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Growth of p-adic entire functions and applications

Kamal Boussaf, Abdelbaki Boutabaa and Alain Escassut

Abstract

Let IK be an algebraically closed p-adic complete field of characteristic zero. We define the
order of growth ρ(f) and the type of growth σ(f) of an entire function f(x) =

∑∞
n=0 anx

n on
IK as done on lC and show that ρ(f) and σ(f) satisfy the same relations as in complex analysis,

with regards to the coefficients an. But here another expression ψ(f) that we call cotype of f ,
depending on the number of zeros inside disks is very important and we show under certain
wide hypothesis, that ψ(f) = ρ(f)σ(f), a formula that has no equivalent in complex analysis
and suggests that it might hold in the general case. We check that ρ(f) = ρ(f ′), σ(f) = σ(f ′)
and present an asymptotic relation linking the numbers of zeros inside disks for two functions
of same order. That applies to a function and its derivative. We show that the derivative
of a transcendental entire function f has infinitely many zeros that are not zeros of f and
particularly we show that f ′ cannot divide f when the p-adic absolute value of the number of
zeros of f inside disks satisfies certain inequality and particularly when f is of finite order.

1 Growth order

Definitions and notation: We denote by IK an algebraically closed field of characteristic 0,
complete with respect to an ultrametric absolute value | . |. Analytic functions inside a disk or
in the whole field IK were introduced and studied in many books [1], [5], [6], [7], [8], [9]. Given
α ∈ IK and R ∈ IR∗+, we denote by d(α,R) the disk {x ∈ IK | |x−α| ≤ R}, by d(α,R−) the disk
{x ∈ IK | |x − α| < R}, by C(α, r) the circle {x ∈ IK | |x − α| = r}, by A( IK) the IK-algebra
of analytic functions in IK (i.e. the set of power series with an infinite radius of convergence) and
by M( IK) the field of meromorphic functions in IK (i.e. the field of fractions of A( IK)). Given
f ∈ M( IK), we will denote by q(f, r) the number of zeros of f in d(0, r), taking multiplicity into
account. Throughout the paper, log denotes the Neperian logarithm.

Here we mean to introduce and study the notion of order of growth and type of growth for
functions of order t. We will also introduce a new notion of cotype of growth in relation with the
distribution of zeros in disks which plays a major role in processes that are quite different from
those in complex analysis. This has an application to the question whether an entire function can
be devided by its derivative inside the algebra of entire functions [2], [3].

Similarly to the definition known on complex entire functions [10], given f ∈ A( IK), the

superior limit lim sup
r→+∞

log(log(|f |(r)))
log(r)

is called the order of growth of f or the order of f in brief

and is denoted by ρ(f). We say that f has finite order if ρ(f) < +∞.

02000 Mathematics Subject Classification: 12J25; 30D35; 30G06.
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Theorem 1: Let f, g ∈ A( IK). Then:
if c(|f |(r))α ≥ |g|(r) with α and c > 0, when r is big enough, then ρ(f) ≥ ρ(g),
ρ(f + g) ≤ max(ρ(f), ρ(g)),
ρ(fg) = max(ρ(f), ρ(g)),

Proof: Similarly to the complex context we can easily verify that ρ(f + g) ≤ max(ρ(f), ρ(g)),
ρ(fg) ≤ max(ρ(f), ρ(g)) and if c(|f |(r))α ≥ |g|(r) with α and c > 0 when r is big enough, then
ρ(f) ≥ ρ(g). Let us now show that ρ(fg) ≥ max(ρ(f), ρ(g)). Since limr→+∞ |g|(r) = +∞, of
course we have log(|f.g|(r)) ≥ log(|f |(r)) when r is big enough, hence

log(log(|f.g|(r)))
log(r)

≥ log(log(|f |(r)))
log(r)

and therefore ρ(f.g) ≥ ρ(f) and similarly, ρ(f.g) ≥ ρ(g).

Corollary 1.1: Let f, g ∈ A( IK). Then ρ(fn) = ρ(f) ∀n ∈ IN∗. If ρ(f) > ρ(g), then
ρ(f + g) = ρ(f).

Notation: Given t ∈ [0,+∞[, we denote by A( IK, t) the set of f ∈ A( IK) such that ρ(f) ≤ t

and we set A0( IK) =
⋃

t∈[0,+∞[

A( IK, t).

Corollary 1.2: For any t ≥ 0, A( IK, t) is a IK-subalgebra of A( IK). If t ≤ u, then A( IK, t) ⊂
A( IK, u) and A0( IK) is also a IK-subalgebra of A( IK).

In the proofs of various theorems we will use the classical Theorems A, B [6], and Theorem C
[4], [7] that we must recall here:

Theorem A: Let f(x) =

+∞∑
n=0

anx
n ∈ A( IK). Then for all r > 0 we have |f |(r) = supn≥0 |an|rn =

|aq(f,r)|rq(f,r) > |an|rn ∀n > q(f, r). Moreover, if f is not a constant, the function in r: |f |(r) is

strictly increasing and tends to +∞ with r. If f is transcendental, the function in r:
|f |(r)
rs

tends

to +∞ with r, whenever s > 0.

If the sequence
( |an−1|
|an|

)
n∈ IN∗

is strictly increasing, then, putting
|an−1|
|an|

= rn, f admits in

each circle C(0, rn) a unique zero taking multiplicity into account and has no other zero in IK.

Theorem B: Let f ∈ A( IK) be non-identically zero and let r′, r′′ ∈]0,+∞[ with r′ < r′′. Then(r′′
r′

)q(f,r′′)
≥ |f |(r

′′)

|f |(r′)
≥
(r′′
r′

)q(f,r′)
.

Theorem C: Let f ∈ A( IK). Then

|f ′|(r) ≤ |f |(r)
r
∀r > 0.

Theorem D: Let f, g ∈ A( IK). Then |f ◦ g|(r) = |f |(|g|(r)) ∀r > 0.



Growth of p-adic entire functions 3

Theorem 2: Let f ∈ A( IK) and let P ∈ IK[x]. Then ρ(P ◦f) = ρ(f) and ρ(f◦P ) = deg(P )ρ(f).
Proof: Let n = deg(P ). For r big enough, we have log(log(|f |(r))) ≤) log(log(|P ◦ f |(r))) ≤
log((n+ 1) log(|f |(r))) = log(n+ 1) + log(log(|f |(r))). Consequently,

lim sup
r→+∞

(
log(log(|f |(r)))

log(r)

)
≤ lim sup

r→+∞

(
log(log(|P ◦ f |(r)))

log(r)

)

≤ lim sup
r→+∞

(
log(n+ 1) + log(log(|f |(r)))

log(r)

)
and therefore ρ(P ◦ f) = ρ(f).

Next, for r big enough, we have

log(log(|f |(r)))
log(r)

≤ log(log(|f ◦ P |(r)))
log(r)

=
( log(log(|f ◦ P |(r))

log(|P |(r))

)( log(|P |(r))
log(r)

)
Now,

lim sup
r→+∞

( log(log(|f ◦ P |(r))
log(|P |(r))

)
= lim sup

r→+∞

( log(log(|f |(r))
log(r)

)
because the function h defined in [0,+∞[ as h(r) = |P |(r) is obviously an increasing contin-
uous bijection from [0,+∞[ onto [|P (0)|,+∞[. On the other hand, it is obviously seen that

lim sup
r→+∞

( log(|P |(r))
log(r)

)
= n. Consequently,

lim sup
r→+∞

( log(log(|f ◦ P |(r))
log(|P |(r))

)
= n lim sup

r→+∞

( log(log(|f |(r))
log(r)

)
and hence ρ(f ◦ P ) = nρ(f).

Theorem 3: Let f, g ∈ A( IK) be transcendental. If ρ(f) 6= 0, then ρ(f ◦ g) = +∞. If ρ(f) = 0,
then ρ(f ◦ g) ≥ ρ(g).

Proof: Let us fix an integer n ∈ IN. Let f(x) =
∑∞
j=0 anx

n and g(x) =
∑∞
j=0 bnx

n. Since g is
transcendental, for every n ∈ IN, there exists rn such that q(g, rn) ≥ n. Then |g|(r) ≥ |bn|rn ∀r ≥
rn and hence, by Theorem 2, we have

(1) ρ(f ◦ g) ≥ nρ(f).

Relation (1) is true for every n ∈ IN. Suppose first that ρ(f) 6= 0. Then by (1) we have
ρ(f ◦ g) = +∞.

Now, suppose ρ(f) = 0. Let k ∈ IN be such that ak 6= 0. Let s0 be such that q(f, s0) ≥ k.
Then |f |(r) ≥ |ak|rk ∀r ≥ s0, hence |f ◦ g|(r) ≥ |ak|(|g|(r))k ∀r ≥ s0, hence by Theorems 1 and 2
we have ρ(f ◦ g) ≥ ρ(g).

Theorem 4: Let f ∈ A( IK) be not identically zero. If there exists s ≥ 0 such that lim sup
r→+∞

(q(f, r)
rs

)
<

+∞ then ρ(f) is the lowest bound of the set of s ∈ [0,+∞[ such that lim sup
r→+∞

(q(f, r)
rs

)
= 0. More-

over, if lim sup
r→+∞

(q(f, r)
rt

)
is a number b ∈]0,+∞[, then ρ(f) = t. If there exists no s such that

lim sup
r→+∞

(q(f, r)
rs

)
< +∞, then ρ(f) = +∞.
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Proof of Theorem 4: The proof holds in two statements. First we will prove that given

f ∈ A( IK) nonconstant and such that for some t ≥ 0, lim sup
r→+∞

q(f, r)

rt
is finite, then ρ(f) ≤ t.

Set lim sup
r→+∞

(q(f, r)
rt

)
= b ∈ [0,+∞[. Let us fix ε > 0. We can find R > 1 such that |f |(R) > e2

and
q(f, r)

rt
≤ b+ ε ∀r ≥ R and hence, by Theorem B, we have

|f |(r)
|f |(R)

≤
( r
R

)q(f,r) ≤ ( r
R

)rt(b+ε))
.

Therefore, since R > 1, we have

log(|f |(r)) ≤ log(|f |(R)) + rt(b+ ε)(log(r)).

Now, when u > 2, v > 2, we check that log(u + v) ≤ log(u) + log(v). Applying that inequality
with u = log(|f |(R)) and v = rt(b+ ε)(log(r)) when rt(b+ ε)(log(r)) > 2, that yields

log(log(|f |(r))) ≤ log(log(|f |(R))) + t log(r) + log(b+ ε) + log(log(r)).

Consequently,

log(log(|f |(r)))
log(r)

≤ log(log(|f |(R))) + t log(r) + log(b+ ε) + log(log(r))

log(r)

and hence we can check that

lim sup
r→+∞

log(log(|f |(r)))
log(r)

≤ t

which proves the first claim.

Second, we will prove that given f ∈ A( IK) not identically zero and such that for some t ≥ 0,

we have lim sup
r→+∞

q(f, r)

rt
> 0, then ρ(f) ≥ t.

By hypotheses, there exists a sequence (rn)n∈ IN such that limn→+∞ rn = +∞ and such that

lim
n→+∞

q(f, rn)

rtn
> 0. Thus there exists b > 0 such that lim

n→+∞

q(f, rn)

rtn
≥ b. We can assume that

|f |(r0) ≥ 1, hence by Theorem A, |f |(rn) ≥ 1 ∀n. Let λ ∈]1,+∞[. By Theorem B we have

|f |(λrn)

|f |(rn)
≥ (λ)q(f,rn) ≥

(
λ
)[b(rn)t]

hence
log(|f |(λrn)) ≥ log(|f |(rn)) + b(rn)t log(λ).

Since |f |(rn) ≥ 1, we have log(log(|f |((λrn)))) ≥ log(b log(λ)) + t log(rn) therefore

log(log(|f |((λrn)))

log(rn)
≥ t+

log(b log(λ))

log(rn)
∀n ∈ IN

and hence

lim sup
r→+∞

log(log(|f |(r)))
log(r)

≥ t

which ends the proof the scond claim.
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Example: Suppose that for each r > 0, we have q(f, r) ∈ [rt log r, rt log r + 1]. Then of course,

for every s > t, we have lim sup
r→+∞

q(f, r)

rs
= 0 and lim sup

r→+∞

q(f, r)

rt
= +∞, so there exists no t > 0

such that
q(f, r)

rt
have non-zero superior limit b < +∞.

Definition and notation: Let t ∈ [0,+∞[ and let f ∈ A( IK) of order t. We set ψ(f) =

lim sup
r→+∞

q(f, r)

rt
and call ψ(f) the cotype of f .

Theorem 5: Let f, g ∈ A0( IK) be such that ρ(f) = ρ(g). Then max(ψ(f), ψ(g)) ≤ ψ(fg) ≤
ψ(f) + ψ(g).

Proof: By Theorem 1, we have ρ(f.g) = ρ(f). For each r > 0, we have q(f.g, r) = q(f, r)+q(g, r),
so the conclusion is immediate.

Theorem 6 is similar to a well known statement in complex analysis and its proof also is similar
when ρ(f) < +∞ [10] but is different when ρ(f) = +∞.

Theorem 6: Let f(x) =

+∞∑
n=0

anx
n ∈ A( IK). Then ρ(f) = lim sup

n→+∞

( n log(n)

− log |an|

)
.

Proof: If ρ(f) < +∞, the proof is identical to the one made in the complex context, replacing
M(f, r) by the multiplicative norm |f |(r) (see [10], Proposition 11.4).

Suppose now that t = +∞. Suppose that lim sup
n→+∞

n log n

(− log |an|)
< +∞. Let us take s ∈ IN such

that

(2)
n log n

(− log |an|)
< s ∀n ∈ IN.

By Theorem 4, we have lim sup
r→+∞

q(f, r)

rs
= +∞. So, we can take a sequence (rm)m∈ IN such that

(3) lim
m→+∞

q(f, rm)

(rm)s
= +∞.

For simplicity, set um = q(f, rm), m ∈ IN. By (2), for m big enough we have

um log(um) < s(− log(|aum
|) = s log

( 1

|aum
|

)
hence

1

(um)um
> |aum |s,

therefore

|aum |s(rm)sum <
(rm)sum

(um)um
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i.e.

(|f |(rm))s <
( (rm)s

um

)um

But by Theorem A, we have lim
r→+∞

|f |(rm) = +∞, hence (rm)s > um when m is big enough and

therefore lim sup
m→+∞

q(f, rm)

(rm)s
≤ 1, a contradiction to (3). Consequently, (2) is impossible and therefore

lim sup
n→+∞

( n log(n)

− log |an|

)
= +∞ = ρ(f).

Remark: Of course, polynomials have a growth order equal to 0. On IK as on lC we can easily
construct transcendental entire functions of order 0 or of order ∞.

Example 1: Let (an)n∈ IN be a sequence in IK such that − log |an| ∈ [n(log n)2, n(log n)2 + 1].
Then clearly,

lim
n→+∞

log |an|
n

= −∞

hence the function

∞∑
n=0

anx
n has radius of convergence equal to +∞. On the other hand,

lim
n→+∞

n log n

− log |an|
= 0

hence ρ(f) = 0.

Example 2: Let (an)n∈ IN be a sequence in IK such that − log |an| ∈ [n
√

log n, n
√

log n + 1].
Then

lim
n→+∞

log |an|
n

= −∞

again and hence the function

∞∑
n=0

anx
n has radius of convergence equal to +∞. On the other hand,

lim
n→+∞

( n log n

− log |an|

)
= +∞

hence ρ(f) = +∞.

Definition and notation: In complex analysis, the type of growth is defined for an entire

function of order t as σ(f) = lim sup
r→+∞

log(Mf (r))

rt
, with t < +∞. Of course the same notion may

be defined for f ∈ A( IK). Given f ∈ A0( IK) of order t, we set σ(f) = lim sup
r→+∞

log(|f |(r))
rt

and

σ(f) is called the type of growth of f .

Theorem 7: Let f, g ∈ A0( IK). Then σ(fg) ≤ σ(f) + σ(g) and σ(f + g) ≤ max(σ(f), σ(g)). If
ρ(f) = ρ(g), then max(σ(f), σ(g)) ≤ σ(fg) and if c|f |(r) ≥ |g|(r) with c > 0 when r is big enough,
then σ(f) ≥ σ(g).
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Proof: Let s = ρ(g) and t = ρ(f) and suppose s ≤ t. When r is big enough, we have
max(log(|f |(r)), log(|g|(r)) ≤ log(|f.g|(r)) = log(|f |(r)) + log(|g|(r)). By Theorem 1, we have
ρ(fg) = t. Therefore

lim sup
r→+∞

( log(|f.g|(r))
rt

)
≤ lim sup

r→+∞

( log(|f |(r))
rt

)
+ lim sup

r→+∞

( log(|g|(r))
rt

)
≤ lim sup

r→+∞

( log(|f |(r))
rt

)
+ lim sup

r→+∞

( log(|g|(r))
rs

)
= σ(f) + σ(g).

Similarly,

σ(f + g) = lim sup
r→+∞

( |f + g|(r)
rt

)
≤ lim sup

r→+∞

(max(|f |(r), |g|(r))
rt

)
≤ max

(
lim sup
r→+∞

( |f |(r)
rt

)
, lim sup
r→+∞

( |g|(r)
rs

))
= max(σ(f), σ(g)).

Now, suppose s = t. Then

max
(

lim sup
r→+∞

(
log(|f |(r))

rt
), lim sup

r→+∞
(
log(|g|(r))

rt
)
)
≤ lim sup

r→+∞

( log(|f.g|(r))
rt

)
hence σ(fg) ≥ max(σ(f), σ(g)). Suppose now c|f |(r) ≥ |g|(r) when r is big enough, then, asuming
again that s = t, it is obvious that σ(f) ≥ σ(g).

Corollary 7.1: Let f, g ∈ A0( IK) be such that ρ(f) = ρ(g) and σ(f) > σ(g). Then σ(f + g) =
σ(f).

Now, we notice that σ(f) may be computed by the same formula as on lC. Since the proof is
the same we will not reproduce it (10], Proposition 11.5).

Theorem 8: Let f(x) =

∞∑
n=0

anx
n ∈ A0( IK) such that ρ(f) ∈]0,+∞[. Then σ(f)ρ(f)e =

lim sup
n→+∞

(
n n
√
|an|t

)
.

Definition: Let us say that an entire function

+∞∑
n=1

cnx
n ∈ A(IK) satisfies Hypothesis L when the

sequence (
|cn−1|
|cn|

)n∈ IN is strictly increasing.

Theorem 9: Let f ∈ A(IK) such that ρ(f) ∈]0,+∞[.

i) If σ(f) = lim
r→+∞

log(|f |(r))
rρ(f)

, then ψ(f) ≥ ρ(f)σ(f).

ii) If ψ(f) = lim
r→+∞

q(f, r)

rρ(f)
, then ψ(f) = ρ(f)σ(f).

Proof: Let f(x) =

+∞∑
m=0

amx
m. Without loss of generality, we may assume that f(0) = 1. Set

t = ρ(f) and ` =
1

ρ(f)
and let us denote by (C(0, sm))m∈ IN the sequence of circles containing at

least one zero of f , with sm < sm+1.
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Suppose first that f satisfies Hypothesis L. By Theorem A, actually each circle C(0, sm), m ∈
IN contains a unique zero of f and f has no other zero in IK. Moreover, for each m ∈ IN, we

have sm =
|am−1|
|am|

. Consequently, q(f, sm) = m, m ∈ IN. Now, when r belongs to the interval

[sm, sm+1[, f admits exactly m zeros in d(0, r) and hence
q(f, r)

rt
is maximum in [sm, sm+1[ when

r = sm. Consequently, we have

ψ(f) = lim sup
m→+∞

m

(sm)t
.

So we can write
m

(sm)t
= ψ(f) + εm with lim sup

m→+∞
εm = 0 hence

(1) sm =
( m

ψ(f) + εm

)`
.

Now, let (φ(m))m∈ IN be a strictly increasing sequence of integers and consider the expression

E(m) = log(|f |(sφ(m)) =

φ(m)∑
k=1

log(sφ(m))− log(sk). By (1) we have

E(m) = `
(
φ(m) log(φ(m)− φ(m) log(ψ(f) + εφ(m))−

φ(m)∑
k=1

log(k) +

φ(m)∑
k=1

log(ψ(f) + εk)
)

= `
(
φ(m) log(φ(m))−φ(m) log(φ(m)+φ(m)+O(1)−φ(m) log(ψ(f)+εφ(m))+

φ(m)∑
k=1

log(ψ(f)+εk)
)

hence

(2) E(m) = `
(
φ(m) +O(1)− φ(m)(log(ψ(f) + εφ(m)) +

φ(m)∑
k=1

log(ψ(f) + εk)
)

Suppose first that σ(f) = lim
r→+∞

log(|f |(r))
rt

and let us choose for the sequence (φ(m))m∈ IN

a sequence such that lim
m→+∞

q(f, sφ(m))

(sφ(m))t
= ψ(f) i.e. lim

m→+∞

φ(m)

(sφ(m))t
= ψ(f). Obviously, we can

check that

σ(f) = lim
m→+∞

log(|f |(sφ(m))

(sφ(m))t
= lim
m→+∞

E(m)

(sφ(m))t

hence by (2)

(3) σ(f) = lim
m→+∞

`
(
φ(m) +O(1)− φ(m)(log(ψ(f) + εφ(m)) +

∑φ(m)
k=1 log(ψ(f) + εk)

)
(sφ(m))t

.

Here we notice that lim
m→+∞

`
(φ(m) +O(1)− φ(m)(log(ψ(f) + εφ(m))

(sφ(m))t

)
= ψ(f)(1− log(ψ(f)), there-

fore by (3),

∑φ(m)
k=1 log(ψ(f) + εk)

(sφ(m))t
admits a limit when m tends to +∞, which is σ(f)− ψ(f)(1−
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log(ψ(f))). Next, since lim sup
m→+∞

(εφ(m)) = 0, we can check that

(4) lim
m→+∞

(∑φ(m)
k=1 log(ψ(f) + εk)

(sφ(m))t

)
≤ lim
m→+∞

(φ(m) log(ψ(f))

(sφ(m))t

)
= ψ(f) log(ψ(f))

Indeed, let us fix ω > 0 and let M ∈ IN be such that εk ≤ ω ∀k > M and

(5)

∑M
k=1 log(ψ(f) + εk)

(sφ(m))t
≤ ω ∀φ(m) > M.

Then ∑φ(m)
k=M+1 log(ψ(f) + εk)

(sφ(m))t
≤ log(ψ(f) + ω)

φ(m)

(sφ(m))t
≤ log(ψ(f) + ω)ψ(f).

Consequently, by (5), we have

lim sup
m→+∞

(∑φ(m)
k=1 log(ψ(f) + εk)

(sφ(m))t

)
= lim
m→+∞

(∑φ(m)
k=1 log(ψ(f) + εk)

(sφ(m))t

)
≤ ω + log(ψ(f) + ω)ψ(f).

This is true for each ω > 0 and hence finishes proving (4). Now, by (3) we have

σ(f) = `
(
ψ(f)− ψ(f) log(ψ(f)) + lim

m→+∞

∑φ(m)
k=1 log(ψ(f) + εk)

(sφ(m))t

)
hence by (4), we obtain σ(f) ≤ `ψ(f) and therefore ρ(f)σ(f) ≤ ψ(f).

Now, suppose that ψ(f) = lim
r→+∞

q(f, r)

rt
. Then we can take φ(m) = m ∀m ∈ IN hence we have

ψ(f) = lim
m→+∞

m

(sm)t
and lim

m→+∞
εm = 0.

Set f(x) =

∞∑
n=0

anx
n. By Theorem A, for each m ∈ IN, we have sm =

|am−1|
|am|

. Consequently,

q(f, sm) = m. Hence

(6) ψ(f) = lim
m→+∞

m

(sm)t
= lim
m→+∞

(
m
( |am|
|am−1|

)t)
.

For every m ∈ IN, set bm = m!|am|t. By hypothesis and by (6) we have lim
m→+∞

( bm
bm−1

)
= ψ(f).

But by d’Alembert-Cauchy’s Theorem, lim
m→+∞

( bm
bm−1

)
= lim
m→+∞

m
√
bm = ψ(f), hence

lim
m→+∞

m
√
m!|am|t = ψ(f). On the other hand, by Stirling’s formula, we have lim

m→+∞

m
√
m!

m
=

1

e
,

hence

lim
m→+∞

m
(

m
√
|am|

)t
= eψ(f). But by Theorem 8, we have lim

m→+∞

(
m
(

m
√
|am|

)t)
= (etσ(f)).

Consequently, ψ(f) = tσ(f), which proves the theorem when f satisfies Hypothesis L.

Consider now the general case when f is no longer supposed to satisfy Hypothesis L. For each
m ∈ IN, let um be the total number of zeros of f in C(0, sm), taking multiplicity into account.
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For each m ∈ IN, we can put lm =

m∑
k=1

uk, hence lm is the total number of zeros of f the disk

d(0, sm), taking multiplicity into account. As previously remarked,

(7) ψ(f) = lim sup
m→+∞

lm
(sm)t

.

We will construct a new function g satisfying ρ(g) = ρ(f), ψ(g) = ψ(f), σ(g) = σ(f).
For each m ∈ IN, let us set s′m = max(sm1 , sm− 1

umm
), let us take um points βm,j , j = 1, ..., um

in IK satisfying
s′m < |βm,1| < ... < |βm,um

| = sm

and let

g(x) =

+∞∏
m=1

( um∏
j=1

(1− x

βm,j
)
)
.

Obviously, we have q(g, sm) = q(f, sm). On the other hand, we can check that when m is big

enough, we have q(g,sm)−1
(s′m)t) < q(g, sm) hence

sup
r∈[sm−1,sm[

q(g, r)

rt
=
q(g, sm)

(sm)t
=
q(f, sm)

(sm)t

Therefore, by (7) we have

(8) ψ(g) = ψ(f) = lim sup
m→+∞

q(f, sm)

(sm)t
.

Particularly, if ψ(f) = lim
r→+∞

q(f, r)

rt
, then ψ(f) = lim

m→+∞

q(f, sm)

(sm)t
= lim
m→+∞

q(g, sm)

(sm)t = ψ(g)
.

Now consider log(|g|(r))− log(|f |(r)) when r ∈ [sm−1, sm[. On one hand, we check that

log(|f |(r)) =

m−1∑
j=1

um(log((r)− log(sj))

and

log(|f |(r)) ≥ log(|g|(r)) ≥ log(|f |(r))−
m∑
j=1

uj(log(sj)− log(s′j)).

On the other hand we notice that 0 ≤
m∑
j=1

uj(log(sj)− log(s′j)) ≤
1

j(j − 1)
. Therefore log(|f |(r))−

log(|g|(r)) is positive and bounded when r tends to +∞. Consequently, we have

lim
r→+∞

log(log(|f |(r)− log(log(|g|(r)
log(r)

= 0

and hence ρ(f) = ρ(g) = t. Further,

lim
r→+∞

( log(|f |(r))
rt

− log(|g|(r))
rt

)
= 0,
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hence σ(f) = σ(g). Moreover, by (8) ψ(g) = ψ(f) = lim
r→+∞

q(g, r)

rt
.

Thus, as announced, g satisfies ρ(g) = ρ(f), σ(g) = σ(f), ψ(g) = ψ(f) and by construction,
g satisfies the Hypothesis L. Consequently, we can apply Theorem 9 proven when f satisfies
Hypothesis L. Therefore, assuming i) we have ψ(g) ≤ ρ(g)σ(g) and iassuming ii) then ψ(g) =
ρ(g)σ(g). That ends the proof of Theorem 9.

Remark: The conclusions of Theorem 9 hold for ψ(f) = σ(f) = +∞.

We will now present Example 3 where neither ψ(f) nor σ(f) are obtained as limits but only as
superior limits: we will show that the equality ψ(f) = ρ(f)σ(f) holds again.

Example 3: Let rn = 2n, n ∈ IN and let f ∈ A(IK) have exactly 2n zeros in C(0, rn) and satisfy
f(0) = 1. Then q(f, rn) = 2n+1−1 ∀n ∈ IN. We can see that the function h(r) defined in [rn, rn+1[

by h(r) =
q(f, r)

r
is decreasing and satisfies h(rn) =

2n+1 − 2

2n
and lim

r→rn+1

h(r)

r
=

2n+1 − 2

2n+1
. Con-

sequently, lim sup
r→+∞

h(r) = 2 and lim inf
r→+∞

h(r) = 1. Particularly, by Theorem 4, we have ρ(f) = 1 and

of course ψ(f) = 2.

Now, let us compute σ(f) and consider the function in r: E(r) =
log(|f |(r))

r
. When r belongs

to [rn, rn+1], we have

E(r) =
(2n+1 − 2) log r − (log 2)(

∑n
k=1 2k)

r

and its derivative is E′(r) =

∑n
k=1 2k(1 + k log(2))− log(r))

r2
. We will need to compute

(1)

n∑
k=1

k2k = 2(n2n+1 − (n+ 1)2n + 1).

Now, the numerator U(r) of E′(r) is U(r) =
∑n
k=1 2k(1 + k log(2)) − log(r)) is decreasing in the

interval [rn, rn+1] and has a unique zero αn satisfying, by (1),

log(αn) =
2n
(

(log 2)(n− 1 + 2−n) + 2− 2−n+1
)

2n − 2

thereby log(αn) is of the form n log(2) + εn with lim
n→+∞

εn = 0.

Since E′(r) is decreasing in [rn, rn+1], we can check that E(r) passes by a maximum at αn and
consequently,

σ(f) = lim sup
n→+∞

E(αn)

αn

Therefore σ(f) = 2 = ψ(f).

Now, we can check that lim inf
r→+∞

E(r)

r
< σ(f). Indeed consider

E(rn)

rn
=

(2n+1 − 2)(log rn)− (log 2)
∑n
k=1 k2k

rn
=

(2n+1 − 2)(n log 2)− (log 2)
∑n
k=1 k2k

2n
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hence by (1), we obtain

E(rn) =
(2n+1 − 2)(n log 2)− 2(log 2)(n2n+1 − (n+ 1)2n + 1)

2n
=

2(log 2)(2n − n− 1)

2n

therefore lim
n→∞

E(rn) = 2 log 2 and hence lim inf
r→+∞

E(r) < σ(f).

Now, Theorem 9 and Example 3 suggest the following conjecture:

Conjecture C1: Let f ∈ A0( IK) be such that either σ(f) < +∞ or ψ(f) < +∞. Then
ψ(f) = ρ(f)σ(f).

Example 4: infinite type and cotype. Here is an example of f ∈ A( IK, 1) such that σ(f) =
ψ(f) = +∞.

For each n ∈ IN, set φ(n) =
√

log n and let un be dined by log(un) = − n log n

1 + 1
φ(n)

. For simplicity,

suppose first that the set of absolute values of | IK| is the whole set [0, IR[. We can take a se-

quence (an) of IK such that |an| = un ∀n ∈ IN∗, with a0 = 1. Then
log |an|
n

= − (log n)φ(n)

φ(n) + 1
hence

lim
n→+∞

log |an|
n

= −∞, therefore f ∈ A( IK). Next,
n log n

− log[an|
=

φ(n)

φ(n) + 1
hence lim

n→+∞

n log n

− log[an|
= 1

therefore ρ(f) = 1.

Next, log(n|an|
1
n ) = log n+

log |an|
n

= log n− φ(n) log n

φ(n) + 1
=

log n

φ(n) + 1
and hence σ(f) = +∞.

Let us now compute ψ(f). Now, for each n ∈ IN∗, take rn =
un−1
un

. We will first check that

the sequence (rn)n∈ IN∗ is strictly increasing when n is big enough. Indeed, we just have to show
that there exists M ∈ IN such that

(1) log(un)− log(un+1) > log(un−1)− log(un) ∀n > M.

Let g be the function defined in ]0,+∞[ as g(x) = − x log x

1 + 1√
log x

. Then we can check that g is

convex and therefore (1) is proven.
Now, since the sequence (rn)n∈ IN∗ obviously tends to +∞, there exists an rang N ≥ M

such that rn+1 > rn ∀n ≥ M and rM > rk ∀k < N . Consequently, for each n > N, we have
|an|rn > |ak|rk ∀k 6= n and therefore, f admits n− 1 zeros inside d(0, (rn)−) and a unique zero in
C(0, rn), hence f admits exactly n zeros in d(0, rn). Consequently, we have

(3) q(f, rn) = n ∀n ≥ N.

Since q(f, r) remains equal to q(f, rn) for all r ∈ [rn, rn+1[, by (2) we can derive that

(3) lim sup
r→+∞

q(f, r)

r
= lim sup

n→+∞

q(f, rn)

rn

Now, for n ≥ N , we have

log
q(f, rn)

rn
= log(n)− log(un−1) + log(un) = log(n)− n log n

1 + 1
φ(n)

+
(n− 1) log(n− 1)

1 + 1
φ(n−1)
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Set Sn =
n log n

1 + 1
φ(n)

− (n− 1) log(n− 1)

1 + 1
φ(n−1)

. Then

(4) log(
q(f, rn)

rn
) = log n− S.

Now, we have

S =
φ(n)φ(n− 1)

(
n log(n)− (n− 1) log(n− 1)

)
+ n log(n)φ(n)− (n− 1) log(n− 1)φ(n− 1)

(φ(n) + 1)(φ(n− 1) + 1)
.

Set An =
φ(n)φ(n− 1)

(
n log(n)− (n− 1) log(n− 1)

)
(φ(n) + 1)(φ(n− 1) + 1)

and

Bn =
n log(n)φ(n)− (n− 1) log(n− 1)φ(n− 1)

(φ(n) + 1)(φ(n− 1) + 1)
. Then Sn = An + Bn and the two both An, Bn

are positive. By finite increasings theorem applied to the function g(x) = x log x, we have

(5) An ≤
φ(n)φ(n− 1)(log n)

(φ(n) + 1)(φ(n− 1) + 1)
.

On the other hand, by finite increasings theorem applied to the function h(x) = x(log x)
3
2 , we have

(6) Bn ≤
φ(n)(log n+ 3

2 )

(φ(n) + 1)(φ(n− 1) + 1)

Then by (1), (5), (6) we have

log(q(f, rn))−An −Bn ≥
log n

(
φ(n) + 1)(φ(n− 1) + 1)− φ(n)φ(n− 1)− φ(n)

)
− 3

2φ(n)

(φ(n) + 1)(φ(n− 1) + 1)

=
log(n)

(
φ(n) + φ(n− 1) + 1− φ(n)

)
− 3φ(n)

2

(φ(n) + 1)(φ(n− 1) + 1)

=
log n

φ(n) + 1
− 3φ(n)

2(φ(n) + 1)(φ(n− 1) + 1)
.

Now, since φ(n) =
√

log n, it is obvoius that

lim
n→+∞

log(q(f, rn))− Sn = +∞

and therefore by (3) and (4), ψ(f) = +∞.

2 Applications to derivatives

Theorem 10: Let f ∈ A( IK) be not identically zero. Then ρ(f) = ρ(f ′).

Proof: By Theorem 6 we have ρ(f ′) = lim sup
n→+∞

( n log(n)

− log(|(n+ 1)an+1|)

)
. But since

1

n
≤ |n| ≤ 1,

we have

lim sup
n→+∞

( n log(n)

− log(|(n+ 1)an+1|

)
= lim sup

n→+∞

( n log(n)

− log(|an+1|)

)



Growth of p-adic entire functions 14

= lim sup
n→+∞

( (n+ 1) log(n+ 1)

− log(|an+1|)

)
= ρ(f).

Corollary 10.1: The derivation on A( IK) restricted to the algebra A( IK, t) (resp. to A0( IK))
provides that algebra with a derivation.

In complex analysis, it is known that if an entire function f has order t < +∞, then f and f ′

have same type. We will check that it is the same here.

Theorem 11: Let f ∈ A( IK) be not identically zero, of order t ∈]0,+∞[. Then σ(f) = σ(f ′).

Proof: By Theorem 8 we have,

eρ(f ′)σ(f ′) = lim sup
n→+∞

(
n
(
|n+ 1||an+1|

) t
n
)

= lim sup
n→+∞

((
(n+ 1)

(
|n+ 1||an+1|

) t
n
) n

n+1 ( n

n+ 1

))
= lim sup

n→+∞

(
(n+ 1)

(
|n+ 1||an+1|

) t
n+1
)

= eρ(f)σ(f).

But since ρ(f) = ρ(f ′) and since ρ(f) 6= 0, we can see that σ(f ′) = σ(f).

By Theorems 9 and 10, we can now derive Corollary 11.1:

Corollary 11.1: Let f ∈ A0( IK) be not identically zero, of order t < +∞. If ψ(f) = lim
r→+∞

q(f, r)

t

and if ψ(f ′) = lim
r→+∞

q(f ′, r)

t
, then ψ(f ′) = ψ(f).

Conjecture C1 suggests and implies the following Conjecture C2:

Conjecture C2 ψ(f) = ψ(f ′) ∀f ∈ A0( IK).

Theorem 12: Let f, g ∈ A( IK) be transcendental and of same order t ∈ [0,+∞[. Then for
every ε > 0,

lim sup
r→+∞

(rεq(g, r)
q(f, r)

)
= +∞.

Proof: Suppose first t = 0. The proof then is almost trivial. Indeed, for all ε > 0, we have

lim
r→+∞

q(f, r)

rε
= 0 hence lim

r→+∞

rε

q(f, r)
= +∞, therefore lim

r→+∞

rεq(g, r)

q(f, r)
= +∞.

Now suppose t > 0. By Theorem 4, we have lim sup
r→+∞

q(f, r)

rt
is a finite number ` and hence there

exists λ > 0 such that

(1) q(f, r) ≤ λrt ∀r > 1.

Now, let us fix s ∈]0, t[. By hypothesis, ρ(g) = ρ(f) and hence by Theorem 4, we have

lim sup
r→+∞

q(g, r)

rs
= +∞ so, there exists an increasing sequence (rn)n∈ IN of IR+ such that

lim
n→+∞

rn = +∞ and
q(g, rn)

(rn)s
≥ n. Therefore, by (1), we have

λ(rn)tq(g, rn)

(rn)sq(f, rn)
>
q(g, rn)

(rn)s
> n
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and hence

λ lim
n→+∞

( (rn)t−sq(g, rn)

q(f, rn)

)
= +∞.

Consequently,

(2) lim sup
r→+∞

( (r)t−sq(g, r)

q(f, r)

)
= +∞.

Now, since that holds for all s ∈]0, t[, the statement derived from (2).

Remark: Comparing the number of zeros of f ′ to this of f inside a disk is very uneasy. Now,
we can give some precisions. By Theorem 11 we can derive Corollary 12.1:

Corollary 12.1: Let f ∈ A0( IK) be not affine. Then for every ε > 0, we have

lim sup
r→+∞

(rεq(f ′, r)
q(f, r)

)
= +∞

and

lim sup
r→+∞

(rεq(f, r)
q(f ′, r)

)
= +∞.

Corollary 12.2: Let f ∈ A0( IK). Then ψ(f) is finite if and only if so is ψ(f ′).

We can now give a partial solution to a problem that arose in the study of zeros of derivatives
of meromorphic functions: given f ∈ A( IK), is it possible that f ′ divides f in the algebra A( IK)?

Theorem 13: Let f ∈ A( IK) \ IK[x]. Suppose that for some number s > 0 we have
lim sup
r→+∞

|q(f, r)|rs > 0 (where |q(f, r)| is the absolute value of q(f, r) defined on IK). Then f ′ has

infinitely many zeros that are not zeros of f .

Proof: Suppose that f ′ only has finitely many zeros that are not zeros of f . Then there exist
h ∈ A( IK) and P ∈ IK[x] such that Pf = f ′h. Without loss of generality, we can assume that P
is monic. Every zero of f of order u ≥ 2 is a zero of f ′ of order u − 1 and hence is a zero of h.
And every zero of f of order 1 is zero of h of order 1 too. Consequently, h is not a polynomial.

Set f(x) =

∞∑
n=0

anx
n, f ′(x) =

∞∑
n=0

cnx
n h(x) =

∞∑
n=0

bnx
n and let s = deg(P ). Then

cn = (n + 1)an+1 ∀n ∈ IN. On the other hand, by Theorem A, given any r > 0 we have
|f |(r) = |aq(f,r)|rq(f,r), |f ′|(r) = |cq(f ′,r)|rq(f

′,r) = |(q(f ′, r) + 1)aq(f ′,r)+1)|rq(f
′,r) and |h|(r) =

|bq(h,r)|rq(h,r). Since h has infinitely many zeros, there exists r0 > 0 such that q(h, r) ≥ s+ 2 ∀r ≥
r0, assuming that all zeros of P belong to d(0, s). Then since the norm | . |(r) is multiplicative, we
have s+ q(f, r) = q(f ′, r) + q(h, r), hence

(1) q(f ′, r) < q(f, r)− 1 ∀r ≥ r0.

Then, by (1) we have |cn|rn < cq(f ′,r)r
q(f ′,r) ∀n > q(f ′, r),∀r ≥ r0 and particularly,

|cq(f,r)−1|rq(f,r)−1 < |f ′|(r) = |cq(f ′,r)|rq(f
′,r) i.e.

(2) |(q(f, r))aq(f,r)|r(q(f,r)−1) < |f ′|(r) = |(q(f ′, r) + 1)aq(f ′,r)+1|rq(f
′,r)
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On the other hand, since Pf = f ′h, we have |P |(r)|f |(r) = |f ′|(r)|h|(r), hence since P is monic,

(3) rs|aq(f,r)|rq(f,r) = |(q(f ′, r) + 1)a(q(f ′,r)+1)|rq(f
′,r)|bq(h,r)|rq(h,r) ∀r > r0.

By (2) we can derive

rs−1|q(f, r)aq(f,r)|rq(f,r) < rs|(q(f ′, r) + 1)aq(f ′,r)+1|rq(f
′,r)

and by (3) we have( |q(f, r)|
r

)
|(q(f ′, r) + 1)aq(f ′,r)+1|rq(f

′,r)|bq(h,r)|rq(h,r) < rs|(q(f ′, r) + 1)aq(f ′,r)+1|rq(f
′,r)

therefore we obtain |bq(h,r)|rq(h,r)−1|q(f, r)| < rs. Consequently,

(4) |h|(r) < rs+1

|q(f, r)|

Since h is transcendental, we have lim
r→+∞

|h|(r)
rm

= +∞ ∀m > 0. Now, suppose that for some integer

m we have lim sup
r→+∞

|q(f, r)|rm > 0, hence there exists a constant c and an increasing sequence

(rn)n∈ IN∗ such that r1 > r0, limn→+∞ rn = +∞ and |q(f, rn)|(rn)m > c ∀n. Then |h|(rn) <
c(rn)s+1+m ∀n, a contradiction to (4). This finishes proving that P and h do not not exist.

Remark: It is possible to deduce the proof of Theorem 13 by using Lemma 1.4 in [3].

Corollary 13.1: Let f ∈ A0( IK). Then f ′ has infinitely many zeros that are not zeros of f .

Proof: Indeed, let f be of order t. By Theorem 4 lim sup
r→+∞

q(f, r)

rt
is a finite number and therefore

lim sup
r→+∞

|q(f, r)|rt > 0.

Corollary 13.2: Let f ∈ A0( IK). Then f ′ does not divide f in A( IK).

Corollary 13.3 is a partial solution for the p-adic Hayman conjecture when n = 1, which is not
solved yet.

Corollary 13.3: Let f ∈M( IK) be such that lim supr→+∞ |q( 1
f , r)|r

s > 0 for some s > 0. Then

ff ′ has at least one zero.

Proof: Indeed, suppose that ff ′ has no zero. Then f is of the form
1

h
with h ∈ A( IK) and

f ′ = − h
′

h2
has no zero, hence every zero of h′ is a zero of h, a contradiction to Theorem 13 since

lim supr→+∞ |q(h, r)|rs > 0.

Corollary 13.4: Suppose IK has residue characteristic 0. Then for every f ∈ A( IK), f ′ does
not divide f in A( IK).

Remarks: 1) Concerning complex entire functions, we can check that the exponential is of
order 1 but is divided by its derivative in the algebra of complex entire functions.
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2) It is also possible to derive Corollary 13.4 from Theorem 1 in [2]. Indeed, let g =
1

f
. By

Theorem 4, lim sup
r→+∞

q(f, r)

rt
is a finite number. Consequently, there exists c > 0 such that q(f, r) ≤

crt ∀r > 1 and therefore the number of poles of g in d(0, r) is upper bounded by crt whenever
r > 1. Consequently, we can apply Theorem 1 [2] and hence the meromorphic function g′ has
infinitely many zeros. Now, suppose that f ′ divides f in A( IK). Then every zero of f ′ is a zero of

f with an order superior, hence
f ′

f2
has no zero, a contradiction.

3) If the residue characteristic of IK is p 6= 0, we can easily construct an example of entire function

f of infinite order such that f ′ does not divide f in A( IK). Let f(x) =

∞∏
n=0

(
1− x

αn

)pn
with

|αn| = n + 1. We check that q(f, n + 1) =

n∑
k=0

pk is prime to p for every n ∈ IN. Consequently,

Theorem 13 shows that f is not divided by f ′ in A( IK). On the other hand, fixing t > 0, we have

q(f, n+ 1)

(n+ 1)t
≥ pn

(n+ 1)t

hence

lim sup
r→+∞

q(f, r)

rt
= +∞ ∀t > 0

therefore, f is not of finite order.

Theorem 13 suggests the following conjecture:

Conjecture C3: Given f ∈ A( IK) (other than (x − a)m, a ∈ IK, m ∈ IN) there exists no
h ∈ A( IK) such that f = f ′h.

Acknowledgement: We are grateful to Jean-Paul Bézivin for many comments and to the referee
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Les Cézeaux
63171 AUBIERE CEDEX
FRANCE
kamal.boussaf@math.univ-bpclermont.fr ,
abdelbaki.boutabaa@math.univ-bpclermont.fr ,
alain.escassut@math.univ-bpclermont.fr


