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p-adic meromorphic functions f ′P ′(f), g′P ′(g) sharing a small function,
ignoring multiplicity

Kamal Boussaf and Alain Escassut

Abstract. Let K be a complete algebraically closed p-adic field of characteristic zero. Let f, g
be two transcendental meromorphic functions in the whole field K or meromorphic functions in

an open disk that are not quotients of bounded analytic functions. Let P be a polynomial of

uniqueness for meromorphic functions in K or in an open disk and let α be a small meromorphic
function with regard to f and g. If f ′P ′(f) and g′P ′(g) share α ignoring multiplicity orders,

then we show that f = g provided that the multiplicity order of zeros of P ′ satisfies certain

inequalities. If α is a Moebius function or a non-zero constant, we can obtain more general
results on P and if f is an analytic funtion in K or in the disk, we also obtain more precise

results. All results follow previous ones obtained for similar meromorphic functions sharing a

small function, counting multiplicity. That comes after similar results obtained by Buy Thi Kieu
Oanh and Ngo Thi Thu Thuy for complex functions and results obtained by the present authors

with Jacqueline Ojeda, counting multiplicity.

1. Introduction and Main Results

Let f, g be two meromorphic functions in a p-adic field. Here we study polynomials P such
that, when f ′P ′(f) and g′P ′(g) share a small function α, then f = g. Problems of uniqueness on
meromorphic functions were examined first in C [3], [11], [14], [16], [17], [18], [23], [24], [25] and
next in a p-adic field [1], [2], [5], [7], [8], [12], [13], [19], [20], [21], [22]. After examining problems
of the form P (f) = P (g), several studies were made on the equality f ′P ′(f) = g′P ′(g), or value
sharing questions: if f ′P ′(f) and g′P ′(g) share a value, or a small function counting multiplicity,
do we have f = g? Here we will try to generalize results previously obtained in [2] by supposing
that f ′P ′(f) and g′P ′(g) share a value, or a small function ignoring multiplicity. That is similar
to a work by Buy Thi Kieu Oanh and Ngo Thi Thu concerning complex meromorphic functions.
But in the present paper as in [2] we can also examine the situation for meromorphic functions
inside an open disk.

Let K be an algebraically closed field of characteristic zero, complete for an ultrametric absolute
value denoted by | . |. We denote by A(K) the K-algebra of entire functions in K, by M(K) the
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field of meromorphic functions in K, i.e. the field of fractions of A(K) and by K(x) the field of
rational functions.

Let a ∈ K and R ∈]0,+∞[. We denote by d(a,R) the closed disk {x ∈ K : |x − a| ≤ R} and
by d(a,R−) the “open” disk {x ∈ K : |x− a| < R}. We denote by A(d(a,R−)) the set of analytic

functions in d(a,R−), i.e. the K-algebra of power series
∞∑
n=0

an(x− a)n converging in d(a,R−) and

by M(d(a,R−)) the field of meromorphic functions inside d(a,R−), i.e. the field of fractions of
A(d(a,R−)). Moreover, we denote by Ab(d(a,R−)) the K - subalgebra of A(d(a,R−)) consisting
of the bounded analytic functions in d(a,R−), i.e. which satisfy sup

n∈N
|an|Rn < +∞. And we denote

by Mb(d(a,R−)) the field of fractions of Ab(d(a,R−)). Finally, we denote by Au(d(a,R−)) the
set of unbounded analytic functions in d(a,R−), i.e. A(d(a,R−)) \ Ab(d(a,R−)). Similarly, we set
Mu(d(a,R−)) =M(d(a,R−)) \Mb(d(a,R−)).

The problem of value sharing a small function by functions of the form f ′P ′(f), counting
multiplicity, was examined first when P was just of the form xn [17], [19]. Next, it was examined
when P was a polynomial such that P ′ had exactly two distinct zeros [16], [18], [21], both in
complex analysis and in p-adic analysis. In [16], [18] the functions were meromorphic on C, with a
small function that was a constant or the identity. In [21], the problem was considered for analytic
functions in the field K: on the one hand for entire functions and on the other hand for unbounded
analytic functions in an open disk.

Actually solving a value sharing problem involving f ′P ′(f), g′P ′(g) requires to know polyno-
mials of uniqueness P for meromorphic functions.

In [21] its author studied several problems of uniqueness and particularly the following:
Let f, g ∈ A(K) be transcendental

(
resp. Let f, g ∈ Au(d(0, R−))

)
and α ∈ A(K)

(
resp.

α ∈ Au(d(0, R−))
)

be a small function, such that fn(f − a)kf ′ and gn(g− a)kg′ share α, counting
multiplicity, with n, k ∈ N and a ∈ K \ {0}. Do we have f = g?

Here we consider functions f, g ∈M(K) or f, g ∈M(d(a,R−)) and polynomials of uniqueness
P : we must only assume certain hypotheses on the multiplicity order of the zeros of P ′. The method
for the various theorems we will show is the following: assuming that f ′P ′(f) and g′P ′(g) share
a small function, we first prove that f ′P ′(f) = g′P ′(g). Next, we derive P (f) = P (g). And
then, when P is a polynomial of uniqueness for the functions we consider, we can conclude f = g.
Similar reasonings were made in [2], where the major hypothesis was that f ′P ′(f) and g′P ′(g)
share a small function counting multiplicity. Here we erase that hypothesis and only suppose that
f ′P ′(f) and g′P ′(g) shared a small function ignoring multiplicity.

Now, in order to define small functions, we have to briefly recall definitions of the classical
Nevanlinna theory in the field K and a few specific properties of ultrametric analytic or meromor-
phic functions.

Let log be a real logarithm function of base b > 1 and let f ∈M(K)
(
resp. f ∈M(d(0, R−))

)
having no zero and no pole at 0. Let r ∈]0,+∞[

(
resp. r ∈]0, R[

)
and let γ ∈ d(0, r). If f has a

zero of order n at γ, we put ωγ(f) = n. If f has a pole of order n at γ, we put ωγ(f) = −n and
finally, if f(γ) 6= 0,∞, we set ωγ(f) = 0.

We denote by Z(r, f) the counting function of zeros of f in d(0, r), counting multiplicity, i.e.
we set

Z(r, f) =
∑

ωγ(f)>0, |γ|≤r

ωγ(f)(log r − log |γ|).
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Similarly, we denote by Z(r, f) the counting function of zeros of f in d(0, r), ignoring multi-
plicity, and set

Z(r, f) =
∑

ωγ(f)>0, |γ|≤r

(log r − log |γ|).

In the same way, we set N(r, f) = Z
(
r,

1
f

) (
resp. N(r, f) = Z

(
r,

1
f

))
to denote the counting

function of poles of f in d(0, r), counting multiplicity (resp. ignoring multiplicity).
For f ∈ M(d(0, R−)) having no zero and no pole at 0, the Nevanlinna function is defined by

T (r, f) = max
{
Z(r, f) + log |f(0)|, N(r, f)

}
.

Now, we must recall the definition of a small function with respect to a meromorphic function
and some pertinent properties.

Definition. Let f ∈ M(K)
(
resp. let f ∈ M(d(0, R−))

)
such that f(0) 6= 0,∞. A function

α ∈ M(K)
(
resp. α ∈ M(d(0, R−))

)
having no zero and no pole at 0 is called a small function

with respect to f , if it satisfies lim
r→+∞

T (r, α)
T (r, f)

= 0
(

resp. lim
r→R−

T (r, α)
T (r, f)

= 0
)

.

If 0 is a zero or a pole of f or α, we can make a change of variable such that the new origin is
not a zero or a pole for both f and α. Thus it is easily seen that the last relation does not really
depend on the origin.

We denote by Mf (K)
(
resp. Mf (d(0, R−))

)
the set of small meromorphic functions with

respect to f in K
(
resp. in d(0, R−)

)
.

Remark 1. Thanks to classical properties of the Nevanlinna function T (r, f) with respect to
the operations in a field of meromorphic functions, such as T (r, f + g) ≤ T (r, f) + T (r, g) and
T (r, fg) ≤ T (r, f) + T (r, g), for f, g ∈ M(K) and r > 0, it is easily proved that Mf (K)

(
resp.

Mf (d(0, R−))
)

is a subfield of M(K)
(
resp. M(d(0, R−))

)
and that M(K)

(
resp. M(d(0, R))

)
is

a transcendental extension of Mf (K)
(
resp. of Mf (d(0, R−))

)
[9].

Let us remember the following definition.

Definition. Let f, g, α ∈M(K)
(
resp. let f, g, α ∈M(d(0, R−))

)
. We say that f and g share the

function α I.M., if f − α and g − α have the same zeros in K
(
resp. in d(0, R−)

)
. Similarly, we

say f and g share the function α C.M., if f − α and g − α have the same zeros in K
(

resp. in
d(0, R−)

)
with the same multiplicity, in K (resp. in d(0, R−)).

Recall that a polynomial P ∈ K[x] is called a polynomial of uniqueness for a class of functions
F if for any two functions f, g ∈ F the property P (f) = P (g) implies f = g.

The definition of polynomials of uniqueness was introduced in [17] by P. Li and C. C. Yang
and was studied in many papers [10], [11] for complex functions and [1], [5], [7], [12], [13], [15],
[22], for p-adic functions.

Actually, in a p-adic field, we can obtain various results, not only for functions defined in the
whole field K but also for functions defined inside an open disk because the p-adic Nevanlinna
Theory works inside a disk, for functions of Mu(d(0, R−)).

Let us recall Theorem A [7], [9], [22]:

Theorem A. Let P ∈ K[x] be such that P ′ has exactly two distinct zeros a1 of order k1 and a2 of
order k2. Then P is a polynomial of uniqueness for A(K). Moreover, if min{k1, k2} ≥ 2, then P
is a polynomial of uniqueness for M(K).
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Theorem A was first proved in [22] with the addiditional hypothesis P (a1) 6= P (a2). Actually
this hypothesis is useless because, as showed in Lemma 10 [7], (see also [9]) the equality P (a1) =
P (a2) is impossible since P ′ only has two distinct zeros.

Notation: Let P ∈ K[x] \K and let Ξ(P ) be the set of zeros c of P ′ such that P (c) 6= P (b) for
every zero b of P ′ other than c. We denote by Φ(P ) the cardinal of Ξ(P ).

Remark 2. If deg(P ) = q then Φ(P ) ≤ q − 1.

From [7] we have the following results:

Theorem B. Let d(a,R−) be an open disk in K and P ∈ K[x]. If Φ(P ) ≥ 2 then P is a
polynomial of uniqueness for A(K). If Φ(P ) ≥ 3 then P is a polynomial of uniqueness for both
Au(d(a,R−)) and M(K). If Φ(P ) ≥ 4 then P is a polynomial of uniqueness for Mu(d(a,R−)).

And from [21] we have:
Theorem C. Let P ∈ K[x] be of degree n ≥ 6 be such that P ′ only has two distinct zeros, one of
them being of order 2. Then P is a polynomial of uniqueness for Mu(d(0, R−)).

We can now state our main theorems.

Theorem 1. Let P be a polynomial of uniqueness forM(K), let P ′ = b(x− a1)n
l∏
i=2

(x− ai)ki

with b ∈ K∗, l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l− 1 and let k =
∑l
i=2 ki. Suppose P satisfies the following

conditions:

n ≥ 18 + max(0, 10− k2) +
l∑
i=3

max(0, 7− ki),

n ≥ k + 2,
if l = 2, then n 6= 2k, 2k + 1, 3k + 1,
if l = 3, then n 6= 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α ∈ Mf (K) ∩Mg(K) be non-identically zero. If

f ′P ′(f) and g′P ′(g) share α I.M., then f = g.

By Theorem B, we have Corollary 1.1:

Corollary 1.1 Let P ∈ K[x] satisfy Φ(P ) ≥ 3, let P ′ = b(x− a1)n
l∏
i=2

(x− ai)ki with b ∈ K∗,

l ≥ 3, ki ≥ ki+1, 2 ≤ i ≤ l − 1 and let k =
∑l
i=2 ki. Suppose P satisfies the following conditions:

n ≥ 18 + max(0, 10− k2) +
l∑
i=3

max(0, 7− ki),

n ≥ k + 2,
if l = 3, then n 6= 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α ∈ Mf (K) ∩Mg(K) be non-identically zero. If

f ′P ′(f) and g′P ′(g) share α I.M., then f = g.

Example: Let P ′(x) = x19(x − 1)10(x − 2)7. Consider the polynomial function P (t) defined in
[0,+∞[. Clearly, P ′(t) < 0 ∀t ∈]0, 1[ hence P (1) < 0. At the point 1, P ′ has a zero of even order,
hence P remains decreasing in ]1, 2[ hence P (2) < P (1) < P (0). Therefore, Φ(P ) = 3 and hence,
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P is a polynomial of uniqueness forM(K). Now, consider two functions f, g ∈M(K) and a small
function α. If f ′P ′(f) and g′P ′(g) share α I.M., then f = g.

And by Theorem A we also have Corollary 1.2.

Corollary 1.2 Let P ∈ K[x] be such that P ′ is of the form b(x− a1)n(x− a2)k with k ≥ 2 and
n ≥ 18 + max(0, 10− k),
n ≥ k + 2,
n 6= 2k, 2k + 1, 3k + 1.
Let f, g ∈ M(K) be transcendental and let α ∈ Mf (K) ∩Mg(K) be non-identically zero. If

f ′P ′(f) and g′P ′(g) share α I.M., then f = g.

Example: Let P ′(x) = x18(x−1)10. By Theorem A, P is a polynomial of uniqueness forM(K).
Now, consider two functions f, g ∈ M(K) and a small function α ∈ Mf (K) ∩Mg(K). If f ′P ′(f)
and g′P ′(g) share α I.M., then f = g.

Theorem 2. Let P be a polynomial of uniqueness for M(K), let

P ′ = b(x− a1)n
l∏
i=2

(x− ai)ki

with b ∈ K∗, l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l− 1 and let k =
∑l
i=2 ki. Suppose P satisfies the following

conditions:

n ≥ 17 + max(0, 10− k2) +
l∑
i=3

max(0, 7− ki),

n ≥ k + 2,
if l = 2, then n 6= 2k, 2k + 1, 3k + 1,
if l = 3, then n 6= 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′P ′(f) and g′P ′(g)

share α I.M., then f = g.

By Theorem B, we have Corollary 2.1.

Corollary 2.1 Let P ∈ K[x] satisfy Φ(P ) ≥ 3, let P ′ = b(x− a1)n
l∏
i=2

(x− ai)ki with b ∈ K∗,

l ≥ 3, ki ≥ ki+1, 2 ≤ i ≤ l − 1 and let k =
∑l
i=2 ki. Suppose P satisfies the following conditions:

n ≥ 17 + max(0, 10− k2) +
l∑
i=3

max(0, 7− ki),

n ≥ k + 2,
if l = 3, then n 6= 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′P ′(f) and g′P ′(g)

share α I.M., then f = g.

Example: Let P ′(x) = x18(x − 1)10(x − 2)6. Consider the polynomial function P (t) defined in
[0,+∞[. Clearly, P ′(t) > 0 ∀t ∈]0, 1[∪]1, 2[ hence P (2) > P (1) > P (0). Therefore, Φ(P ) = 3 and
hence, P is a polynomial of uniqueness for M(K). On the other hand, P satisfies the hypotheses
of Corollary 2.1. Now, consider two functions f, g ∈M(K) and a Moebius function α. If f ′P ′(f)
and g′P ′(g) share α I.M., then f = g.

And by Theorem A, we have Corollary 2.2.
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Corollary 2.2 Let P ∈ K[x] be such that P ′ is of the form b(x− a1)n(x− a2)k with min(k, n) ≥ 2
and with b ∈ K∗. Suppose P satisfies the following conditions:

n ≥ 17 + max(0, 10− k),
n ≥ k + 2,
n 6= 2k, 2k + 1, 3k + 1,
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′P ′(f) and g′P ′(g)

share α I.M., then f = g.

Example: Let P ′(x) = x17(x− 1)10. By Theorem A, P is a polynomial of uniqueness forM(K)
and it satisfies all hypotheses of Corollary 2.2. Now, consider two functions f, g ∈ M(K) and a
Moebius function α. If f ′P ′(f) and g′P ′(g) share α I.M., then f = g.

Theorem 3. Let P be a polynomial of uniqueness for M(K), let

P ′ = b(x− a1)n
l∏
i=2

(x− ai)ki

with b ∈ K∗, l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l− 1 and let k =
∑l
i=2 ki. Suppose P satisfies the following

conditions:
n ≥ k + 2,

n ≥ 17 + max(0, 10− k2) +
l∑
i=3

max(0, 7− ki).

Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′P ′(f) and g′P ′(g)
share α I.M., then f = g.

By Theorem B, we have Corollary 3.1.

Corollary 3.1 Let P ∈ K[x] satisfy Φ(P ) ≥ 3, let P ′ = b(x− a1)n
l∏
i=2

(x− ai)ki with b ∈ K∗,

l ≥ 3, ki ≥ ki+1, 2 ≤ i ≤ l − 1 and let k =
∑l
i=2 ki. Suppose P satisfies the following conditions:

n ≥ k + 2,

n ≥ 17 + max(0, 10− k2) +
l∑
i=3

max(0, 7− ki).

Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′P ′(f) and g′P ′(g)
share α I.M., then f = g.

Example: Let P ′(x) = x23(x − 1)6(x − 2)5. Consider the polynomial function P (t) defined in
[0,+∞[. Clearly, P ′(t) < 0 ∀t ∈]0, 1[∪]1, 2[ hence P (2) < P (1) < P (0). Therefore, Φ(P ) = 3 and
hence, P is a polynomial of uniqueness for M(K). On the other hand, P satisfies the hypotheses
of Corollary 3.1. Now, consider two functions f, g ∈ M(K) and a constant α. If f ′P ′(f) and
g′P ′(g) share α I.M., then f = g. Here we notice that n = 2k + 1 = 23 but this hypothesis is not
excluded in Theorem 3.

And by Theorem A, we have Corollary 3.2

Corollary 3.2 Let P ∈ K[x] be such that P ′ is of the form b(x− a1)n(x− a2)k with k ≥ 2 and
with b ∈ K∗. Suppose P satisfies the following conditions:

n ≥ 17 + max(0, 10− k),
n ≥ k + 2,
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Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′P ′(f) and g′P ′(g)
share α I.M., then f = g.

Example: Let P ′(x) = x18(x− 1)9. By Theorem A, P is a polynomial of uniqueness for M(K)
and it satisfies all hypotheses of Corollary 3.2. Now, consider two functions f, g ∈ M(K) and a
constant α 6= 0. If f ′P ′(f) and g′P ′(g) share α I.M., then f = g. Here we notice that n = 2k by
this hypothesis is not excluded in Corollary 3.2.

Theorem 4. Let a ∈ K and R > 0. Let P be a polynomial of uniqueness for Mu(d(a,R−))
and let

P ′ = b(x− a1)n
l∏
i=2

(x− ai)ki

with b ∈ K∗, l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l−1 and let k =
∑l
i=2 ki. Suppose P satisfies the following

conditions:

n ≥ 18 + max(0, 10− k2) +
l∑
i=3

max(0, 7− ki),

n ≥ k + 3,
if l = 2, then n 6= 2k, 2k + 1, 3k + 1,
if l = 3, then n 6= 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈ Mu(d(a,R−)) and let α ∈ Mf (d(a,R−)) ∩Mg(d(a,R−)) be non-identically zero.

If f ′P ′(f) and g′P ′(g) share α I.M., then f = g.

By Theorem B we can state Corollary 4.1.

Corollary 4.1 Let a ∈ K and R > 0. Let P ∈ K[x] satisfy Φ(P ) ≥ 4, let P ′ = b(x− a1)n
l∏
i=2

(x− ai)ki

with b ∈ K∗, l ≥ 4, ki ≥ ki+1, 2 ≤ i ≤ l−1 and let k =
∑l
i=2 ki. Suppose P satisfies the following

conditions:

n ≥ 18 + max(0, 10− k2) +
l∑
i=3

max(0, 7− ki),

n ≥ k + 3,
Let f, g ∈ Mu(d(a,R−)) and let α ∈ Mf (d(a,R−)) ∩Mg(d(a,R−)) be non-identically zero.

If f ′P ′(f) and g′P ′(g) share α I.M., then f = g.

Example: Let P ′(x) = x23(x − 1)10(x − 2)4(x − 3)5. Consider the polynomial function P (t)
defined in [0,+∞[. Clearly, P ′(t) < 0 ∀t ∈]0, 1[∪]1, 2[∪]2, 3[ hence P (3) < P (2) < P (1) < P (0).
Therefore, Φ(P ) = 4 and hence, P is a polynomial of uniqueness for M(d(a,R−)). On the other
hand, we check that P satisfies the hypotheses of Corollary 4.1. Now, consider two functions
f, g ∈Mu(d(a,R−)) and a constant α. If f ′P ′(f) and g′P ′(g) share α I.M., then f = g.

And by Theorem C we have Corollary 4.2:

Corollary 4.2 Let a ∈ K and R > 0. Let P ∈ K[x] be such that P ′ is of the form b(x− a1)n(x− a2)2

with b ∈ K∗. Suppose P satisfies
n ≥ 18 + max(0, 10− k).
Let f, g ∈ Mu(d(a,R−)) and let α ∈ Mf (d(a,R−)) ∩Mf (d(a,R−)) be non-identically zero.

If f ′P ′(f) and g′P ′(g) share α I.M., then f = g.
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Example: Let P ′(X) = x26(x − 1)2. By Theorem A, P is a polynomial of uniqueness for
M(d(a,R−)) and it satisfies all hypotheses of Corollary 4.2. Now, consider two functions f, g ∈
M(d(a,R−)) and a function α ∈ Mf (d(a,R−)) ∩Mg(d(a,R−)). If f ′P ′(f) and g′P ′(g) share α
I.M., then f = g.

Theorem 5. Let P be a polynomial of uniqueness for M(K) such that P ′ is of the form

b(x− a1)n
l∏
i=2

(x− ai) with l ≥ 3, b ∈ K∗, satisfying n ≥ 10 + 4l.

Let f, g ∈M(K) be transcendental and let α ∈Mf (K)∩Mg(K) be non-identically zero. If f ′P ′(f)
and g′P ′(g) share α I.M., then f = g.

By Theorem B, we have Corollary 5.1:

Corollary 5.1 Let P ∈ K[x] satisfy Φ(P ) ≥ 3 and be such that P ′ is of the form

b(x− a1)n
l∏
i=2

(x− ai) with l ≥ 3, b ∈ K∗ satisfying:

n ≥ 10 + 4l.
Let f, g ∈M(K) be transcendental and let α ∈Mf (K)∩Mg(K) be non-identically zero. If f ′P ′(f)
and g′P ′(g) share α I.M., then f = g.

Example: Let P ′(x) = x22(x2 − 1). Consider the polynomial function P (t) defined in [−1,+1].
Clearly, P ′(t) < 0 ∀t ∈] − 1, 0[∪]0, 1[ hence P (−1) < P (0) < P (1). Therefore, Φ(P ) = 3 and
hence, P is a polynomial of uniqueness for M(K). On the other hand, we check that P satisfies
the hypotheses of Corollary 5.1. Now, consider two functions f, g ∈ M(K) and a function α ∈
Mf (K) ∩Mg(K). If f ′P ′(f) and g′P ′(g) share α I.M., then f = g.

Theorem 6. Let a ∈ K and R > 0. Let P be a polynomial of uniqueness for Mu(d(a,R−))

such that P ′ is of the form P ′ = b(x− a1)n
l∏
i=2

(x− ai) with l ≥ 3, b ∈ K∗ satisfying:

n ≥ 10 + 4l.
Let f, g ∈ Mu(d(a,R−)) and let α ∈ Mf (d(a,R−)) ∩Mg(d(a,R−)) be non-identically zero. If
f ′P ′(f) and g′P ′(g) share α I.M., then f = g.

By Theorem B, we have Corollary 6.1:

Corollary 6.1 Let a ∈ K and R > 0. Let P ∈ K[x] satisfy Φ(P ) ≥ 4 and be such that P ′ is of

the form P ′ = b(x− a1)n
l∏
i=2

(x− ai) with l ≥ 4, b ∈ K∗ and n ≥ 10 + 4l.

Let f, g ∈ Mu(d(a,R−)) and let α ∈ Mf (d(a,R−)) ∩Mg(d(a,R−)) be non-identically zero.
If f ′P ′(f) and g′P ′(g) share α I.M., then f = g.

Example: Let P (x) =
x30

30
− 2x29

29
− x28

28
+

2x27

27
. Then P ′(x) = x29 − 2x28 − x27 + 2x26 =

x26(x− 1)(x+ 1)(x− 2). We check that:
P (0) = 0,

P (1) =
1
30
− 2

29
− 1

28
+

2
27
6= 0,

P (−1) =
1
30

+
2
29
− 1

28
− 2

27
6= 0, P (1), and P (2) =

230

30
− 230

29
− 228

28
+

228

27
6= 0, P (1), P (−1).
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Then Φ(P ) = 4. So, P is a polynomial of uniqueness for bothM(K) andM(d(0, R−)). Moreover,
we have n = 26, l = 4, hence we can apply Corollaries 5.1 and 6.1.

Given f, g ∈ M(K) transcendental or f, g ∈ Mu(d(0, R−)) such that f ′P ′(f) and g′P ′(g)
share a small function α I.M., we have f = g.

Theorem 7. Let P be a polynomial of uniqueness for M(K) such that P ′ is of the form

P ′ = b(x− a1)n
l∏
i=2

(x− ai) with l ≥ 3, b ∈ K∗ satisfying n ≥ 9 + 4l.

Let f, g ∈M(K) be transcendental and let α be a Moebius function or a non-zero constant. If
f ′P ′(f) and g′P ′(g) share α I.M., then f = g.

Example: Let P ′(x) = x21(x2− 1). Then as in the previous example, P is a uniqueness polyno-
mial for M(K). Let f, g ∈ M(K) be transcendental and let α ∈ M(K) be a Moebius function or
a non-zero constant such that f ′P ′(f), g′P ′(g) share α I.M. Then, f = g.

Theorem 8. Let f, g ∈ M(K) be transcendental and let α ∈ Mf (K) ∩ Mg(K) be non-
identically zero. Let a ∈ K \ {0}. If f ′fn(f − a) and g′gn(g − a) share the function α I.M. and

if n ≥ 18, then either f = g or there exists h ∈ M(K) such that f =
a(n+ 2)
n+ 1

(hn+1 − 1
hn+2 − 1

)
h and

g =
a(n+ 2)
n+ 1

(hn+1 − 1
hn+2 − 1

)
. Moreover, if α is a constant or a Moebius function, then the conclusion

holds whenever n ≥ 17.

Inside an open disk, we have a version similar to the general case in the whole field.

Theorem 9. Let f, g ∈ Mu(d(0, R−)), and let α ∈ Mf (d(0, R−)) ∩Mg(d(0, R−)) be non-
identically zero. Let a ∈ K \ {0}. If f ′fn(f − a) and g′gn(g − a) share the function α C.M. and

n ≥ 18, then either f = g or there exists h ∈ M(d(0, R−)) such that f =
a(n+ 2)
n+ 1

(hn+1 − 1
hn+2 − 1

)
h

and g =
a(n+ 2)
n+ 1

(hn+1 − 1
hn+2 − 1

)
.

Remark 3. As already noticed in [2], in Theorems 8 and 9, the second conclusion does
occur. Indeed, let h ∈ M(K) (resp. let h ∈ Mu(d(0, R−))). Now, let us precisely define

f and g as: g = (
n+ 2
n+ 1

)
(hn+1) − 1
hn+2 − 1

)
and f = hg. Then we can see that the polynomial

P (y) =
1

n+ 2
yn+2 − 1

n+ 1
yn+1 satisfies P (f) = P (g), hence f ′P ′(f) = g′P ′(g), therefore f ′P ′(f)

and g′P ′(g) trivially share any function.

Consider now the situation with analytic functions.

Theorem 10. Let P (x) ∈ K[x] be a polynomial of uniqueness for A(K) (resp. for A(d(a,R−)))

and let P ′(x) = b(x− a1)n
l∏
i=2

(x− ai)ki with b ∈ K∗, f, g ∈ A(K) (resp. f, g ∈ A(d(0, R−)))

and be such that f ′P ′(f) and g′P ′(g) share a function α ∈ Af (K) ∩ Ag(K) I.M. (resp. α ∈
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Af (d(a,R−)) ∩ Ag(d(a,R−)) I.M.). If n ≥
l∑
i=2

ki + 2 (resp. n ≥
l∑
i=2

ki + 3) and n ≥ 8 +

max(0, 10− k2) +
l∑
i=3

max(0, 7− ki), then f = g.

Example: Let P ′(x) = x20(x − 1)10(x − 2)7. Consider the polynomial function P (t) defined
in [0,+∞[, vanishing at 0. Clearly, P ′(t) > 0 ∀t ∈]0, 1[∪]1, 2[ hence P (2) > P (1) > P (0) = 0.
Therefore, Φ(P ) = 3 and hence, P is a polynomial of uniqueness for A(d(a,R−)). On the other
hand, P satisfies the hypotheses of Theorem 8. Now, consider two functions f, g ∈ A(d(a,R−))
such that f ′P ′(f) and g′P ′(g) share a function α ∈ Af (d(a,R−)) ∩ Ag(d(a,R−)) I.M. Then f = g.

By Theorem A, we can derive this corollary:

Corollary 10.1 Let P (x) ∈ K[x] and let P ′(x) = xn(x − a)k. Let f, g ∈ A(K) be such that
f ′P ′(f) and g′P ′(g) share a function α ∈ Af (K) ∩ Ag(K) I.M. If n ≥ k + 2 and n ≥ 8 +
max(0, 10− k), then f = g.

Theorem 11. Let P (x) ∈ K[x] and let P ′(x) = b(x− a1)n
l∏
i=2

(x− ai)ki with b ∈ K∗, f, g ∈

A(K) be a polynomial of uniqueness for A(K) and be such that f ′P ′(f) and g′P ′(g) share an

affine function α or a non-zero constant α I.M. If n ≥
l∑
i=2

ki + 1 and n ≥ 7 + max(0, 10 − k2) +

l∑
i=3

max(0, 7− ki), then f = g.

2. Basic Results

All lemmas used in [2] apply again here, even those whose hypotheses involve sharing values
because they only concern sharing values IM, except Lemma 8 that we will thoroughly check.

Notation: Given two meromorphic functions f, g ∈M(K) (resp. f, g ∈M(d(0, R−))), we will
denote by Θf,g the function

f ′′

f ′
− 2f ′

f − 1
− g′′

g′
+

2g′

g − 1
.

Lemma 1. Let f ∈ M(K) (resp. Let f ∈ M(d(0, R−))), let a ∈ K, let Q(x) ∈ K[x] of degree
s. Then T (r,Q(f)) = sT (r, f) +O(1) and T (r, f ′Q(f)) ≥ sT (r, f) +O(1).

Lemma 2. Let f ∈ M(K) (resp. Let f ∈ M(d(0, R−))). Then N(r, f ′) = N(r, f) +
N(r, f), Z(r, f ′) ≤ Z(r, f) + N(r, f) − log r + O(1). Moreover, T (r, f) − Z(r, f) ≤ T (r, f ′) −
Z(r, f ′) +O(1).
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Lemma 3. Let f ∈ M(K) (resp. Let f ∈ M(d(0, R−))) and let φ =
f ′

f
. Then Z(r, φ) ≤

N(r, φ)− log r +O(1).

Lemma 4. The function Θf,g satisfies Z(r,Θf,g) ≤ N(r,Θf,g)− log r +O(1).

Lemma 5. Let f, g ∈ M(K) (resp. Let f, g ∈ M(d(0, R−))). If a is a simple zero of f − 1
and g − 1, it is a zero of Θf,g.

In order to state the next lemma, we must recall the definition of quasi-exceptional values.

(i) Let f ∈ M(K) \ K. (resp. let f ∈ Mu(d(0, R−))). Then b will be said to be a Picard
exceptional value of f (or just an exceptional value) if f(x) 6= b ∀x ∈ K (resp f(x) 6=
b ∀x ∈ d(0, R−)).

(ii) Let f ∈ M(K) \K(x). (resp. let f ∈ Mu(d(0, R−))) and let b ∈ K. Then b will be said
to be a quasi-exceptional value of f if the function f − b has a finite number of zeros in
K (resp. in d(0, R−)).

Lemma 6. Let f ∈ A(K) \ K
(
resp. let f ∈ Au(d(0, R−))

)
. Then f has no exceptional

value. If f is transcendental, it has no quasi-exceptional value. Let f ∈ M(K) \ K
(
resp. let f ∈

Mu(d(0, R−))
)
. Then f has at most one exceptional value in K. Let f ∈M(K) be transcendental(

resp. let f ∈Mu(d(0, R−))
)
. Then f has at most one quasi-exceptional value in K.

We now have to recall the ultrametric Nevanlinna Second Main Theorem in a basic form which
we will frequently use.

Let f ∈ M(K)
(
resp. f ∈ M(d(0, R−))

)
satisfy f ′(0) 6= 0,∞. Let S be a finite subset of

K and r ∈]0,+∞[
(
resp. r ∈]0, R[

)
. We denote by ZS0 (r, f ′) the counting function of zeros of f ′

in d(0, r) which are not zeros of any f − s for s ∈ S. This is, if (γn)n∈N is the finite or infinite
sequence of zeros of f ′ in d(0, r) that are not zeros of f − s for s ∈ S, with multiplicy order qn
respectively, we set

ZS0 (r, f ′) =
∑
|γn|≤r

qn(log r − log |γn|).

Theorem N. [4], [5] Let a1, ..., aq ∈ K with q ≥ 2, q ∈ N, and let f ∈ M(K) (resp. let
f ∈ M(d(0, R−))). Let S = {a1, ..., aq}. Assume that none of f, f ′ and f − aj with 1 ≤ j ≤ q,
equals 0 or ∞ at the origin. Then, for r > 0

(
resp. for r ∈]0, R[

)
, we have

(q − 1)T (r, f) ≤
q∑
j=1

Z(r, f − aj) +N(r, f)− ZS0 (r, f ′)− log r +O(1).
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3. Specific Lemmas

The following Lemma is proven in [2].

Lemma 7. Let f, g ∈ M(K) be transcendental (resp. f, g ∈ Mu(d(0, R−))). Let P (x) =
xn+1Q(x) be a polynomial such that n ≥ deg(Q) + 2 (resp. n ≥ deg(Q) + 3). If P ′(f)f ′ = P ′(g)g′

then P (f) = P (g).

Lemma 8 is proven in [2] under the assumption that F, G share 1 value C.M. But actually,
the hypothesis IM is sufficient to conclude.

Lemma 8. Let F,G ∈M(K)
(
resp. let F,G ∈M(d(0, R−))

)
be non-constant, having no zero

and no pole at 0 and sharing the value 1 I.M.
If ΘF,G = 0 and if

lim
r→+∞

(
T (r, F )− [Z(r, F ) +N(r, F ) + Z(r,G) +N(r,G)]

)
= +∞

( resp.

lim
r→R−

(
T (r, F )− [Z(r, F ) +N(r, F ) + Z(r,G) +N(r,G)]

)
= +∞)

then either F = G or FG = 1.

The following Lemma is proven in [2] and in [9], (Theorem 56.3). Here, we just have to
add the last sentence which actually is immediate: f, g can not belong to A(K) (resp. f, g ∈
Au(d(0, R−))).

Lemma 9. Let Q(x) = (x − a1)n
∏l
i=2(x − ai)ki ∈ K[x] (ai 6= aj , ∀i 6= j) with l ≥ 2 and

n ≥ max{k2, .., kl} and let k =
∑l
i=2 ki. Let f, g ∈ M(K) be transcendental (resp. f, g ∈

Mu(d(0, R−))) such that θ = Q(f)f ′Q(g)g′ is a small function with respect to f and g. We have
the following :

If l = 2 then n belongs to {k, k + 1, 2k, 2k + 1, 3k + 1}.
If l = 3 then n belongs to {k2 , k + 1, 2k + 1, 3k2 − k, .., 3kl − k}.
If l ≥ 4 then n = k + 1.
If θ is a constant and f, g ∈M(K) then n = k + 1.
Moreover, f, g can not belong to A(K) (resp. f, g ∈ Au(d(0, R−))).

Lemma 10 is known and easily checked [6], [24]:

Lemma 10. Let f, g ∈ M(K) be transcendental (resp. let f, g ∈ Mu(d(0, R−))) satisfy

(f − a)fn = (g − a)gn with a ∈ K and let h =
f

g
. If h is not identically 1, then

g =
hn − 1
hn+1 − 1

, f =
hn+1 − h
hn+1 − 1

.

Notation: Let f, g ∈M(K)
(
resp. Let f ∈M(d(0, R−))

)
be such that f(0) 6= 0,∞We denote by

Z1)(r, f) the counting function of simple zeros of f , we denote by Z(2(r, f) the counting function of
multiple zeros of f , each counted with multiplcity and we denote by Z(2(r, f) the counting function
of multiple zeros of f , each counted without multiplcity.
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In the same way, we set N1)(r, f) = Z1)(r,
1
f

), N(2(r, f) = Z(2(r,
1
f

), N (2(r, f) = Z(2(r,
1
f

).

Consequently, by definition, one has Z(r, f) = Z1)(r, f)+Z(2(r, f), N(r, f) = N1)(r, f)+N (2(r, f).
Finally we denote by Z[2](r, f) the counting fiunction of the zeros of f each counted with multi-

plicity when it is at most 2 and with multiplicity 2 when it is bigger and we setN[2](r, f) = Z[2](r,
1
f

).

Moreover, here we denote by Z0(r, f ′) the counting function of the zeros of f ′ that are not
zeros of f(f − 1).

Given f, g ∈M(K) (resp. Let f, g ∈M(d(0, R−))), we denote by Θf,g the function

f ′′

f ′
− 2f ′

f − 1
− g′′

g′
+

2g′

g − 1
.

The following Lemma 11 is proven in [24] for complex functions. Here we check that it holds
for p-adic meromorphic functions. Moreover, we enjoy an additional negative function in − log r.
This is a generalization published in [16].

Lemma 11. Let F,G ∈M(K)
(
resp. Let F, G ∈M(d(0, R−))

)
be distinct and share the value

1 I.M. If ΘF,G is not identically zero, then,

T (r, F ) ≤ N[2](r, F )) + Z[2](r, F ) +N[2](r,G) + Z[2](r,G)

+2
(
Z(r, F ) + 2N(r, F )

)
+ Z(r,G) +N(r,G)− 4 log(r) +O(1).

Proof. By hypotheses, we have Z(r, F − 1) = Z1)(r, F − 1) + Z(2(r, F − 1).

Next, we can easilly check that each simple zero of F −1 and G−1 is a zero of ΘF,G. Therefore
(2) Z1)(r, F − 1) ≤ Z(r,ΘF,G) + Z(2(r,G− 1) and similarly
(3) Z1)(r,G− 1) ≤ Z(r,ΘF,G) + Z(2(r, F − 1).

On the other hand, by Lemma 4, we have Z(r,ΘF,G) ≤ N(r,ΘF,G)−log r+O(1). Consequently,
by (2) we obtain
(4) Z1)(r, F − 1) ≤ N(r,ΘF,G) + Z(2(r,G− 1)− log r +O(1)

and similarly by (3),
(5) Z1)(r,G− 1) ≤ N(r,ΘF,G) + Z(2(r, F − 1)− log r +O(1).

Let Z0(r, F ′) denote the counting function of zeros of F ′ when F (x) 6= 0 and 1. Of course,

each pole of ΘF,G is of order 1. Next, if F has a pole of order 1, it is not a pole of
F ′′

F ′
− 2F ′

F − 1

and if F has a zero of order ≥ 2 it is not a pole of
F ′′

F ′
− 2F ′

F − 1
, and similarly for

G′′

G′
− 2G′

G− 1
.

Consequently, a pole of ΘF,G can only occur either when F − 1 or G − 1 has a zero of order
≥ 2 or when F ′ or G′ has a zero that is not a zero of F − 1 or when F or G has a pole of order
≥ 2 or when F − 1 or G − 1 has a zero of order ≥ 2. On the other hand, we can dissociate zeros
of F ′ when F (x) 6= 0 and 1 and other zeros of F ′ and similarly for G′. Therefore

(6) N(r,ΘF,G) ≤ Z0(r, F ′) + Z0(r,G′) + Z(2(r, F ) + Z(2(r,G) +N (2(r, F )

+N (2(r,G) +
(
Z(2(r, F − 1) + Z(2(r,G− 1)

)
And hence by (4) we have

(7) Z1)(r, F − 1) ≤ Z0(r, F ′) + Z0(r,G′) +N (2(r, F ) +N (2(r,G)

+Z(2(r, F − 1) + 2Z(2(r,G− 1)− log(r) +O(1)
and similarly by (5),
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(8) Z1)(r,G− 1) ≤ Z0(r, F ′) + Z0(r,G′) +N (2(r, F ) +N (2(r,G)

+Z(2(r,G− 1) + 2Z(2(r, F − 1)− log(r) +O(1).
Moreover, we have

(9) Z1)(r, F − 1) ≤ Z0(r, F ′) + Z0(r,G′) +N (2(r, F )

+N (2(r,G) + Z(2(r, F − 1) + Z(2(r,G− 1)− log(r) +O(1)
and similarly

(10) Z1)(r,G− 1) ≤ Z0(r, F ′) + Z0(r,G′) +N (2(r, F )

+N (2(r,G) + Z(2(r,G− 1) + Z(2(r, F − 1)− log(r) +O(1).
Now, since each zero of F − 1 of order ≥ 2 is a zero of F ′ that is not a zero of F , we have

Z(r, F ′) = Z0(r, F ′) + Z(2(r, F − 1)− Z(2(r, F − 1) + Z(2(r, F )− Z(2(r, F )

hence
(11) Z0(r, F ′) + Z(2(r, F − 1) + Z(2(r, F )− Z(2(r, F ) ≤ Z(r, F ′)

and similarly

(12) Z0(r,G′) + Z(2(r,G− 1) + Z(2(r,G)− Z(2(r,G) ≤ Z(r,G′).

Hence by Lemma 3 and by (11) and (12) we have

(13) Z(2(r, F − 1) ≤ −Z0(r, F ′) + Z(2(r, F )− Z(2(r, F ) + Z(r, F ) +N(r, F )− log r +O(1)

and similarly

(14) Z(2(r,G− 1) ≤ −Z0(r,G′) + Z(2(r,G)− Z(2(r,G) + Z(r,G) +N(r,G)− log r +O(1).

Now Z(r, F ) + Z(2(r, F )− Z(2(r, F ) is just Z(r, F ). Consequently, by (13 ) we obtain

(15) Z(2(r, F − 1) ≤ N(r, F ) + Z(r, F )− Z0(r, F ′)− log r +O(1)
and similarly by (14),

(16) Z(2(r,G− 1) ≤ N(r,G) + Z(r,G)− Z0(r,G′)− log r +O(1).

Consequently, by (7), (8), (15) and (16) we obtain

Z1)(r, F − 1) ≤ Z0(r, F ′) + Z0(r,G′) +N (2(r, F ) +N (2(r,G) + Z(2(r, F ) + Z(2(r,G)

+(N(r, F ) + Z(r, F )− Z0(r, F ′)) + 2((N(r,G) + Z(r,G)− Z0(r,G′)− Z0(r, F ′)
−2 log(r) +O(1)

i.e.

(17) Z1)(r, F − 1) ≤ N[2](r, F ) +N[2](r,G) + Z[2](r, F ) + Z[2](r,G)

+N(r,G) + Z(r,G)− 2 log(r) +O(1)
and similarly

(18) Z1)(r,G− 1) ≤ N[2](r, F ) +N[2](r,G) + Z[2](r, F ) + Z[2](r,G)

+N(r, F ) + Z(r, F )− 2 log(r) +O(1)

Morever, by (9) and (10) we have
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(19) Z1)(r, F − 1) ≤ N[2](r, F ) +N[2](r,G) + Z[2](r, F ) + Z[2](r,G)

− log(r) +O(1)
and similarly

(20) Z1)(r,G− 1) ≤ N[2](r, F ) +N[2](r,G) + Z[2](r, F ) + Z[2](r,G)− log(r) +O(1)

Now, Theorem N lets us write

T (r, F ) ≤ N(r, F ) + Z(r, F ) + Z(r, F − 1)− Z0(r, F ′)− log r +O(1)
hence

T (r, F ) ≤ N(r, F ) + Z(r, F ) + Z1)(r, F − 1) + Z(2(r, F − 1)− log r +O(1)
and hence, by (14) and (16), we can derive

T (r, F ) ≤ N[2](r, F ) + Z[2](r, F ) +N[2](r,G) + Z[2](r,G)

+2
(
Z(r, F ) +N(r, F )

)
+N(r,G) + Z(r,G)− 4 log r +O(1)

and similarly

T (r,G) ≤ N[2](r, F ) + Z[2](r, F ) +N[2](r,G) + Z[2](r,G)

+2
(
Z(r,G) +N(r,G)

)
+N(r, F ) + Z(r, F )− 4 log r +O(1).

�

The following Lemma is immediate:

Lemma 12. Let f ∈ M(K)
(
resp. Let f ∈ M(d(0, R−))

)
be non-constant. Let P (x) =∏l

i=1(x− ai)ki ∈ K[x] be of degree q. Then Z(r, P (f)) ≤
∑l
i=1 Z(r, f − ai) ≤ lT (r, f).

4. Proof of Theorems

Proof of the Theorems. The polynomial P is considered in theorems 1, 2, 3, 4, 5, 6, 7, 10, 11 and
we can assume a1 = 0. In Theorems 8, and 9, we call P the polynomial such that P ′(x) = xn(x−a)k

and P (0) = 0. Set F =
f ′P ′(f)

α
and G =

g′P ′(g)
α

. Clearly F and G share the value 1 C.M. Since

f, g are transcendental (resp. unbounded), we notice that so are F and G. Recall that

ΘF,G =
F ′′

F ′
− 2F ′

F − 1
− G′′

G′
+

2G′

G− 1
We will prove that under the hypotheses of each theorem, ΘF,G is identically zero.

Set F̂ = P (f), Ĝ = P (g). We notice that P (x) is of the form xn+1Q(x) with Q ∈ K[x] of
degree k. Now, with help of Lemma 2, we can check that we have

T (r, F̂ )− Z(r, F̂ ) ≤ T (r, F̂ ′)− Z(r, F̂ ′) +O(1)

Consequently, since (F̂ )′ = αF , we have

(1) T (r, F̂ ) ≤ T (r, F ) + Z(r, F̂ )− Z(r, F ) + T (r, α) +O(1),
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hence, by (1), we obtain

T (r, F̂ ) ≤ T (r, F )+(n+1)Z(r, f)+Z
(
r,Q(f)

)
−nZ(r, f)−

l∑
i=2

kiZ(r, f−ai)−Z(r, f ′)+T (r, α)+O(1).

i.e.

(2) T (r, F̂ ) ≤ T (r, F ) + Z(r, f) + Z
(
r,Q(f)

)
−

l∑
i=2

kiZ(r, f − ai)− Z(r, f ′) + T (r, α) +O(1).

and similarly,

(3) T (r, Ĝ) ≤ T (r,G) + Z(r, g) + Z
(
r,Q(g)

)
−

l∑
i=2

kiZ(r, g − ai)− Z(r, g′) + T (r, α) +O(1).

Now, using Lemma 13, it follows from the definition of F and G that

(4) Z[2](r, F ) +N[2](r, F ) ≤ 2Z(r, f) + 2
l∑
i=2

Z(r, f − ai) + Z(r, f ′) + 2N(r, f) + T (r, α) +O(1)

and similarly

(5) Z[2](r,G) +N[2](r,G) ≤ 2Z(r, g) + 2
l∑
i=2

Z(r, g − ai) + Z(r, g′) + 2N(r, g) + T (r, α) +O(1)

And particularly, if ki = 1, ∀i ∈ {2, .., l}, then

(6) Z[2](r, F ) +N[2](r, F ) ≤ 2Z(r, f) +
l∑
i=2

Z(r, f − ai) + Z(r, f ′) + 2N(r, f) + T (r, α) +O(1)

and similarly

(7) Z[2](r,G) +N[2](r,G) ≤ 2Z(r, g) +
l∑
i=2

Z(r, g − ai) + Z(r, g′) + 2N(r, g) + T (r, α) +O(1).

Suppose now that ΘF,G is not identically zero. Now, by Lemma 11, we have

T (r, F ) ≤ Z[2](r, F ) +N[2](r, F ) + Z[2](r,G) +N[2](r,G)

+2
(
N(r, F ) + Z(r, F )

)
+N(r,G) + Z(r,G)− 4 log r +O(1)

hence by (2), we obtain

T (r, F̂ ) ≤ Z[2](r, F ) +N[2](r, F ) + Z[2](r,G) +N[2](r,G) + Z(r, f) + Z(r,Q(f))

+2
(
N(r, F ) + Z(r, F )

)
+N(r,G) + Z(r,G)

−
l∑
i=2

kiZ(r, f − ai)− Z(r, f ′) + T (r, α)− 4 log r +O(1)

and hence by (4) and (5):

T (r, F̂ ) ≤ 2Z(r, f)+2
l∑
i=2

Z(r, f−ai)+Z(r, f ′)+2N(r, f)+2Z(r, g)+2
l∑
i=2

Z(r, g−ai)+Z(r, g′)+

+2
(
N(r, F ) + Z(r, F )

)
+N(r,G) + Z(r,G)
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(8) +2N(r, g) + Z(r, f) + Z(r,Q(f))−
l∑
i=2

kiZ(r, f − ai)− Z(r, f ′) + 2T (r, α)− 4 log r +O(1)

and similarly,

T (r, Ĝ) ≤ 2Z(r, g) + 2
l∑
i=2

Z(r, g− ai) +Z(r, g′) + 2N(r, g) + 2Z(r, f) + 2
l∑
i=2

Z(r, f − ai) +Z(r, f ′)

+2
(
N(r,G) + Z(r,G)

)
+N(r, F ) + Z(r, F )

(9) +2N(r, f) + Z(r, g) + Z(r,Q(g))−
l∑
i=2

kiZ(r, g − ai)− Z(r, g′) + 2T (r, α)− 4 log r +O(1).

Consequently,

T (r, F̂ ) + T (r, Ĝ) ≤ 7
(
Z(r, f) + Z(r, g)

)
+ 7

l∑
i=2

(
Z(r, f − ai) + Z(r, f − ai)

)
+ Z(r, g′) + Z(r, f ′)

+4
(
N(r, f) + 2N(r, g)

)
+ Z(r,Q(f)) + Z(r,Q(g))

(10) −
l∑
i=2

kiZ(r, f − ai)− Z(r, f ′) + 2T (r, α)− 4 log r +O(1)

Particularly, if ki = 1 ∀i = 2, ..., l, then we have

T (r, F̂ ) ≤ 2Z(r, f) +
l∑
i=2

Z(r, f − ai) + Z(r, f ′) + 2N(r, f) + 2Z(r, g) +
l∑
i=2

Z(r, g − ai) + Z(r, g′)

+2
(
N(r, F ) + Z(r, F )

)
+N(r,G) + Z(r,G)

(11) +2N(r, g) + Z(r, f) + Z(r,Q(f))−
l∑
i=2

Z(r, f − ai)− Z(r, f ′) + 2T (r, α)− 4 log r +O(1)

and similarly,

T (r, Ĝ) ≤ 2Z(r, g) +
l∑
i=2

Z(r, g − ai) + Z(r, g′) + 2N(r, g) + 2Z(r, f) +
l∑
i=2

Z(r, f − ai) + Z(r, f ′)

+2
(
N(r,G) + Z(r,G)

)
+N(r, F ) + Z(r, F )

(12) +2N(r, f) + Z(r, g) + Z(r,Q(g))−
l∑
i=2

Z(r, g − ai)− Z(r, g′) + 2T (r, α)− 4 log r +O(1).

therefore by (11) and (12) we can adapt (10) and obtain

T (r, F̂ ) + T (r, Ĝ) ≤ 7
(
Z(r, f) + Z(r, g)

)
+ 4

l∑
i=2

(
Z(r, f − ai) + Z(r, f − ai)

)
+ Z(r, g′) + Z(r, f ′)

(13) +4
(
N(r, f) +N(r, g)

)
+ Z(r,Q(f)) + Z(r,Q(g)) + 4T (r, α)− 8 log r +O(1)
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Now, let us go back to the general case. By (10) we have

T (r, F̂ )+T (r, Ĝ) ≤ 5(Z(r, f)+Z(r, g))+
l∑
i=2

(4−ki)(Z(r, f−ai)+Z(r, g−ai))+(Z(r, f ′)+Z(r, g′))+

+3
(
Z(r, F ) + Z(r,G)

)
+ 7(N(r, f) +N(r, g)) + (Z(r,Q(f)) + Z(r,Q(g))) + 4T (r, α)

(14)

+3
(
Z(r, f ′)+

l∑
i=2

(Z(r, f−ai)+Z(r, g−ai))+Z(r, f)+Z(r, g)+Z(r, g′)
)

+4T (r, α)−8 log r+O(1).

Here, by Lemma 2, we may notice that we can give Z(r, f ′) the following upper bound Z(r, f ′) ≤
Z(r, f−a2)+N(r, f)− log(r) and similarly Z(r, g′) ≤ Z(r, g−a2)+N(r, g− log(r)). Consequently,
by (14) we obtain

T (r, F̂ )+T (r, Ĝ) ≤ 8
(
Z(r, f)+Z(r, g)

)
+10

(
N(r, f)+N(r, g)

)
+(10−k2)

(
Z(r, f−a2)+Z(r, g−a2)

)
+

l∑
i=3

(7− ki)
(
Z(r, f − ai) + Z(r, g − ai)

)
+ Z(r,Q(f)) + Z(r;Q(g)) + 4T (rα)− 10 log(r) +O(1)

therefore

T (r, F̂ )+T (r, Ĝ) ≤ 8
(
Z(r, f)+Z(r, g)

)
+10

(
N(r, f)+N(r, g)

)
+(10−k2)

(
Z(r, f−a2)+Z(r, g−a2)

)
(15) +

l∑
i=3

(7−ki)
(
Z(r, f−ai)+Z(r, g−ai)

)
+Z(r,Q(f))+Z(r;Q(g))+4T (r, α)−10 log(r)+O(1).

Now, we notice that gven m ∈ Z and h ∈ M(K) (resp. h ∈ M(d(0, R−)) we have mZ(r, h) ≤
max(0,mT (r, h). Consequently, by (15) we obtain

T (r, F̂ )+T (r, Ĝ) ≤ 8
(
Z(r, f)+Z(r, g)

)
+10

(
N(r, f)+N(r, g)

)
+max

(
0, (10−k2))

)(
T (r, f)+T (r, g))

)
(16) +

l∑
i=3

max
(
0, (7−ki)

)(
T (r, f)+T (r, g)

)
+Z(r,Q(f))+Z(r,Q(g))+4T (r, α)−10 log(r)+O(1).

Now, since deg(Q) = k, we have T (r,Q(f)) = kT (r, f) + O(1) and T (r,Q(g)) = kT (r, g) + O(1).
On the other hand, since F̂ is a polynomial in f of degree n+ k + 1, we have T (r, F̂ ) = (n+ 1 +
k)T (r, f) +O(1) and T (r, Ĝ) = (n+ 1 + k)T (r, f) +O(1). Consequently, by (16) we obtain

n
(
(T (r, f) + T (r, g)

)
≤ 17

(
T (r, f) + T (r, g)

)
+ max(0, 10− k2)

(
(T (r, f) + T (r, g)

)
(17) +

l∑
i=3

(max(7− ki)
(
(T (r, f) + T (r, g)

)
+ 4T (r, α)− 10 log(r) +O(1).

Thus, in Theorems 1 and 4, if ΘF,G is not identically zero, Relation (17) is impossible. In Theorem
2, T (r, α) is of the form log(r) + O(1) and in Theorem 3,T (r, α) = 0, hence Relation (17) is
impossible again if ΘF,G is not identically zero. So, we have proven that ΘF,G is identically zero
in Theorems 1, 2, 3, 4.

Suppose now that ki = 1, ∀i ∈ {2, .., l}. Then k = l and then, by (13) we can derive
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(n+ l + 1)
(
T (r, f) + T (r, g)

)
≤ (7 + 4(l − 1)

)(
T (r, f) + T (r, g)

)
+ T (r, f) + T (r, g)

(18) +(4 + 1)
(
N(r, f) +N(r, g)

)
+ l
(
T (r, f) + T (r, g)

)
+ 4T (r, α)− 10 log(r) +O(1)

therefore n ≤ 9 + 4l.

Further, assuming again ki = 1, ∀i ∈ {2, .., l}, suppose now that α is a Moebius function.
Then by (18) we now have n ≤ 8 + 4l.

Thus, we can check that in Theorems 5 and 6, if n ≥ 10 + 4l, ΘF,G must be identically zero.
And in Theorems 7, if n ≥ 9 + 4l, ΘF,G must be identically zero.

Similarly, in Theorems 8 and 9, if n ≥ 18, ΘF,G must be identically zero and in Theorem 8, if
α is a constant or a Moebius function, the conclusion holds for n ≥ 17

Consider now the situation in Theorems 10 and 11. Since N(r, f) = N(r, g) = 0, by (14) we
have

T (r, F̂ ) + T (r, Ĝ) ≤ 8
(
Z(r, f) + Z(r, g)

)
+ (10− k2)

(
Z(r, f − a2) + Z(r, g − a2)

)
+

l∑
i=3

(7− ki)
(
Z(r, f − ai) + Z(r, g − ai)

)
+ Z(r,Q(f)) + Z(r,Q(g)) + 4T (rα)− 10 log(r) +O(1)

therefore

T (r, F̂ ) + T (r, Ĝ) ≤ 8
(
Z(r, f) + Z(r, g)

)
+ (10− k2)

(
Z(r, f − a2) + Z(r, g − a2)

)
(19) +

l∑
i=3

(7−ki)
(
Z(r, f−ai)+Z(r, g−ai)

)
+Z(r,Q(f))+Z(r;Q(g))+4T (r, α)−10 log(r)+O(1).

As in Relation (15), given m ∈ Z and h ∈M(K) (resp. h ∈M(d(0, R−)) we have mZ(r, h) ≤
max(0,mT (r, h). Consequently, by (19) we obtain

T (r, F̂ ) + T (r, Ĝ) ≤ 8
(
Z(r, f) + Z(r, g)

)
+ max

(
0, (10− k2))

)(
T (r, f) + T (r, g))

)
(20) +

l∑
i=3

max
(
0, (7−ki)

)(
T (r, f)+T (r, g)

)
+Z(r,Q(f))+Z(r,Q(g))+4T (r, α)−10 log(r)+O(1).

Now, since deg(Q) = k, we have T (r,Q(f)) = kT (r, f)+O(1) and T (r,Q(g)) = kT (r, g)+O(1).
On the other hand, since F̂ is a polynomial in f of degree n+ k + 1, we have T (r, F̂ ) = (n+ 1 +
k)T (r, f) +O(1) and T (r, Ĝ) = (n+ 1 + k)T (r, f) +O(1).

Consequently, by (20) we obtain

n
(
T (r, f) + T (r, g)

)
≤ 7
(
T (r, f) + T (r, g)

)
+ max(0, 10− k2)

(
(T (r, f) + T (r, g)

)
(21). +

l∑
i=3

(max(7− ki)
(
(T (r, f) + T (r, g)

)
+ 4T (r, α)− 10 log(r) +O(1).

Thus, in Theorems 10, if ΘF,G is not identically zero, Relation (21) is impossible. In Theorem
11, T (r, α) is of the form −4 log(r) + O(1) hence Relation (21) is impossible again if ΘF,G is not
identically zero. So, we have proven that ΘF,G is identically zero in Theorems 10 and 11 too.

Consequently, we can assume that ΘF,G = 0 in each hypothesis of all theorems. Therefore, we
can perform the end of the proof exactly as in [2] or [9] (chapter 59) for Theorems 1, 2, 3, 4, 5, 6,
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7, 8, 9, 10, 11 because we check that the reasonning never uses the hypothesis: f and g share α
C.M. That ends the proof of all theorems.

Acknowledgement: We thank the referee for pointing out to us several orthographic and typo-
graphic corrections.
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