 0, we have q(f,r) € [r'logr,rlogr + 1]. Then of
course, for every s > t, we have

q(f,r)

, r
limsup ——~% =0
r——+00 re

2



q(f,7) q(fr)
T’t Tt

and lim sup = +00, so there exists no ¢ > 0 such that have non-zero superior

r—+00

limit b < 4-o0.
Definition and notation: Let ¢t € [0, +oo[ and let f € A( IK) of order t. We set

$(f) = limsup L57)

r——+o0o rt
and call ¥(f) the cotype of f.

Theorem 5 Let f, g € AY( IK) be such that p(f) = p(g). Then

max(¢(f), ¥ (g)) < ¥(fg) < P(f) +¥(g)-

Theorem 6 is similar to a well known statement in complex analysis and its proof also
is similar when p(f) < 400 [10] but is different when p(f) = +oc.

400
, nlog(n)
Theorem 6 Let f(z) = apr” € A(IK). Then =limsup | —— ).
f(@) g (K) o(f) M;?(—logw)

Remark: Of course, polynomials have a growth order equal to 0. On IK as on € we
can easily construct transcendental entire functions of order 0 or of order co.

Example 1:  Let (a,)ne N be a sequence in K such that
—log |a,| € [n(logn)?, n(logn)? + 1]. Then clearly,

1~ log ’an|
im =—
n—+oo n

oo
hence the function Z a,z" has radius of convergence equal to +0c0. On the other hand,

n=0

nlogn
lim & =0

n=too —log la,|

hence p(f) = 0.

Example 2: Let (a,)ne N be a sequence in K such that
—log |ay| € [nv/logn,ny/logn + 1]. Then

Lo loglan]
m —— =
n—+oo n
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oo

again and hence the function Z a,z" has radius of convergence equal to +o0o. On the

n=0
other hand,
) nlogn
lim (—) = +00
n—+00 \ — 10g |6Ln|

hence p(f) = +oc.

Here, we must recall a theorem proven in [AMS] to characterize meromorphic admit-
ting a primitive:

Theorem 7: Let f € M(IK). Then f admits primitives if and only if all its residues
are null.

The following theorem was proven in 2011 with help of Jean-Paul Bezivin [1], [2]:

Theorem 8: Let f € M( IK). Suppose that there exists s €]0, 00| such that u(f,r) <
5 ¥r > 1. Then, for every b € K, f' — b has infinitely many zeros.

Thanks to Theorem 8, we can now prove Theorem 9:

Theorem 9: Let f = ¢ € M(IK) with g € A(K) and h € A°( K) and ¥(h) < +0o0.
Then for every b € K, f' —b has infinitely many zeros.

Proof: Set t = p(h). There exists £ > 1(h) such that ¢(r, h) < ¢r* Vr > 1. Consequently,
taking s > t big enough, we have u(f,r) < r° Vr > 1 and hence f satisfies the hypotheses
of Theorem 8. Therefore, for every b € K, f’ — b has infinitely may zeros.

Corollary 9.1: Let f = £ € M(K) have all its residues null, with g € A(IK) and
h € A°(IK) and (h) < +o0o. Then for every b € K, f — b has infinitely many zeros.

Remark: Consider a function f of the form Y 7 | m with |a,| = nt. Clearly f
belongs to M( IK), all residues are null, hence f admits primitives. Next, primitives

satisfy the hypothesis of Theorem 8. Consequently, f takes every value infinitely many
times. Therefore, f cannot be of the form £ with P € IK[z] and h € A( K).

Definition and notation: In complex analysis, the type of growth is defined for an
entire function of order t as

o(f) = limsup log(M;(r))

t )
7—+00 r

with ¢ < +o00. Of course the same notion may be defined for f € A( IK). Given f € A°( K)

1
of order ¢, we set o(f) = lim sup w and o(f) is called the type of growth of f.

r——+oo



Theorems 10, 11, 12 are proven in [3].

Theorem 10: Let f, g € A°(K). Then o(fg) < o(f) +o(g) and

o(f+g) <max(a(f),a(9)). If p(f) = plg), then max(o(f),o(g)) < o(fg) and if c[f[(r) =
lg|(r) with ¢ > 0 when r is big enough, then o(f) > o(g).

Corollary 10.1: Let f, g € A°(IK) be such that p(f) = p(g) and o(f) > o(g). Then
o(f+g)=0a(f)

Theorem 11: Let f(z) = Z anz" € A°( IK) such that p(f) €]0,+oo[. Then
n=0

o()p(f)e = limsup (n {/Jan]?).

n—-+o0o

Notation: Let f € A(K), let (an)ne mw be the sequence of zeros of f with |a,| <
lan+1], m € IN and for each n € IN, let w,, be the multiplicity order of a,,. For every
r > 0, let k(r) be the integer such that |a,| < r Vn < k(r) and |a,| > r Vn > k(r). . We

set (f,r) = LED and o(f,r) = SR walos(r) “log(en))

rt n=0 r

Lemma L : Let g, h be the real functions defined in ]0,+o0[ as g(x) = emT_l and
h(z) = 1_me with t > 0. Then:

i) inf{|g(z)| |z > 0} =¢.

it) sup{|h(x)| |z > 0} =t.

Theorem 12: Let f € A°( IK) be not identically zero. Then

p(Na(f) < U(F) < p(f) (eaf) = ().
Moreover, if ¥(f) = lim,_, 4 o i(pif;) or if o(f) = lim,_ 4 oo %’ then

() = p(flo(f)-

Proof: Without loss of generality we can assume that f(0) # 0. Let ¢t = p(f) and set
¢ =log(|f(0]). Let (an)ne ~ be the sequence of zeros of f with |a,| < |ant1]|, » € IN and
for each n € IN, let w,, be the multiplicity order of a,,. For every r > 0, let k(r) be the
integer such that |a,| < r Vn < k(r) and |a,| > r Yn > k(r). Then by Theorem A, we

have log(|f|(r)) = ¢+ 22(:7% wy, (log(r) — log(|ax|)) hence

<£ + ot} wn(log(r) — log(|an|)) )

o(f) = limsup ;
-

r— 400

Given r > 0, set ¢, = |a,|, and let us keep the notations above. Then

(1) o(f) =limsupo(f,r), ¥(f)=limsupy(f,r).

r—+4o00 r—400



We will first show the inequality p(f)o(f) < ¥(f). By (1) we can derive

k(re™®) _
wn (log(r) — log(re™))
U(f? T) S Z rt
n=0
k(re™<) _
wy,(log(re=® —log(cy)) Wy,
+ 2 ; « >,
n=0 " k(re=o)<n>k(r) "
hence
k(re™®) k(re™®) -
wy, wy, (log(re=* —log(cy)) Wy,
o(f;r)<a > —+ . ta 3 =
n=0 n=0 k(re—®)<n>k(r)
k(re™®) k(re™%) _
n wy, (log(re= —log(cy,)) Wy,
e 3 ey S mlogeet Slogen) 5
n=0 n=0 k(re—®)<n>k(r)
hence
k(re™®) k(re™®) _
Wn i wp,(log(re=* —log(cy))
A ga 3 g S e
n=0 n=0
ta 3 Fea > E
0<n<k(r) " 0<n<k(re—)
hence
k(re™ ) _
—ta wn(log(re a) — log(cn)) Wn,
o(f,r)<e Z (re—oy: + Z o
n=0 0<n<k(r)

Thus we have

Passing to superior limits

o(fir) < e "o(fre™®) +ap(f,r).
on both sides, we obtain o(f) < e *o(f) + ar(f) therefore

M < 9(f). That holds for every o > 0, hence by Lemma L ii), we obtain

(2)

(f) = p(fa(f).

We will now show the inequality ¥ (f) < p(f)(ea(f) — a(f)). Let us fix a > 0. We

can write

k(zw)

o(fir) =Y

n=0

wy,(log(r) —log(Z%))




hence

hence

and hence

o(f,r) = a(f,re™) +e o (fre”?).

Therefore, we can derive

and therefore

That holds for every o > 0 and hence, when taw = 1, we obtain ¢(f) < p(f)(ea(f) —a(f))

ac™(f) < lmsup (o(f,r) — e~ (f,re=)))

r—400

ae " Y(f) < o(f) —e " 5(f)).

which is the left hand inequality of the general conclusion.

Now, suppose that o(f) = lim,_, 4

- log“rM. Then we now have

«

by (2), ¥(f) = p(f)o(f).
Now, suppose that

We can obviously find a sequence (r,)ne N in ]0,4+o00[ of limit +oo such that o(f)

k(r)

W) = Jim 30T = lm u(fir)

lim, 400 o(f,7ne” ). Then, by (1) we have

o(fra) 2 ae” U(f, 22) + e (f, %)

7

limsup,_, o ¥(f,r) < o(f) <%> and hence ¥(f) < o(f) (%) That holds for every

a > 0 and then by Lemma L i) we obtain ¢ (f) < to(f), i.e. ¥(f) < p(f)o(f) and hence



hence
limsup o (f,r,) > ae " (f) + e "o (f)

n—-+00

and hence

o(f) = ae™"Y(f) +e "o (f)

therefore ¥ (f) < (eto;_1>a(f). Finally, by Lemma L i) again we have, ¥/(f) < p(f)o(f)
and hence by (2), (f) = p(f)o ().

Corollary 12.1: Let f € A°( IK) be not identically zero. Then

p(f)o(f) <(f) <ep(f)a(f).

Corollary 12.2: Let f € A°( IK) be not identically zero. Then (f) is finite if and only
if so is o(f).

Remark: The conclusions of Theorem 12 hold for ¢(f) = o(f) = +oc.

We will now present Example 3 where neither ¢ (f) nor o(f) are obtained as limits
but only as superior limits: we will show that the equality ¥ (f) = p(f)o(f) holds again.

Example 3: Let r, =2" n € IN and let f € A( IK) have exactly 2" zeros in C'(0,7,)
and satisfy f(0) = 1. Then q(f,r,) = 2" —1V¥n € IN. We can see that the function h(r)

g+l _ 9
defined in [ry,r,+1[ by h(r) = at/:r) is decreasing and satisfies h(r,) = T and
r n
. h(r) 2nftl—2 . o .
lim = . Consequently, limsup h(r) = 2 and lim inf h(r) = 1. Particularly,
r=Trpt1 T on+1 r——4o00 r— 400

by Theorem 4, we have p(f) = 1 and of course ¥(f) = 2. On the other hand, we can show
that o(f) = 2.

Now, Theorem 12 and Example 3 suggest the following conjecture:

Conjecture 1:  Let f € A°(IK) be such that either o(f) < +oo or ¥(f) < +oo. Then
(f) = p(f)o(f).

Although we can’t yet prove Conjecture C1, we will give ¢(f) two bounds.
Notation: Henceforth, we will denote by §(¢) the solution of £.

Now, by Corollary 9.1, we can also state Corollary 13.3:

Corollary 12.3: Let f = § € M(IK), with g, h € A( ) not identically zero and be
such that h has finite order of growth and and finite type of growth. Then f' takes every
value b € K infinitely many times.



We will now consider derivatives.
Theorem 13: Let f € A( IK) be not identically zero. Then p(f) = p(f').

Corollary 13.1 The deriwation on A( IK) restricted to the algebra A( IK,t) (resp. to
AY( K)) provides that algebra with a derivation.

In complex analysis, it is known that if an entire function f has order ¢ < 400, then
f and f’ have same type. We will check that it is the same here.

Theorems 14, 15, 16 are proven in [3].

Theorem 14: Let f € A( IK) be not identically zero, of order t €]0,+oo[. Then o(f) =
o(f')-

By Theorems 12, 14, 15 we can now derive
Corollary 14.1:  Let f € A°( IK) be not identically zero, of order t < +oc. Then

p(flo(f) <o(f') <ep(fo(f),

[W(f") = (fle < (e =1)p(f)o(f),
A< m<e-1

Corollary 14.2:  Let f € A°(IK) be not identically zero, of order t < +oo. Then
o(F)oh) <6(r) < eplNo(f). ot = tim T oripu(ry = i 10 phe

r——+oo

W(f) < Y(f'). Moreover, in each of the following hypothesis, we have ¥ (f') = ¥(f) =
ep(f)o(f):
i) w(f) = TEIEOO W(f,r) and Y(f') = hm W(f',r)
9 0(f) = T a(f.r) and o(f') = T o(f'),
iii) $(f) = lim o(f,r) and o(f) = lim o(f'r),

r— 400

i) o(f) = lim_o(f,r) and () = Tim 6(f'7).

r—+00

)

Now, by Theorems 14 and 15 we can state
Corollary 14.3

Corollary 14.3:  Let f = § € M(IK) be not identically zero, with g, h € A( K),
having all residues null and such that h has finite order of growth and finite type of growth.
Then f takes every value b € 1K infinitely many times.

Conjecture 1 suggests and implies the following Conjecture 2:
Conjecture 2: ¢ (f) =(f) Vf € A°( K).

Theorem 15: Let f, g € A( IK) be transcendental and of same ordert € [0, 4+o0c[. Then

for every e > 0,

(req(g, r)
q(f:r)

9

lim sup ) = +0o0.

r——+oo



Remark: Comparing the number of zeros of f’ to this of f inside a disk is very uneasy.
Now, we can give some precisions. By Theorem 14 we can derive Corollary 16.1.

Corollary 15.1: Let f € A°( IK) be not affine. Then for every € > 0, we have

: req(f'sr)y
e () =

and

. rq(f,r)y _
e (g ) =

Corollary 15.2: Let f € A°( K). Then (f) is finite if and only if so is ¥ (f').

We can now give a partial solution to a problem that arose in the study of zeros of
derivatives of meromorphic functions: given f € A( IK), is it possible that f’ divides f in
the algebra A( IK)?

Theorem 16: Let f € A( K)\ IK[z]. Suppose that for some number s > 0 we have
limsup |q(f,r)|r® > 0 (where |q(f,7)| is the absolute value of q(f,r) defined on IK). Then

r——4oo
f" has infinitely many zeros that are not zeros of f.

Remark: It is possible to deduce the proof of Theorem 14 by using Lemma 1.4 in [3].

Corollary 16.1: Let f € A°( KK). Then f’ has infinitely many zeros that are not zeros
of f.

q(f,r)

Proof: Indeed, let f be of order ¢. By Theorem 4 limsup ——— is a finite number and
r——+00 r

therefore lim sup |q(f,7)|r" > 0.

r—>+00
Corollary 16.2 Let f € A°( K). Then f' does not divide f in A( K).

Corollary 16.3 is a partial solution for the p-adic Hayman conjecture when n = 1,
which is not solved yet.

Corollary 16.3 Let f € M( IK) be such that

1
limsup |g(=,7r)|r® >0
r—+400 f

for some s > 0. Then ff' has at least one zero.

10



1
Proof: Indeed, suppose that ff’ has no zero. Then f is of the form ’ with h € A( IK)
/

and f/ = —— has no zero, hence every zero of h' is a zero of h, a contradiction to Theorem

16 since limsup, _, , . |q(h,7)|r® > 0.

Remarks: Concerning complex entire functions, we check that the exponential is of order
1 but is divided by its derivative in the algebra of complex entire functions.
It is also possible to derive Corollary 17.3 from Theorem 1 in the paper by Jean-Paul

q(f,r) .

1S a

1
Bezivin, Kamal Boussaf and me. Indeed, let g = ? By Theorem 4, lim sup ;
r—-4oo r

finite number. Consequently, there exists ¢ > 0 such that ¢(f,r) < er® Vr > 1 and therefore

the number of poles of g in d(0, r) is upper bounded by cr* whenever r > 1. Consequently,

we can apply Theorem 8 and hence the meromorphic function ¢’ has infinitely many zeros.

Now, suppose that f’ divides f in A( IK). Then every zero of f’ is a zero of f with an
/

order superior, hence -7 has no zero, a contradiction.

If the residue characteristic of IK is p # 0, we can easily construct an example of
entire function f of infinite order such that f’ does not divide f in A( K). Let f(z) =

H (1-— i)pn with |a,| = n+ 1. We check that ¢(f,n+ 1) = Zpk is prime to p for
7%

n=0 k=0

every n € IN. Consequently, Theorem 17 shows that f is not divided by f’ in A( IK). On

the other hand, fixing t > 0, we have

q(f,n+1) p"
(nr 1) = (1)

hence

=400 Vt >0

lim sup q(f;T)

r—+oo r
therefore, f is not of finite order.

Theorem 16 suggests the following conjecture:

Conjecture 3 Given f € A( IK) (other than
(x —a)™, a€ K, me IN) there exists no h € A( IK) such that f = f'h.
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