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HAL is

Theorem 1: Let f, g ∈ A( IK). Then: if c(|f |(r)) α ≥ |g|(r) with α and c > 0, when r is big enough, then ρ(f ) ≥ ρ(g), ρ(f + g) ≤ max(ρ(f ), ρ(g)), ρ(f g) = max(ρ(f ), ρ(g)),

Proof: Similarly to the complex context we can easily verify that ρ(f + g) ≤ max(ρ(f ), ρ(g)), ρ(f g) ≤ max(ρ(f ), ρ(g)) and if c(|f |(r)) α ≥ |g|(r) with α and c > 0 when r is big enough, then ρ(f ) ≥ ρ(g). Let us now show that ρ(f g) ≥ max(ρ(f ), ρ(g)). and therefore ρ(f.g) ≥ ρ(f ) and similarly, ρ(f.g) ≥ ρ(g).

Corollary 1.1: Let f, g ∈ A( IK). Then ρ(f n ) = ρ(f ) ∀n ∈ IN * . If ρ(f ) > ρ(g), then ρ(f + g) = ρ(f ).
Notation: Given t ∈ [0, +∞[, we denote by A( IK, t) the set of f ∈ A( IK) such that ρ(f ) ≤ t and we set A 0 ( IK) = t∈[0,+∞[ A( IK, t).

Corollary 1.2: For any t ≥ 0, A( IK, t) is a IK-subalgebra of A( IK). If t ≤ u, then A( IK, t) ⊂ A( IK, u) and A 0 ( IK) is also a IK-subalgebra of A( IK).

In the proofs of various theorems we will use the classical Theorems A, B [START_REF] Escassut | p-adic Value Distribution. Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF], and Theorem C [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF], [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF] that we must recall here:

Theorem A: Let f (x) = +∞ n=0
a n x n ∈ A( IK). Then for all r > 0 we have |f |(r) = sup n≥0 |a n |r n = |a q(f,r) |r q(f,r) > |a n |r n ∀n > q(f, r). Moreover, if f is not a constant, the function in r: |f |(r) is strictly increasing and tends to +∞ with r. If f is transcendental, the function in r:

|f |(r) r s tends to +∞ with r, whenever s > 0. and hence ρ(f • P ) = nρ(f ).

Theorem 3: Let f, g ∈ A( IK) be transcendental. If ρ(f ) = 0, then ρ(f • g) = +∞. If ρ(f ) = 0, then ρ(f • g) ≥ ρ(g). Proof: Let us fix an integer n ∈ IN. Let f (x) = ∞ j=0 a n x n and g(x) = ∞ j=0 b n x n .
Since g is transcendental, for every n ∈ IN, there exists r n such that q(g, r n ) ≥ n. Then |g|(r) ≥ |b n |r n ∀r ≥ r n and hence, by Theorem 2, we have

(1) ρ(f • g) ≥ nρ(f ).
Relation (1) is true for every n ∈ IN. Suppose first that ρ(f ) = 0. Then by [START_REF] Amice | Les nombres p-adiques[END_REF] we have

ρ(f • g) = +∞. Now, suppose ρ(f ) = 0. Let k ∈ IN be such that a k = 0. Let s 0 be such that q(f, s 0 ) ≥ k. Then |f |(r) ≥ |a k |r k ∀r ≥ s 0 , hence |f • g|(r) ≥ |a k |(|g|(r)) k ∀r ≥ s 0 , hence by Theorems 1 and 2 we have ρ(f • g) ≥ ρ(g). Theorem 4: Let f ∈ A( IK) be not identically zero. If there exists s ≥ 0 such that lim sup r→+∞ q(f, r) r s < +∞ then ρ(f ) is the lowest bound of the set of s ∈ [0, +∞[ such that lim sup r→+∞ q(f, r) r s = 0. More- over, if lim sup r→+∞ q(f, r) r t is a number b ∈]0, +∞[, then ρ(f ) = t. If there exists no s such that lim sup r→+∞ q(f, r) r s < +∞, then ρ(f ) = +∞.
Proof of Theorem 4: The proof holds in two statements. First we will prove that given f ∈ A( IK) nonconstant and such that for some t ≥ 0, lim sup r→+∞ q(f, r) r t is finite, then ρ(f ) ≤ t.

Set lim sup r→+∞ q(f, r) r t = b ∈ [0, +∞[. Let us fix > 0. We can find R > 1 such that |f |(R) > e 2
and q(f, r) r t ≤ b + ∀r ≥ R and hence, by Theorem B, we have

|f |(r) |f |(R) ≤ r R q(f,r) ≤ r R r t (b+ )) .
Therefore, since R > 1, we have Second, we will prove that given f ∈ A( IK) not identically zero and such that for some t ≥ 0, we have lim sup r→+∞ q(f, r) r t > 0, then ρ(f ) ≥ t. By hypotheses, there exists a sequence (r n ) n∈ IN such that lim n→+∞ r n = +∞ and such that lim n→+∞ q(f, r n ) r t n > 0. Thus there exists b > 0 such that lim 

log(|f |(r)) ≤ log(|f |(R)) + r t (b + )(log(r)). Now, when u > 2, v > 2, we check that log(u + v) ≤ log(u) + log(v). Applying that inequality with u = log(|f |(R)) and v = r t (b + )(log(r)) when r t (b + )(log(r)) > 2,
n→+∞ q(f, r n ) r t n ≥ b. We can assume that |f |(r 0 ) ≥ 1, hence by Theorem A, |f |(r n ) ≥ 1 ∀n. Let λ ∈]1, +∞[. By Theorem B we have |f |(λr n ) |f |(r n ) ≥ (λ) q(f,rn) ≥ λ [b(rn) t ] hence log(|f |(λr n )) ≥ log(|f |(r n )) + b(r n ) t log(λ). Since |f |(r n ) ≥ 1, we have log(log(|f |((λr n )))) ≥ log(b log(λ)) + t log(r n ) therefore log(log(|f |((λr n ))) log(r n ) ≥ t + log(b log(λ)) log(r n ) ∀n ∈ IN

Example:

Suppose that for each r > 0, we have q(f, r) ∈ [r t log r, r t log r + 1]. Then of course, for every s > t, we have lim sup r→+∞ q(f, r) r s = 0 and lim sup r→+∞ q(f, r) r t = +∞, so there exists no t > 0 such that q(f, r) r t have non-zero superior limit b < +∞.

Definition and notation:

Let t ∈ [0, +∞[ and let f ∈ A( IK) of order t. We set ψ(f ) = lim sup r→+∞ q(f, r) r t and call ψ(f ) the cotype of f .

Theorem 5: Let f, g ∈ A 0 ( IK) be such that ρ(f ) = ρ(g). Then max(ψ(f ), ψ(g)) ≤ ψ(f g) ≤ ψ(f ) + ψ(g).
Proof: By Theorem 1, we have ρ(f.g) = ρ(f ). For each r > 0, we have q(f.g, r) = q(f, r)+q(g, r), so the conclusion is immediate.

Theorem 6 is similar to a well known statement in complex analysis and its proof also is similar when ρ(f ) < +∞ [START_REF] Rubel | Entire and meromorphic functions[END_REF] but is different when ρ(f ) = +∞. 

Theorem 6: Let f (x) = +∞ n=0 a n x n ∈ A( IK). Then ρ(f ) = lim sup n→+∞ n log(n) -log |a n | . Proof: If ρ(f ) < +∞,
q(f, r m ) (r m ) s = +∞.
For simplicity, set u m = q(f, r m ), m ∈ IN. By [START_REF] Bezivin | Zeros of the derivative of a p-adic meromorphic function[END_REF], for m big enough we have

u m log(u m ) < s(-log(|a um |) = s log 1 |a um | hence 1 (u m ) um > |a um | s , therefore |a um | s (r m ) sum < (r m ) sum (u m ) um i.e. (|f |(r m )) s < (r m ) s u m um
But by Theorem A, we have lim 2) is impossible and therefore lim sup

r→+∞ |f |(r m ) = +∞, hence (r m ) s > u m when m is big enough and therefore lim sup m→+∞ q(f, r m ) (r m ) s ≤ 1, a contradiction to (3). Consequently, (
n→+∞ n log(n) -log |a n | = +∞ = ρ(f ).
Remark: Of course, polynomials have a growth order equal to 0. On IK as on l C we can easily construct transcendental entire functions of order 0 or of order ∞.

Example 1: Let (a n ) n∈ IN be a sequence in IK such that -log |a n | ∈ [n(log n) 2 , n(log n) 2 + 1]. Then clearly, lim n→+∞ log |a n | n = -∞ hence the function ∞ n=0
a n x n has radius of convergence equal to +∞. On the other hand,

lim n→+∞ n log n -log |a n | = 0 hence ρ(f ) = 0. Example 2: Let (a n ) n∈ IN be a sequence in IK such that -log |a n | ∈ [n √ log n, n √ log n + 1]. Then lim n→+∞ log |a n | n = -∞
again and hence the function

∞ n=0
a n x n has radius of convergence equal to +∞. On the other hand,

lim n→+∞ n log n -log |a n | = +∞ hence ρ(f ) = +∞.

Definition and notation:

In complex analysis, the type of growth is defined for an entire function of order t as σ(f 

) = lim sup r→+∞ log(M f (r)) r t , with t < +∞. Of course the same notion may be defined for f ∈ A( IK). Given f ∈ A 0 ( IK) of order t, we set σ(f ) = lim sup r→+∞ log(|f |(r)) r t and σ(f ) is called the type of growth of f . Theorem 7: Let f, g ∈ A 0 ( IK). Then σ(f g) ≤ σ(f ) + σ(g) and σ(f + g) ≤ max(σ(f ), σ(g)). If ρ(f ) = ρ(g), then max(σ(f ), σ(g)) ≤ σ(f g) and if c|f |(r) ≥ |g|(r) with c > 0 when r is big enough, then σ(f ) ≥ σ(g).
r t ≤ lim sup r→+∞ log(|f |(r)) r t + lim sup r→+∞ log(|g|(r)) r t ≤ lim sup r→+∞ log(|f |(r)) r t + lim sup r→+∞ log(|g|(r)) r s = σ(f ) + σ(g).
Similarly,

σ(f + g) = lim sup r→+∞ |f + g|(r) r t ≤ lim sup r→+∞ max(|f |(r), |g|(r)) r t ≤ max lim sup r→+∞ |f |(r) r t , lim sup r→+∞ |g|(r) r s = max(σ(f ), σ(g)). Now, suppose s = t. Then max lim sup r→+∞ ( log(|f |(r)) r t ), lim sup r→+∞ ( log(|g|(r)) r t ) ≤ lim sup r→+∞ log(|f.g|(r)) r t hence σ(f g) ≥ max(σ(f ), σ(g)). Suppose now c|f |(r) ≥ |g|(r) when r is big enough, then, asuming again that s = t, it is obvious that σ(f ) ≥ σ(g). Corollary 7.1: Let f, g ∈ A 0 ( IK) be such that ρ(f ) = ρ(g) and σ(f ) > σ(g). Then σ(f + g) = σ(f ).
Now, we notice that σ(f ) may be computed by the same formula as on l C. Since the proof is the same we will not reproduce it [START_REF] Rubel | Entire and meromorphic functions[END_REF], Proposition 11.5).

Theorem 8: Let f (x) = ∞ n=0 a n x n ∈ A 0 ( IK) such that ρ(f ) ∈]0, +∞[. Then σ(f )ρ(f )e = lim sup n→+∞ n n |a n | t .
Definition: Let us say that an entire function 

+∞ n=1 c n x n ∈ A(IK) satisfies Hypothesis L when the sequence ( |c n-1 | |c n | ) n∈ IN is strictly increasing. Theorem 9: Let f ∈ A(IK) such that ρ(f ) ∈]0, +∞[. i) If σ(f ) = lim r→+∞ log(|f |(r)) r ρ(f ) , then ψ(f ) ≥ ρ(f )σ(f ). ii) If ψ(f ) = lim r→+∞ q(f, r) r ρ(f ) , then ψ(f ) = ρ(f )σ(f ). Proof: Let f (x) =
s m = m ψ(f ) + m .
Now, let (φ(m)) m∈ IN be a strictly increasing sequence of integers and consider the expression

E(m) = log(|f |(s φ(m) ) = φ(m) k=1 log(s φ(m) ) -log(s k ).
By [START_REF] Amice | Les nombres p-adiques[END_REF] we have

E(m) = φ(m) log(φ(m) -φ(m) log(ψ(f ) + φ(m) ) - φ(m) k=1 log(k) + φ(m) k=1 log(ψ(f ) + k ) = φ(m) log(φ(m))-φ(m) log(φ(m)+φ(m)+O(1)-φ(m) log(ψ(f )+ φ(m) )+ φ(m) k=1 log(ψ(f )+ k ) hence (2) E(m) = φ(m) + O(1) -φ(m)(log(ψ(f ) + φ(m) ) + φ(m) k=1 log(ψ(f ) + k ) Suppose first that σ(f ) = lim r→+∞ log(|f |(r)) r t
and let us choose for the sequence (φ(m)) m∈ IN a sequence such that lim

m→+∞ q(f, s φ(m) ) (s φ(m) ) t = ψ(f ) i.e. lim m→+∞ φ(m) (s φ(m) ) t = ψ(f ). Obviously, we can check that σ(f ) = lim m→+∞ log(|f |(s φ(m) ) (s φ(m) ) t = lim m→+∞ E(m) (s φ(m) ) t hence by (2) (3) σ(f ) = lim m→+∞ φ(m) + O(1) -φ(m)(log(ψ(f ) + φ(m) ) + φ(m) k=1 log(ψ(f ) + k ) (s φ(m) ) t .
Here we notice that lim

m→+∞ φ(m) + O(1) -φ(m)(log(ψ(f ) + φ(m) ) (s φ(m) ) t = ψ(f )(1 -log(ψ(f )), there- fore by (3), φ(m) k=1 log(ψ(f ) + k ) (s φ(m) ) t admits a limit when m tends to +∞, which is σ(f ) -ψ(f )(1 - log(ψ(f ))). Next, since lim sup m→+∞ ( φ(m) ) = 0, we can check that (4) lim m→+∞ φ(m) k=1 log(ψ(f ) + k ) (s φ(m) ) t ≤ lim m→+∞ φ(m) log(ψ(f )) (s φ(m) ) t = ψ(f ) log(ψ(f ))
Indeed, let us fix ω > 0 and let M ∈ IN be such that k ≤ ω ∀k > M and

(5)

M k=1 log(ψ(f ) + k ) (s φ(m) ) t ≤ ω ∀φ(m) > M.
Then

φ(m) k=M +1 log(ψ(f ) + k ) (s φ(m) ) t ≤ log(ψ(f ) + ω) φ(m) (s φ(m) ) t ≤ log(ψ(f ) + ω)ψ(f ).
Consequently, by (5), we have

lim sup m→+∞ φ(m) k=1 log(ψ(f ) + k ) (s φ(m) ) t = lim m→+∞ φ(m) k=1 log(ψ(f ) + k ) (s φ(m) ) t ≤ ω + log(ψ(f ) + ω)ψ(f ).
This is true for each ω > 0 and hence finishes proving (4). Now, by (3) we have

σ(f ) = ψ(f ) -ψ(f ) log(ψ(f )) + lim m→+∞ φ(m) k=1 log(ψ(f ) + k ) (s φ(m) ) t
hence by (4), we obtain σ(f Consequently, ψ(f ) = tσ(f ), which proves the theorem when f satisfies Hypothesis L.

) ≤ ψ(f ) and therefore ρ(f )σ(f ) ≤ ψ(f ).
Consider now the general case when f is no longer supposed to satisfy Hypothesis L. For each m ∈ IN, let u m be the total number of zeros of f in C(0, s m ), taking multiplicity into account.

For each m ∈ IN, we can put l m = m k=1 u k , hence l m is the total number of zeros of f the disk d(0, s m ), taking multiplicity into account. As previously remarked, ( 7)

ψ(f ) = lim sup m→+∞ l m (s m ) t .
We will construct a new function g satisfying ρ(g

) = ρ(f ), ψ(g) = ψ(f ), σ(g) = σ(f ).
For each m ∈ IN, let us set s m = max(s m1 , s m -1 umm ), let us take u m points β m,j , j = 1, ..., u m in IK satisfying

s m < |β m,1 | < ... < |β m,um | = s m and let g(x) = +∞ m=1 um j=1 (1 - x β m,j
) .

Obviously, we have q(g, s m ) = q(f, s m ). On the other hand, we can check that when m is big enough, we have q(g,sm)-1

(s ) t ) < q(g, s m ) hence sup r∈[sm-1,sm[ q(g, r) r t = q(g, s m ) (s m ) t = q(f, s m ) (s m ) t
Therefore, by [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF] we have ( 8)

ψ(g) = ψ(f ) = lim sup m→+∞ q(f, s m ) (s m ) t .
Particularly, if ψ(f ) = lim r→+∞ q(f, r) r t , then ψ(f ) = lim m→+∞ q(f, s m ) (s m ) t = lim m→+∞ q(g, s m ) (s m ) t = ψ(g) . u j (log(s j ) -log(s j )).

On the other hand we notice that 0 ≤ 8) ψ(g) = ψ(f ) = lim r→+∞ q(g, r) r t . Thus, as announced, g satisfies ρ(g) = ρ(f ), σ(g) = σ(f ), ψ(g) = ψ(f ) and by construction, g satisfies the Hypothesis L. Consequently, we can apply Theorem 9 proven when f satisfies Hypothesis L. Therefore, assuming i) we have ψ(g) ≤ ρ(g)σ(g) and iassuming ii) then ψ(g) = ρ(g)σ(g). That ends the proof of Theorem 9.

Remark: The conclusions of Theorem 9 hold for ψ(f ) = σ(f ) = +∞.

We will now present Example 3 where neither ψ(f ) nor σ(f ) are obtained as limits but only as superior limits: we will show that the equality ψ(f ) = ρ(f )σ(f ) holds again. 

E(r) = (2 n+1 -2) log r -(log 2)( n k=1 2 k ) r and its derivative is E (r) = n k=1 2 k (1 + k log(2)) -log(r)) r 2
. We will need to compute

(1)

n k=1 k2 k = 2(n2 n+1 -(n + 1)2 n + 1). Now, the numerator U (r) of E (r) is U (r) = n k=1 2 k (1 + k log(2)) -log(r)
) is decreasing in the interval [r n , r n+1 ] and has a unique zero α n satisfying, by [START_REF] Amice | Les nombres p-adiques[END_REF],

log(α n ) = 2 n (log 2)(n -1 + 2 -n ) + 2 -2 -n+1 2 n -2 thereby log(α n ) is of the form n log(2) + n with lim n→+∞ n = 0. Since E (r) is decreasing in [r n , r n+1 ],
we can check that E(r) passes by a maximum at α n and consequently,

σ(f ) = lim sup n→+∞ E(α n ) α n Therefore σ(f ) = 2 = ψ(f ). Now, we can check that lim inf r→+∞ E(r) r < σ(f ). Indeed consider E(r n ) r n = (2 n+1 -2)(log r n ) -(log 2) n k=1 k2 k r n = (2 n+1 -2)(n log 2) -(log 2) n k=1 k2 k 2 n
hence by [START_REF] Amice | Les nombres p-adiques[END_REF], we obtain

E(r n ) = (2 n+1 -2)(n log 2) -2(log 2)(n2 n+1 -(n + 1)2 n + 1) 2 n = 2(log 2)(2 n -n -1) 2 n therefore lim n→∞ E(r n ) = 2 log 2 and hence lim inf r→+∞ E(r) < σ(f ).
Now, Theorem 9 and Example 3 suggest the following conjecture:

Conjecture C1: Let f ∈ A 0 ( IK) be such that either σ(f ) < +∞ or ψ(f ) < +∞. Then ψ(f ) = ρ(f )σ(f ).
Example 4: infinite type and cotype.

Here is an example of f ∈ A( IK, 1) such that σ(f

) = ψ(f ) = +∞. For each n ∈ IN, set φ(n) = √ log n and let u n be dined by log(u n ) = - n log n 1 + 1 φ(n)
. For simplicity, suppose first that the set of absolute values of | IK| is the whole set [0, IR[. We can take a se-

quence (a n ) of IK such that |a n | = u n ∀n ∈ IN * , with a 0 = 1. Then log |a n | n = - (log n)φ(n) φ(n) + 1 hence lim n→+∞ log |a n | n = -∞, therefore f ∈ A( IK). Next, n log n -log[a n | = φ(n) φ(n) + 1 hence lim n→+∞ n log n -log[a n | = 1 therefore ρ(f ) = 1. Next, log(n|a n | 1 n ) = log n + log |a n | n = log n - φ(n) log n φ(n) + 1 = log n φ(n) + 1
and hence σ(f ) = +∞.

Let us now compute ψ(f ). Now, for each n ∈ IN * , take r n = u n-1 u n . We will first check that the sequence (r n ) n∈ IN * is strictly increasing when n is big enough. Indeed, we just have to show that there exists

M ∈ IN such that (1) log(u n ) -log(u n+1 ) > log(u n-1 ) -log(u n ) ∀n > M.
Let g be the function defined in ]0, +∞[ as g(x) = -

x log x 1 + 1 √ log x
. Then we can check that g is convex and therefore (1) is proven. Now, since the sequence (r n ) n∈ IN * obviously tends to +∞, there exists an rang N ≥ M such that r n+1 > r n ∀n ≥ M and r M > r k ∀k < N . Consequently, for each n > N, we have |a n |r n > |a k |r k ∀k = n and therefore, f admits n -1 zeros inside d(0, (r n ) -) and a unique zero in C(0, r n ), hence f admits exactly n zeros in d(0, r n ). Consequently, we have

(3) q(f, r n ) = n ∀n ≥ N.
Since q(f, r) remains equal to q(f, r n ) for all r ∈ [r n , r n+1 [, by [START_REF] Bezivin | Zeros of the derivative of a p-adic meromorphic function[END_REF] we can derive that

(3) lim sup r→+∞ q(f, r) r = lim sup n→+∞ q(f, r n ) r n Now, for n ≥ N , we have log q(f, r n ) r n = log(n) -log(u n-1 ) + log(u n ) = log(n) - n log n 1 + 1 φ(n) + (n -1) log(n -1) 1 + 1 φ(n-1) Set S n = n log n 1 + 1 φ(n) - (n -1) log(n -1) 1 + 1 φ(n-1)
. Then

(4) log( q(f, r n ) r n ) = log n -S.
Now, we have

S = φ(n)φ(n -1) n log(n) -(n -1) log(n -1) + n log(n)φ(n) -(n -1) log(n -1)φ(n -1) (φ(n) + 1)(φ(n -1) + 1) . Set A n = φ(n)φ(n -1) n log(n) -(n -1) log(n -1) (φ(n) + 1)(φ(n -1) + 1
) and

B n = n log(n)φ(n) -(n -1) log(n -1)φ(n -1) (φ(n) + 1)(φ(n -1) + 1)
. Then S n = A n + B n and the two both A n , B n are positive. By finite increasings theorem applied to the function g(x) = x log x, we have ( 5)

A n ≤ φ(n)φ(n -1)(log n) (φ(n) + 1)(φ(n -1) + 1)
.

On the other hand, by finite increasings theorem applied to the function h

(x) = x(log x) 3 2 , we have (6) 
B n ≤ φ(n)(log n + 3 2 ) (φ(n) + 1)(φ(n -1) + 1)
Then by ( 1), ( 5), [START_REF] Escassut | p-adic Value Distribution. Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF] we have

log(q(f, r n )) -A n -B n ≥ log n φ(n) + 1)(φ(n -1) + 1) -φ(n)φ(n -1) -φ(n) -3 2 φ(n) (φ(n) + 1)(φ(n -1) + 1) = log(n) φ(n) + φ(n -1) + 1 -φ(n) -3φ(n) 2 (φ(n) + 1)(φ(n -1) + 1) = log n φ(n) + 1 - 3φ(n) 2(φ(n) + 1)(φ(n -1) + 1)
.

Now, since φ(n) = √ log n, it is obvoius that lim n→+∞ log(q(f, r n )) -S n = +∞
and therefore by ( 3) and ( 4), ψ(f ) = +∞.

Applications to derivatives

Theorem 10: Let f ∈ A( IK) be not identically zero. Then ρ(f ) = ρ(f ).

Proof: By Theorem 6 we have ρ(f

) = lim sup n→+∞ n log(n) -log(|(n + 1)a n+1 |) . But since 1 n ≤ |n| ≤ 1, we have lim sup n→+∞ n log(n) -log(|(n + 1)a n+1 | = lim sup n→+∞ n log(n) -log(|a n+1 |) = lim sup n→+∞ (n + 1) log(n + 1) -log(|a n+1 |) = ρ(f ).
Corollary 10.1: The derivation on A( IK) restricted to the algebra A( IK, t) (resp. to A 0 ( IK)) provides that algebra with a derivation.

In complex analysis, it is known that if an entire function f has order t < +∞, then f and f have same type. We will check that it is the same here.

Theorem 11: Let f ∈ A( IK) be not identically zero, of order t ∈]0, +∞[. Then σ(f ) = σ(f ).

Proof: By Theorem 8 we have,

eρ(f )σ(f ) = lim sup n→+∞ n |n + 1||a n+1 | t n = lim sup n→+∞ (n + 1) |n + 1||a n+1 | t n n n+1 n n + 1 = lim sup n→+∞ (n + 1) |n + 1||a n+1 | t n+1 = eρ(f )σ(f ).
But since ρ(f ) = ρ(f ) and since ρ(f ) = 0, we can see that σ(f ) = σ(f ).

By Theorems 9 and 10, we can now derive Corollary 11.1:

Corollary 11.1: Let f ∈ A 0 ( IK) be not identically zero, of order t < +∞. If ψ(f ) = lim r→+∞ q(f, r) t and if ψ(f ) = lim r→+∞ q(f , r) t , then ψ(f ) = ψ(f ).
Conjecture C1 suggests and implies the following Conjecture C2:

Conjecture C2 ψ(f ) = ψ(f ) ∀f ∈ A 0 ( IK).
Theorem 12: Let f, g ∈ A( IK) be transcendental and of same order t ∈ [0, +∞[. Then for every > 0, lim sup r→+∞ r q(g, r) q(f, r) = +∞.

Proof: Suppose first t = 0. The proof then is almost trivial. Indeed, for all > 0, we have lim r→+∞ q(f, r) r = 0 hence lim r→+∞ r q(f, r) = +∞, therefore lim r→+∞ r q(g, r) q(f, r) = +∞. Now suppose t > 0. By Theorem 4, we have lim sup r→+∞ q(f, r) r t is a finite number and hence there exists λ > 0 such that [START_REF] Amice | Les nombres p-adiques[END_REF] q(f, r) ≤ λr t ∀r > 1.

Now, let us fix s ∈]0, t[. By hypothesis, ρ(g) = ρ(f ) and hence by Theorem 4, we have lim sup r→+∞ q(g, r) r s = +∞ so, there exists an increasing sequence (r n ) n∈ IN of IR + such that lim n→+∞ r n = +∞ and q(g, r n ) (r n ) s ≥ n. Therefore, by (1), we have

λ(r n ) t q(g, r n ) (r n ) s q(f, r n ) > q(g, r n ) (r n ) s > n
and hence

λ lim n→+∞ (r n ) t-s q(g, r n ) q(f, r n ) = +∞.
Consequently,

(2) lim sup r→+∞ (r) t-s q(g, r) q(f, r) = +∞. Now, since that holds for all s ∈]0, t[, the statement derived from [START_REF] Bezivin | Zeros of the derivative of a p-adic meromorphic function[END_REF].

Remark: Comparing the number of zeros of f to this of f inside a disk is very uneasy. Now, we can give some precisions. By Theorem 11 we can derive Corollary 12.1:

Corollary 12.1: Let f ∈ A 0 ( IK) be not affine. Then for every > 0, we have lim sup r→+∞ r q(f , r) q(f, r) = +∞ and lim sup r→+∞ r q(f, r) q(f , r) = +∞.

Corollary 12.2: Let f ∈ A 0 ( IK). Then ψ(f ) is finite if and only if so is ψ(f ).

We can now give a partial solution to a problem that arose in the study of zeros of derivatives of meromorphic functions: given f ∈ A( IK), is it possible that f divides f in the algebra A( IK)?

Theorem 13: Let f ∈ A( IK) \ IK[x]. Suppose that for some number s > 0 we have lim sup r→+∞ |q(f, r)|r s > 0 (where |q(f, r)| is the absolute value of q(f, r) defined on IK). Then f has infinitely many zeros that are not zeros of f . Proof: Suppose that f only has finitely many zeros that are not zeros of f . Then there exist h ∈ A( IK) and P ∈ IK[x] such that P f = f h. Without loss of generality, we can assume that P is monic. Every zero of f of order u ≥ 2 is a zero of f of order u -1 and hence is a zero of h. And every zero of f of order 1 is zero of h of order 1 too. Consequently, h is not a polynomial.

Set f (x) = ∞ n=0 a n x n , f (x) = ∞ n=0 c n x n h(x) = ∞ n=0
b n x n and let s = deg(P ). Then c n = (n + 1)a n+1 ∀n ∈ IN. On the other hand, by Theorem A, given any r > 0 we have |f |(r) = |a q(f,r) |r q(f,r) , |f |(r) = |c q(f ,r) |r q(f ,r) = |(q(f , r) + 1)a q(f ,r)+1) |r q(f ,r) and |h|(r) = |b q(h,r) |r q(h,r) . Since h has infinitely many zeros, there exists r 0 > 0 such that q(h, r) ≥ s + 2 ∀r ≥ r 0 , assuming that all zeros of P belong to d(0, s). Then since the norm | . |(r) is multiplicative, we have s + q(f, r) = q(f , r) + q(h, r), hence [START_REF] Amice | Les nombres p-adiques[END_REF] q(f , r) < q(f, r) -1 ∀r ≥ r 0 .

Then, by (1) we have |c n |r n < c q(f ,r) r q(f ,r) ∀n > q(f , r), ∀r ≥ r 0 and particularly, |c q(f,r)-1 |r q(f,r)-1 < |f |(r) = |c q(f ,r) |r q(f ,r) i.e.

(2) |(q(f, r))a q(f,r) |r (q(f,r)-1) < |f |(r) = |(q(f , r) + 1)a q(f ,r)+1 |r q(f ,r)

On the other hand, since P f = f h, we have |P |(r)|f |(r) = |f |(r)|h|(r), hence since P is monic,

(3) r s |a q(f,r) |r q(f,r) = |(q(f , r) + 1)a (q(f ,r)+1) |r q(f ,r) |b q(h,r) |r q(h,r) ∀r > r 0 .

By (2) we can derive r s-1 |q(f, r)a q(f,r) |r q(f,r) < r s |(q(f , r) + 1)a q(f ,r)+1 |r q(f ,r)

and by (3) we have |q(f, r)| r |(q(f , r) + 1)a q(f ,r)+1 |r q(f ,r) |b q(h,r) |r q(h,r) < r s |(q(f , r) + 1)a q(f ,r)+1 |r q(f ,r)

therefore we obtain |b q(h,r) |r q(h,r)-1 |q(f, r)| < r s . Consequently, ( 4)

|h|(r) < r s+1 |q(f, r)| Since h is transcendental, we have lim r→+∞ |h|(r)
r m = +∞ ∀m > 0. Now, suppose that for some integer m we have lim sup r→+∞ |q(f, r)|r m > 0, hence there exists a constant c and an increasing sequence

(r n ) n∈ IN * such that r 1 > r 0 , lim n→+∞ r n = +∞ and |q(f, r n )|(r n ) m > c ∀n. Then |h|(r n ) < c(r n ) s+1+m
∀n, a contradiction to (4). This finishes proving that P and h do not not exist.

Remark: It is possible to deduce the proof of Theorem 13 by using Lemma 1.4 in [START_REF] Bezivin | Some new and old results on zeros of the derivative of a p-adic meromorphic function[END_REF].

Corollary 13.1: Let f ∈ A 0 ( IK). Then f has infinitely many zeros that are not zeros of f . Proof: Indeed, let f be of order t. By Theorem 4 lim sup r→+∞ q(f, r) r t is a finite number and therefore lim sup r→+∞ |q(f, r)|r t > 0.

Corollary 13.2: Let f ∈ A 0 ( IK). Then f does not divide f in A( IK).

Corollary 13.3 is a partial solution for the p-adic Hayman conjecture when n = 1, which is not solved yet.

Corollary 13.3: Let f ∈ M( IK) be such that lim sup r→+∞ |q( 1 f , r)|r s > 0 for some s > 0. Then f f has at least one zero.

Proof: Indeed, suppose that f f has no zero. Then f is of the form 1 h with h ∈ A( IK) and f = -h h 2 has no zero, hence every zero of h is a zero of h, a contradiction to Theorem 13 since lim sup r→+∞ |q(h, r)|r s > 0.

Corollary 13.4: Suppose IK has residue characteristic 0. Then for every f ∈ A( IK), f does not divide f in A( IK).

Remarks: 1) Concerning complex entire functions, we can check that the exponential is of order 1 but is divided by its derivative in the algebra of complex entire functions.

2) It is also possible to derive Corollary 13.4 from Theorem 1 in [START_REF] Bezivin | Zeros of the derivative of a p-adic meromorphic function[END_REF]. Indeed, let g = 1 f

. By Theorem 4, lim sup r→+∞ q(f, r) r t is a finite number. Consequently, there exists c > 0 such that q(f, r) ≤ cr t ∀r > 1 and therefore the number of poles of g in d(0, r) is upper bounded by cr t whenever r > 1. Consequently, we can apply Theorem 1 [START_REF] Bezivin | Zeros of the derivative of a p-adic meromorphic function[END_REF] and hence the meromorphic function g has infinitely many zeros. Now, suppose that f divides f in A( IK). Then every zero of f is a zero of f with an order superior, hence f f 2 has no zero, a contradiction.

3) If the residue characteristic of IK is p = 0, we can easily construct an example of entire function Theorem 13 shows that f is not divided by f in A( IK). On the other hand, fixing t > 0, we have q(f, n + 1) (n + 1) t ≥ p n (n + 1) t hence lim sup r→+∞ q(f, r) r t = +∞ ∀t > 0 therefore, f is not of finite order.

f
Theorem 13 suggests the following conjecture:

Conjecture C3: Given f ∈ A( IK) (other than (x -a) m , a ∈ IK, m ∈ IN) there exists no h ∈ A( IK) such that f = f h.

  Since lim r→+∞ |g|(r) = +∞, of course we have log(|f.g|(r)) ≥ log(|f |(r)) when r is big enough, hence log(log(|f.g|(r))) log(r) ≥ log(log(|f |(r))) log(r)

Theorem 2 :

 2 If the sequence |a n-1 | |a n | n∈ IN * is strictly increasing, then, putting |a n-1 | |a n | = r n , f admits in each circle C(0, r n ) a unique zero taking multiplicity into account and has no other zero in IK. Theorem B: Let f ∈ A( IK) be non-identically zero and let r , r ∈]0, +∞[ with r < r . Then Let f ∈ A( IK). Then |f |(r) ≤ |f |(r) r ∀r > 0. Theorem D: Let f, g ∈ A( IK). Then |f • g|(r) = |f |(|g|(r)) ∀r > 0. Let f ∈ A( IK) and let P ∈ IK[x]. Then ρ(P •f ) = ρ(f ) and ρ(f •P ) = deg(P )ρ(f ). Proof: Let n = deg(P ). For r big enough, we have log(log(|f |(r))) ≤) log(log(|P • f |(r))) ≤ log((n + 1) log(|f |(r))) = log(n + 1) + log(log(|f |(r))). Consequently, lim sup r→+∞ log(log(|f |(r))) log(r) ≤ lim sup r→+∞ log(log(|P • f |(r))) log(r) ≤ lim sup r→+∞ log(n + 1) + log(log(|f |(r))) log(r) and therefore ρ(P • f ) = ρ(f ). Next, for r big enough, we have log(log(|f |(r))) log(r) ≤ log(log(|f • P |(r))) log(r) = log(log(|f • P |(r)) log(|P |(r)) log(|P |(r)) log(r) Now, lim sup r→+∞ log(log(|f • P |(r)) log(|P |(r)) = lim sup r→+∞ log(log(|f |(r)) log(r) because the function h defined in [0, +∞[ as h(r) = |P |(r) is obviously an increasing continuous bijection from [0, +∞[ onto [|P (0)|, +∞[. On the other hand, it is obviously seen that lim sup r→+∞ log(|P |(r)) log(r) = n. Consequently, lim sup r→+∞ log(log(|f • P |(r)) log(|P |(r)) = n lim sup r→+∞ log(log(|f |(r)) log(r)

  proof the scond claim.

Proof:

  Let s = ρ(g) and t = ρ(f ) and suppose s ≤ t. When r is big enough, we have max(log(|f |(r)), log(|g|(r)) ≤ log(|f.g|(r)) = log(|f |(r)) + log(|g|(r)). By Theorem 1, we have ρ(f g) = t. Therefore lim sup r→+∞ log(|f.g|(r))

a

  m x m . Without loss of generality, we may assume that f (0) = 1. Set t = ρ(f ) and = 1 ρ(f ) and let us denote by (C(0, s m )) m∈ IN the sequence of circles containing at least one zero of f , with s m < s m+1 . Suppose first that f satisfies Hypothesis L. By Theorem A, actually each circle C(0, s m ), m ∈ IN contains a unique zero of f and f has no other zero in IK. Moreover, for each m ∈ IN, we have s m = |a m-1 | |a m | . Consequently, q(f, s m ) = m, m ∈ IN. Now, when r belongs to the interval [s m , s m+1 [, f admits exactly m zeros in d(0, r) and hence q(f, r) r t is maximum in [s m , s m+1 [ when r = s m . Consequently, we have ψ(f ) = lim sup m→+∞ m (s m ) t . So we can write m (s m ) t = ψ(f ) + m with lim sup m→+∞ m = 0 hence (1)

.=

  Now, suppose that ψ(f ) = lim r→+∞ q(f, r) r t . Then we can take φ(m) = m ∀m ∈ IN hence we have ψ(f ) = lim m→+∞ m (s m ) t and lim m→+∞ m = 0. Set f (x) = ∞ n=0 a n x n . By Theorem A, for each m ∈ IN, we have s m = |a m-1 | |a m | . Consequently, q(f, s m ) = m. Hence (6) ψ(f ) = lim m→+∞ m (s m ) t = lim m→+∞ m |a m | |a m-1 | t For every m ∈ IN, set b m = m!|a m | t . By hypothesis and by (6) we have lim m→+∞ b m b m-1 = ψ(f ). But by d'Alembert-Cauchy's Theorem, lim m→+∞ b m b m-1 = lim m→+∞ m b m = ψ(f ), hence lim m→+∞ m m!|a m | t = ψ(f ). On the other hand, by Stirling's formula, we have lim m→+∞ eψ(f ). But by Theorem 8, we have lim m→+∞ m m |a m | t = (etσ(f )).

  Now consider log(|g|(r)) -log(|f |(r)) when r ∈ [s m-1 , s m [. On one hand, we check that log(|f |(r)) = m-1 j=1 u m (log((r) -log(s j )) and log(|f |(r)) ≥ log(|g|(r)) ≥ log(|f |(r)) -m j=1

u

  j (log(s j ) -log(s j )) ≤ 1 j(j -1) . Therefore log(|f |(r))log(|g|(r)) is positive and bounded when r tends to +∞. Consequently, we have lim r→+∞ log(log(|f |(r) -log(log(|g|(r) log(r) = 0 and hence ρ(f ) = ρ(g) = t. Further, lim r→+∞ log(|f |(r)) r t -log(|g|(r)) r t = 0, hence σ(f ) = σ(g). Moreover, by (

Example 3 :

 3 Let r n = 2 n , n ∈ IN and let f ∈ A(IK) have exactly 2 n zeros in C(0, r n ) and satisfyf (0) = 1. Then q(f, r n ) = 2 n+1 -1 ∀n ∈ IN. We can see that the function h(r) defined in [r n , r n+1 [ by h(r) = q(f,r) r is decreasing and satisfies h(r n ) = 2 n+1 -Consequently, lim sup r→+∞ h(r) = 2 and lim inf r→+∞ h(r) = 1. Particularly, by Theorem 4, we have ρ(f ) = 1 and of course ψ(f ) = 2. Now, let us compute σ(f ) and consider the function in r: E(r) = log(|f |(r)) r . When r belongs to [r n , r n+1 ], we have

  of infinite order such thatf does not divide f in A( IK). Let f (x) = |α n | = n + 1. We check that q(f, n + 1) = n k=0p k is prime to p for every n ∈ IN. Consequently,

  the proof is identical to the one made in the complex context, replacing M (f, r) by the multiplicative norm |f |(r) (see[START_REF] Rubel | Entire and meromorphic functions[END_REF], Proposition 11.4).

	Suppose now that t = +∞. Suppose that lim sup n→+∞	n log n (-log |a n |)	< +∞. Let us take s ∈ IN such
	that		
	(2)	n log n (-log |a n |)	< s ∀n ∈ IN.
	By Theorem 4, we have lim sup r→+∞	q(f, r) r s = +∞. So, we can take a sequence (r m ) m∈ IN such that
	(3)	lim m→+∞	
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