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Introduction

We denote by IK an algebraically closed field of characteristic 0, complete with respect to an ultrametric absolute value | . | and by IK(x) the field of rational functions with coefficients in IK. Given a ∈ IK and R ∈ IR * + , we denote by d(a, R) the disk {x ∈ IK | |x -a| ≤ R}, by d(a, R -) the disk {x ∈ IK | |x -a| < R} and by C(a, r) the circle {x ∈ IK | |x -a| = r}. Next, we denote by A(IK) the IK-algebra of analytic functions in IK (i.e. the set of power series with an infinite radius of convergence) and by M(IK) the field of meromorphic functions in IK (i.e. the field of fractions of A(IK)). Similarly, we denote by A(d(a, R -)) the IK-algebra of analytic functions in d(a, R -) (i.e. the set of power series with a radius of convergence ≥ R) [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF], [START_REF] Hu | Value Distribution Theory Related to Number Theory Bikhäuser[END_REF], [START_REF] Krasner | Prolongement analytique uniforme et multiforme dans les corps valués complets. Les tendances géométriques en algèbre et théorie des nombres[END_REF] and by M(d(a, R -)) its field of fractions and we denote by A b (d(a, R -)) the IK-algebra of bounded analytic functions in d(a, R -) and by M b (d(a, R -)) its field of fractions and we set

A u (d(a, R -)) = A(d(a, R -)) \ A b (d(a, R -)) and M u (d(a, R -)) = M(d(a, R -)) \ M b (d(a, R -)).
Given f ∈ M(IK) (resp. f ∈ M u (d(a, R -))), a value b ∈ IK is called an exceptional value for f if f -b has no zero in IK (resp. in d(a, R -)) and it is called a quasi-exceptional value for f if f -b has finitely many zeros in IK (resp. in d(a, R -)).

In the complex field, in the fifties, Walter Hayman asked the question whether, given a meromorphic function g in the whole plane l C and an integer n ∈ IN, the function g g n might admit an exceptional value b = 0 or a quasi-exceptional value b = 0 [START_REF] Hayman | Meromorphic Functions[END_REF]. W. Hayman showed that g g n has no quasi-exceptional value, whenever n ≥ 3. Next , the problem was solved for n = 2 by E. Mues in 1979 [START_REF] Mues | Uber ein Problem von Hayman[END_REF] and next, for n = 1, in 1995 by W. Bergweiler and A. Eremenko [START_REF] Bergweiler | On the singularities of the inverse to a meromorphic function of nite order[END_REF] and separately by H. Chen and M. Fang.

The same problem occurs on the field IK, both in M(IK) and in a field M(d(a, R -)), a ∈ IK, R > 0. Several basic results will be necessary to examine this.

In ultrametric analysis as in complex analysis, we have this immediate correspondance: Lemma 1: Let g ∈ M(IK) (resp. let g ∈ M(d(a, R -)), a ∈ IK, R > 0), let f = 1 g and let n ∈ IN * . Then g g n admits a quasi-exceptional value b ∈ IK * if and only if f + bf n+2 has finitely many zeros that are not zeros of f .

Remark: We can also consider the same problem when n = -1 i.e. the question whether f + bf has infinitely many zeros. In l C the well known counter-example furnished by the function exp(x) shows that f + f may have no zero. When n = 0, in l C the well known counter-example furnished by the function tan(-x) shows that f + f 2 may have no zero. On the field IK, we will examine the cases n = -1 and n = 0. 1 Henceforth, for n ≥ 3, we will examine that problem by considering the set of zeros of f + bf n+2 , with b = 0. In the field IK, two theorems are specific to p-adic analysis. Both are based on the following lemma. We set m = n + 2.

Notation: Let f ∈ M(d(0, R -)). For every r ∈]0, R[, |f (x)| has a limit when |x| tends to r while staing different from r and that limit is denoted by |f |(r) [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF].

Let µ = log r. We set Ψ(f, µ) = log(|f |(r)) We denote by ν + (f, µ) the difference between the number of zeros and the number of poles of f in d(0, r) and we denote by ν -(f, µ) the difference between the number of zeros and the number of poles of f in d(0, r -).

The following Lemma 1 and 2 are classical [START_REF] Ojeda | On Hayman's Conjecture over a p-adic field[END_REF]:

Lemma 2: Let f ∈ M(IK). Then ν + (f, µ) is the right side derivative of Ψ(f, µ) and ν + (f, µ) is the left side derivative of Ψ(f, µ) . Lemma 3: Let f ∈ M(IK), (resp. let f ∈ M(d(a, R -)), a ∈ IK, R > 0)
, suppose that f admits infinitely many zeros and suppose that there exists a sequence of intervals [r n , r n ] such that lim n→+∞

r n = +∞ (resp. lim n→+∞ r n = lim n→+∞ r n = R) and such that |(f +f m )|(r) = |f m |(r) ∀r ∈ n∈IN [r n , r n ]. Let m ∈ IN * be = 2. Then f + f m has infinitely many zeros that are not zeros of f . Proof: Let J = n∈IN [r n , r n ]. When r is big enough, we have |f m |(r) > |f |(r) therefore (1) ν + (f + f m , log r) = ν + (f m , log r), ν -(f + f m , log r) = ν -(f m , log r) ∀r ∈ J.
Consequently, in each disk d(0, r) with r ∈ J, f and f + f m have the same difference between the number of zeros and poles. Now, if m ≥ 3 the poles of f + f m and f m are the same taking multiplicity into account. And when m = 1, each pole of f is a pole of f + f with a greater order. Consequently, for each r ∈ J, the number of zeros of f + f m in d(0, r) is superior or equal to this of f m . Now, for each n ∈ IN, let s n be the number of distinct zeros of f in d(0, r n ). Since f has infinitely many zeros, the sequence s n is increasing and tends to +∞. On the other hand, for each zero α of order u of f , either α is not a zero of f + f m (when u = 1), or it is a zero of order u -1. Consequently, the number of zeros of f + f m in d(0, r n ) which are not zeros of f is at least s n . Thus we have proved that f + f m has infinitely many zeros that are not zeros of f . Remark: Relation (1) above does not hold when m = 2 because poles of f 2 and f may have the same order and therefore may kill each other.

In most of results, we will use the ultrametric Nevanlinna theory [33], [35]. The Nevanlinna Theory was made by Rolf Nevanlinna on complex functions [START_REF] Nevanlinna | Le théorème de Picard-Borel et la théorie des fonctions méromorphes[END_REF], [START_REF] Hayman | Meromorphic Functions[END_REF]. It consists of defining counting functions of zeros and poles of a meromorphic function f and giving an upper bound for multiple zeros and poles of various functions f -b, b ∈ l C. A similar theory for functions in a p-adic field was constructed by A. Boutabaa [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF]. The p-adic Nevanlinna Theory was first stated and correctly proved by A. Boutabaa in M(IK) [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF]. In [START_REF] Boutabaa | URS and URSIMS for p-adic meromorphic functions inside a disk[END_REF] the theory was extended to functions in M(d(0, R -)) by taking into account Lazard's problem [START_REF] Lazard | Les zéros des fonctions analytiques sur un corps valué complet[END_REF].

Throughout the next paragraphs, we will denote by I the interval [t, +∞[ and by J an interval of the form [t, R[ with t > 0.

We have to introduce the counting function of zeros and poles of f , counting or not multiplicity. Here we will choose a presentation that avoids assuming that all functions we consider admit no zero and no pole at the origin.

Definitions: We denote by Z(r, f ) the counting function of zeros of f in d(0, r) in the following way:

Let σ(r) be the number of distinct zeros of f in d(0, r) and let Let (a n ), 1 ≤ n ≤ σ(r) be the finite sequence of zeros of f in d(0, r), of respective order s n .

We set

Z(r, f ) = max(ω 0 (f ), 0) log r + σ(r) n=1 s n (log r -log |a n |) and so, Z(r, f ) is called the counting function of zeros of f in d(0, r), counting multiplicity.
In order to define the counting function of zeros of f without multiplicity, we put

ω 0 (f ) = 0 if ω 0 (f ) ≤ 0 and ω 0 (f ) = 1 if ω 0 (f ) ≥ 1.
Now, we denote by Z(r, f ) the counting function of zeros of f without multiplicity:

Z(r, f ) = ω 0 (f ) log r + σ(r) n=1 (log r -log |a n |) and so, Z(r, f ) is called the counting function of zeros of f in d(0, r) ignoring multiplicity.
In the same way, we denote by τ (r) the number of distinct poles of f in d(0, r) and then, considering the finite sequence (b n ), 1 ≤ n ≤ τ (r) of poles of f in d(0, r), with respective multiplicity order t n , we put

N (r, f ) = max(-ω 0 (f ), 0) log r + τ (r) n=1 t n (log r -log |b n |) and then N (r, f ) is called the counting function of the poles of f , counting multiplicity
Next, in order to define the counting function of poles of f without multiplicity, we put ω 0 (f ) = 0 if ω 0 (f ) ≥ 0 and ω 0 (f ) = 1 if ω 0 (f ) ≤ -1 and we set

N (r, f ) = ω 0 (f ) log r + τ (r) n=1 (log r -log |b n |) and then N (r, f ) is called the counting function of the poles of f ,

ignoring multiplicity

Now we can define the Nevanlinna function

T (r, f ) in I or J as T (r, f ) = max(Z(r, f ), N (r, f )) and the function T (r, f ) is called characteristic function of f or Nevanlinna of f .
Finally, if S is a subset of IK we will denote by Z S 0 (r, f ) the counting function of zeros of f , excluding those which are zeros of f -a for any a ∈ S.

Remark: If we change the origin, the functions Z, N, T are not changed, up to an additive constant.

In a p-adic field such as IK, the first Main Theorem is almost immediate:

Theorem A: Let f ∈ M(IK) (resp. f ∈ M(d(0, R -)))
have no zero and no pole at 0.

Then log(|f |(r)) = Ψ(f, log r) = log(|f (0)|) + Z(r, f ) -N (r, f ). Corollary A.1: Let f, g ∈ M(IK) (resp. f, g ∈ M(d(0, R -))). Then Z(r, f g) ≤ Z(r, f ) + Z(r, g), N (r, f g) ≤ N (r, f ) + N (r, g), T (r, f g) ≤ T (r, f ) + T (r, g), T (r, f + g) ≤ T (r, f ) + T (r, g) + O(1), T (r, cf ) = T (r, f ) ∀c ∈ IK * , T (r, 1 f ) = T (r, f )). If f, g ∈ A(IK) (resp. if f, g ∈ A(d(0, R -))), then Z(r, f g) = Z(r, f )+Z(r, g), T (r, f ) = Z(r, f )), T (r, f g) = T (r, f ) + T (r, g) + O(1) and T (r, f + g) ≤ max(T (r, f ), T (r, g)).
We can now state the famous p-adic Second Main Theorem:

Theorem B: Let α 1 , ..., α q ∈ IK, with q ≥ 2, let S = {α 1 , ..., α q } and let f ∈ M(IK) (resp. f ∈ M u (d(0, R -))). Then (q -1)T (r, f ) ≤ q j=1 Z(r, f -α j )+N (r, f )-Z S 0 (r, f )-log r+O(1) ∀r ∈ I (resp. ∀r ∈ J).
Definitions and notation:

For each f ∈ M(IK) (resp. f ∈ M(d(a, R -))) we denote by M f (IK), (resp. M f (d(a, R -))) the set of functions h ∈ M(IK), (resp. h ∈ M(d(a, R -))) such that T (r, h) = o(T (r, f
)) when r tends to +∞ (resp. when r tends to R). Similarly,

if f ∈ A(IK) (resp. f ∈ A(d(a, R -))) we shall denote by A f (IK) (resp. A f (d(a, R -))) the set M f (IK) ∩ A(IK), (resp. M f (d(a, R -)) ∩ A(d(a, R -))). The elements of M f (IK) (resp. M f (d(a, R -))) are called small functions with respect to f . Similarly, if f ∈ A(IK) (resp. f ∈ A(d(a, R -))) the elements of A f (IK) (resp. A f (d(a, R -))
) are called small functions with respect to f . According to classical results [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF], [START_REF] Ojeda | Applications of the p-adic Nevanlinna theory to problems of uniqueness, Advances in p-adic and Non-Archimedean analysis[END_REF], we have the following Theorem C:

Theorem C: Let f ∈ A(IK) (resp. f ∈ A u (d(0, R -))) and let w 1 , w 2 ∈ A f (IK) (resp. w 1 , w 2 ∈ A f (d(0, R -))) be distinct. Then T (r, f ) ≤ Z(r, f -w 1 ) + Z(r, f -w 2 ) + o(T (r, f ))).
Definitions and notation: Given f, g ∈ M(d(0, R -)), we denote by W (f, g) the Wronskian of f and g i.e. f g -f g .

In [START_REF] Boussaf | Zeros of the derivative of a p-adic meromorphic function and applications Bull[END_REF], the following results are proven:

Theorem D: Let f, g ∈ A(IK) be such that W (f, g) is a non-identically zero polynomial.
Then both f, g are polynomials.

Notation: Let f ∈ A(IK). We can factorize f in the form f f where the zeros of f are the distinct zeros of f each with order 1. Moreover, if f (0) = 0 we will take f such that f (0) = 1. First results [START_REF] Ojeda | On Hayman's Conjecture over a p-adic field[END_REF] We will now prove together the following Theorems 1 and 2. We will prove that there exists t > 0 such that |f

+ f m |(r) = |f m |(r) ∀r ∈ J ∩ [t, +∞[. We know that |f |(r) ≤ |f |(r) r
. Consequently, when r lies in J, there exists s > 0 such

that |f |(r) ≥ M ∀r ∈ [s, +∞[∩J. |f |(r) m ≥ |f |(r)M m-1 ≥ r|f |(r)M m-1 .
Next, when r is big enough, rM m-1 is greater than 1, hence (|f We can now conclude in both theorems 1 and 2. For each n ∈ IN, let q n be the number of zeros of f in d(0, r n ). Suppose the sequence (q n ) n∈IN is bounded. Then, f has finitely many zeros, hence it is of the form P h with P ∈ IK[x] and h ∈ A u (d(0, R)). Consequently, we have lim r→+∞ |f |(r) = 0, a contradiction to the hypothesis in both theorems. Therefore, the sequence (q n ) n∈IN which is increasing by definition, tends to +∞. Now, in each Theorems 1 and 2 we may apply Lemma 3 showing that f + f m has infinitely many zeros that are not zeros of f .

|(r)) m > |f |(r). Thus there exists t ≥ s such that (|f |(r)) m > |f |(r) ∀r ∈ J ∩ [t, +∞[. Let J = J ∩ [t,
Consider now the case m = 1. We can have a better conclusion in M(IK). first that f has infinitely many zeros. We can then apply Lemma 3 and get the conclusion. Suppose now that f has finitely many zeros. Then f has infinitely many poles c n of respective order t n . Since IK has characteristic zero, f admits each c n as a pole of order t n + 1 and similarly, f + f also admits each c n as a pole of order t n + 1. Thus, we have

N (r, f + f ) = N (r, f ) + N (r, f ). But since |f + f |(r) = |f |(r) holds in I, we have Ψ(f + f, log r) = Ψ(f, log r) ∀r ∈ I hence, by Lemma 2, ν(f + f, log r) = ν(f, log r) ∀r ∈ I and hence Z(r, f + f ) -N (r, f + f ) = Z(r, f ) -N (r, f ), therefore Z(r, f + f ) -(N (r, f ) + N (r, f )) = Z(r, f ) -N (r, f ) and hence Z(r, f + f ) = Z(r, f ) + N (r, f
). Since we have supposed that f has finitely many zeros and since f has infinitely many poles, f + f has infinitely many zeros and all but finitely many are not zeros of f .

Theorem 4: Let f ∈ A(IK) \ IK(x) (resp. let a ∈ IK, let R ∈]0, +∞[ and let f ∈ A u (da(, R ) )).
For each b ∈ IK * , f + bf 2 has infinitely many zeros that are not zeros of f . Proof: Without loss of generality, we can assume b = 1 and a = 0. Clearly, when r is big enough, in ]0, +∞[ (resp. in ]0, R[), we have |f + f 2 |(r) = |f 2 |(r) therefore f 2 and f + f 2 have the same number of zeros in C(0, r). Let α ∈ C(0, r) be a zero of f of order q. When r is big enough, it is a zero of order 2q for f 2 and it is a zero of order q -1 for f + f 2 . Consequently, f + f 2 has at least q + 1 zero in C(0, r) that are not zeros of f (taking multiplicity into account). This is true for every such zeros of f an hence f + f 2 has infinitely many zeros that are not zeros of f . 

4.2: Let m ∈ IN be ≥ 2, let a ∈ IK, let R ∈]0, +∞[ and let f ∈ A u (da(, R -))).
For each b ∈ IK * , f + bf m has infinitely many zeros that are not zeros of f . Theorem 5 is given in [START_REF] Boussaf | Value distribution of p-adic meromorphic functions[END_REF]:

Theorem 5: Let f ∈ M(IK) \ IK(x) (resp. let a ∈ IK and R ∈ IR * + and let f ∈ M(d(a, R -))) and let m ∈ IN. If m ≥ 5 then for each b ∈ IK * , f + bf m has infinitely many zeros that are not zeros of f . If m = 4, if f ∈ M(IK) \ IK(x)
and if f admits at least s multiple zeros and at least t multiple poles, then f + bf 4 admits a number of zeros that are not zeros of f (taken account of multiplicity) which is strictly superior to s + t 2 .

Proof: We know that the zeros of f +bf m in IK are the same as in a spherically complete algebraically closed extension IK of IK. So, for simplicity, we can suppose that the field IK is spherically complete without loss of generality. We can also suppose that b = 1. Then if f ∈ M(IK) \ IK(x) we can obviously we can write f = h l with h, l ∈ A(IK), having no common zeros and if f ∈ M(d(a, R -)), since IK is spherically complete, we can write

f = h l with h, l ∈ A(d(a, R -))
, having no common zeros again.

Let g = 1 f and let n = m -2. So, by Lemma 1, the problem is reduced to show that g g n -1 has infinitely many zeros. Then, g g n -1 = (l h -hl )l n -h n+2 h n+2 and since h, l have no common bzeros, this is of the form P h n+2 where P is a polynomial of degree q. Now, set F = (l h -hl )l n . Applying Theorem C to F we have (1) T (r, F ) = Z(r, F ) + O(1) ≤ Z(r, F ) + Z(r, F -P ) + T (r, P ) + O [START_REF] Bergweiler | On the singularities of the inverse to a meromorphic function of nite order[END_REF]. By (1) we derive Z(r, l h -h l) + nZ(r, l) ≤ Z(r, l h -h l) + Z(r, l) + Z(r, F -P ) + T (r, P ) + O(1). Actually, Z(r, F -P ) = Z(r, h), hence nZ(r, l) ≤ Z(r, l) + Z(r, h) + T (r, P ) + O(1) and hence (n -1)Z(r, l) ≤ Z(r, h) + T (P ) + O(1). But since T (r, P ) = q log r + O(1), we have (2

) (n -1)Z(r, l) ≤ Z(r, h) + q log r + O(1)
Now, consider the hypothesis f ∈ M(IK). By Theorem 1, if lim inf

r→+∞ |f |(r) > 0 i.e. if lim inf r→+∞ Z(r, f ) -N (r, f ) > -∞ the claim is proved. Consequently, if the claim is not true, we can assume (3) lim inf r→+∞ Z(r, f ) -N (r, f ) = -∞
But we see that (3) is impossible whenever n ≥ 3, i.e. m ≥ 5. Now, suppose m = 4 .i.e n = 2. More precisely Z(r, l) ≤ Z(r, l) -s log r 2 and Z(r, h) ≤ Z(r, h) -t log r 2 , so by Relation (1) we have

(4) (n -1)Z(r, l) ≤ Z(r, h) + (q - s + t 2 ) log r + O(1).
Then Relation (3) implies q -s + t 2 > 0 and hence f f n admits a number of zeros strictly

superior to s + t 2 . Now, suppose that f ∈ M(d(0, R -)). By Theorem 2, if lim r→R -|f |(r) = +∞ i.e. if lim inf r→R -Z(r, f ) -N (r, f ) = +∞ the claim is proved. Consequently, if the claim is not true, we can assume (5) lim inf r→R - Z(r, f ) -N (r, f ) < +∞.
But by (2), we see that ( 5) is impossible whenever n ≥ 3 i.e. m ≥ 5. Case n = 2, m = 4

We will now thorougly examine the situation when m = 4 i.e. n = 2, as made in [START_REF] Escassut | The p-adic Hayman conjecture when n = 2, Complex variable and elliptic equations[END_REF]. This requires several basic lemmas.

Lemma 4: Let f ∈ M(IK) be transcendental and such that f has finitely many multiple zeros. Then f f (f ) 2 has no quasi-exceptional value.

Proof: Let g = f f
. A pole of g is a zero of f , hence by hypothesis, g has finitely many multiple poles. Consequently, by Theorem E, g has no quasi-exceptional value.

And hence neither has 1 -

g . But g = (f ) 2 -f f (f ) 2 = 1 - f f (f ) 2 . Therefore f f (f ) 2 has no quasi-exceptional value.
Lemma 5: Let f ∈ M(IK) be transcendental and have finitely many multiple zeros. Then f f + 2(f ) 2 has infinitely many zeros that are not zeros of f . Proof: Suppose first that f has infinitely many multiple zeros. Since f has finitely many multiple zeros, the zeros of f are not zeros of f except at most finitely many. Hence f has infinitely many multiple zeros that are not zeros of f . And then, they are zeros of f , hence of f f + 2(f ) 2 , which proves the statement.

So we are now led to assume that f has finitely many multiple zeros. By Lemma 4 f f + 2(f ) 2 (f ) 2 has infinitely many zeros. Let c ∈ IK be a pole of order q of f . Without loss of generality, we can suppose c = 0. The beginning of the Laurent developpement of f at 0 is of the form a -q x q + ϕ(x) x q-1 whereas ϕ ∈ M(IK) has no pole at 0. Consequently,

f f + 2(f ) 2 (f ) 2 is of the form (a -q ) 2 (3q 2 + q) + xφ(x) (a -q ) 2 (q 2 ) + xψ(x)
whereas φ, ψ ∈ M(IK) have no pole at 0. So, the function

f f + 2(f ) 2 (f ) 2
has no zero at 0.

Therefore, each zero of 2 and hence f f + 2(f ) 2 has infinitely many zeros. Now, let us show that the zeros of f f + 2(f ) 2 are not zeros of f , except maybe finitely many. Let c be a zero of f f + 2(f ) 2 and suppose that c is a zero of f . Then, it is a zero of f and hence it is a multiple zero of f . But by hypotheses, f has finitely many multiple zeros, hence the zeros of f f + 2(f ) 2 are not zeros of f , except at most finitely many. That finishes proving the claim. Proof: Let b ∈ IK and suppose that the claim is wrong, i.e. f 2 f -b has q zeros, taking multiplicity into account. By Theorem 5, we may assume that f has finitely many multiple zeros and finitely multiple poles. Set F = f 2 f . Then F = f (f f + 2(f ) 2 ). By Lemma 5, f f + 2(f ) 2 has infinitely many zeros that are not zeros of f . Consequently, F admits for zeros: the zeros of f and the zeros of f f + 2(f ) 2 . And by Lemma 4, there exists a sequence of zeros of f f + 2(f ) 2 that are not zeros of f . Let S = {0, b} and let Z S 0 (r, F ) be the counting function of zeros of F when F (x) is different from 0 and b. Since F -b has finitely many zeros, the zeros c of F which are not zeros of f cannot satisfy F (c) = b except at most finitely many. Consequently, there are infinitely many zeros of F counted by the counting function Z S 0 (r, F ) and hence for every fixed integer t ∈ IN, we have

f f + 2(f ) 2 (f ) 2 is a zero of f f + 2(f )
(1) Z S 0 (r, F ) ≥ t log r + O(1).
Let us apply Theorem B to F . We have

(2) T (r, F ) ≤ Z(r, F ) + Z(r, F -b) + N (r, F ) -Z S 0 (r, F ) -log(r) + O(1). Now, we have (3) Z(r, F ) ≤ Z(r, f ) + Z(r, f ) Proof: Suppose first α is a zero of f + bf 2 . If α is not a pole of f , of course it is
a zero of f f 2 + b with same multiplicity. Suppose now that α is a pole of f : since it is not a pole of f + bf 2 it must be a pole of order 1 of f . Without loss of generality, we may assume that α = 0 (resp. a = α = 0). Consider the Laurent series of f at 0:

f (x) = a -1 x + a 0 + a 1 x + x 2 φ(x) with φ ∈ M(IK) (resp. φ ∈ M(d(0, R -)) and φ(0) = ∞. Then f + bf 2 is of the form f (x) + bf (x) 2 = a -1 (-1 + ba -1 ) x 2 + 2ba 0 a 1 x + a 1 + b(a 2 0 + 2a 1 a -1 ) + xξ(x)
with ξ ∈ M(IK) (resp. ξ ∈ M(d(0, R -)) and ξ(0) = ∞ and hence, we have a -1 (-1 + ba -1 ) = 0, a 0 a -1 = 0, a 2 0 + 2a 1 a -1 = 0. Since by hypothesis res(f, α) = -1 b we have (1 + ba -1 ) = 0, hence a -1 = 0, a contradiction. Consequently, every zero of f + bf 2 that is not a zero of f is a zero of f f 2 + b with same multiplicity.

Conversely, suppose now that α is a zero of f f 2 + b. If α is not a pole of f , it is a zero of f + bf 2 , with the same multiplicity, because by hypothesis it is not a zero of f . Now suppose that α is a zero of f f 2 + b and is a pole of f . Clearly, it is a pole of order 1 and again, we may assume that α = 0. Consider again the Laurent series of f at 0:

f (x) = a -1 x + a 0 + a 1 x + x 2 φ(x) with φ ∈ M(IK) and φ(0) = ∞. Then f f 2 = -a -1 x 2 + a 1 + xψ(x) (a -1 ) 2 x 2 + 2a 0 a 1 x + a 2 0 + 2a 1 a -1 + xξ(x)
where both ψ, ξ ∈ M(IK) have no pole at 0. Clearly, f f 2 is analytic at 0 and its value is

-1 a -1 . But since 0 is a zero of f f 2 + b, we have a -1 = 1 b
, what is excluded by hypothesis.

Thus we have proved that every zero of f f 2 + b is a zero of f + bf 2 (that is not a zero of f ) with the same multiplicity and this ends the proof of Theorem 9. . By hypothesis, this function has finitely many zeros. Moreover, if a is a zero of P l -l P + bP 2 but is not a zero of f + bf 2 , then by Lemma 7

it is a pole of order 1 of f such that res(f, a) = 1 b . Consequently, P l -l P + bP 2 has finitely many zeros and hence, we may write P l -l P + bP 2 l 2 = Q l 2 with Q ∈ IK[x], hence P l -l P = -bP 2 + Q. But then, by Theorem D, l is a polynomial, which ends the proof. Proof: Let g = f f 2 + b. Since all zeros of f are of order 1 except maybe finitely many, g has finitely many poles of order ≥ 3, hence a primitive G of g has finitely many poles of order ≥ 2. Consequently, by Theorem E, g has infinitely many zeros. Now, suppose b = 0. Let α be a zero of g. If α is not a pole of f , it is a zero of f + bf 2 and we can see that it is not a zero of f . Finally, suppose that α is a pole of f . Then it must be a pole of order 1 and then, by Lemma 7, the residue of f at α is 1 b .

Corollary 11.1: Let f ∈ M(IK)\IK(x) have finitely many zeros of order ≥ 2 and finitely many poles of order 1 and let b ∈ IK * . Then f + bf 2 has infinitely many zeros that are not zeros of f .

Remarks: As noticed above, in Archimedean analysis, the typical example of a meromorphic function f such that f -f 2 has no zero is tan(x) and its residue is -1 at each pole of f . Here we find the same implication but we can't find an example satisfying such properties.

Notations:

  Given three functions φ, ψ, ζ defined in an interval J =]a, +∞[ (resp. J =]a, R[), with values in [0, +∞[, we shall write φ(r) ≤ ψ(r) + O(ζ(r)) if there exists a constant b ∈ IR such that φ(r) ≤ ψ(r) + bζ(r). We shall write φ(r) = ψ(r) + O(ζ(r)) if |ψ(r) -φ(r)| is bounded by a function of the form bζ(r). Similarly, we shall write φ(r) ≤ ψ(r) + o(ζ(r)) if there exists a function h from J = ]a, +∞[ (resp. from J =]a, R[) to IR such that lim r→+∞ such that φ(r) ≤ ψ(r) + h(r). And we shall write φ(r) = ψ(r) + o(ζ(r)) if there exists a function h from J =]a, +∞[ (resp. from J =]a, R[) to IR such that lim r→+∞ and such that φ(r) = ψ(r) + h(r).

Theorem E : Corollary F. 1 :

 :1 Let f ∈ M(IK) have finitely many multiple poles, such that for certain b ∈ IK, f -b has finitely many zeros. Then f belongs to IK(x). Notation: Let f ∈ M(d(0, R -)). For each r ∈]0, R[, we denote by ζ(r, f ) the number of zeros of f in d(0, r), taking multiplicity into account and set τ (r, f ) = ζ(r, 1 f ). Similarly, we denote by β(r, f ) the number of multiple zeros of f in d(0, r), each counted with its multiplicity and we set γ(r, f ) = β(r, 1 f ). Theorem F: Let f ∈ M(IK) be such that for some c, d ∈]0, +∞[, γ(r, f ) satisfies γ(r, f ) ≤ cr d in [1, +∞[. If f has finitely many zeros, then f ∈ IK(x) . Let f be a meromorphic function on IK such that, for some c, d ∈]0, +∞[, γ(r, f ) satisfies γ(r, f ) ≤ cr d in [1, +∞[. If for some b ∈ IK f -b has finitely many zeros, then f is a rational function.

Theorem 1 : 3 .Theorem 2 :

 132 Let f ∈ M(IK)\IK(x) satisfy lim sup r→∞ |f |(r) > 0 and let b ∈ IK * . Let m ∈ IN * be ≥ Then f + bf m has infinitely many zeros that are not zeros of f . Let f ∈ M u (d(a, R -)) satisfy lim sup r→R |f |(r) = +∞ and let b ∈ IK * . Let m ∈ IN * be ≥ 3. Then f + bf m has infinitely many zeros that are not zeros of f . Proof : Without loss of generality, we can assume b = 1 and when f ∈ M(d(a, R -)), we may assume a = 0. By hypotheses, there exists a sequence of intervals [r n , r n ] such that lim n→+∞ r n = +∞ (resp. lim n→+∞ r n = lim n→+∞ r n = R) and such that, putting J = n∈IN [r n , r n ], we have lim inf r→∞, r∈J |f |(r) > 0 (resp. lim r→R -r∈J |f |(r) = +∞). Suppose first we assume the hypothesis of Theorem 1. Let M = lim inf r→+∞ |f |(r) 2 .

  +∞[. And hence we have |f + f m |(r) = |f m |(r) ∀r ∈ J . Suppose now that we assume the hypothesis of Theorem 2 We have |f |m ≥ B|f |(r)(|f |(r)) m-1 . Now, when r is close enough to R, r ∈ J, B|f (x)| m-1 is strictly greater than 1, hence (|f |(r)) m > |f |(r). Thus there exists t > 0 such that (|f |(r)) m > |f |(r) ∀r ∈ [t, +∞[∩J. We can set again J = J ∩ [t, R[ and then we have |f + f m |(r) = |f m |(r) ∀r ∈ J

Theorem 3 :

 3 Let f ∈ M(IK) \ IK(x). For each b ∈ IK * , f + bf has infinitely many zeros that are not zeros of f . Proof: Without loss of generality, we can assume again b = 1. We have |f |(r) < |f |(r) when r is big enough and hence |f + f |(r) = |f |(r) in an interval I = [s, +∞[. Suppose

Corollary 4 . 1 :

 41 Let m ∈ IN be ≥ 1, let f ∈ A(IK) \ IK(x).For each b ∈ IK * , f + bf m has infinitely many zeros that are not zeros of f .

Corollary

  

Corollary 4 . 1 :

 41 Let f ∈ M(IK) \ IK(x). Then for each n ≥ 3 f f n has infinitely many zeros that are not zeros of f .

Corollary 4 . 2 :Corollary 4 . 3 :

 4243 Let f ∈ M(IK) \ IK(x) have s multiple zeros and t multiple poles. Let b ∈ IK * . Then f +bf 4 has at least s+t+1 zeros taking account of multiplicity. Particularly, if f has infinitely many multiple zeros or poles, then f + bf 4 has infinitely many zeros that are not zeros of f . Let f ∈ M(IK) \ IK(x) have s multiple zeros and t multiple poles. Given b ∈ IK * , If f has infinitely many multiple zeros or poles, then f f 2 -b has infinitely many zeros.

Lemma 6 :Theorem 6 :

 66 Let f ∈ M(IK) be transcendental and let b ∈ IK * be such that f 2 f -b has finitely many zeros. Then, N (r, f ) ≤ Z(r, f ) + O(1). Proof: Let F = f 2 f . Since F -b is transcendental and has finitely many zeros, it is of the form P (x) h(x) with h ∈ A(IK) \ IK[x]. Consequently, |F |(r) is a constant when r is big enough and therefore, by Theorem A we have Z(r, F ) = N (r, F ) + O(1) when r is big enough. Now, Z(r, F ) = 2Z(r, f )+Z(r, f ) and, by Theorem A Z(r, f ) ≤ Z(r, f )+N (r, f )-log r + O(1). On the other hand, by Theorem A again, we have N (r, F ) = 3N (r, f ) + N (r, f ). Consequently, 3N (r, f ) + N (r, f ) ≤ 3Z(r, f ) + N (r, f ) -log r + O(1), which proves the claim. Let f ∈ M(IK) \ IK(x) Then for each b ∈ IK * , f f 2 -b has infinitely many zeros.

Theorem 10 :

 10 Let b ∈ IK * and let f ∈ M(IK) have finitely many zeros and finitely many residues at its simple poles equal to 1 b and be such that f + bf 2 has finitely many zeros. Then f belongs to IK(x). Proof: Let f = P l with P ∈ IK[x], l ∈ A(IK) having no common zero with P . Then f + bf 2 = P l -l P + bP 2 l 2

Remark: 1 . 11 :

 111 If f (x) = 1 x , the function f + bf 2 has no zero whenever b = Theorem Let f ∈ M(IK) be transcendental and have finitely many zeros of order ≥ 2 and let b ∈ IK. Then f f 2 + b has infinitely many zeros. Moreover, if b = 0, every zero α of f f 2 + b that is not a zero of f + bf 2 is a pole of f of order 1 such that the residue of f at α is equal to 1 b .

 [START_REF] Boussaf | Value distribution of p-adic meromorphic functions[END_REF]N (r, F ) = N (r, f ) and since the number of zeros of F -b is q, taking multiplicity into account, [START_REF] Boussaf | Zeros of the derivative of a p-adic meromorphic function and applications Bull[END_REF] Z(r, F -b) ≤ q log r + O(1).

Consequently, by ( 2), ( 3), ( 4), [START_REF] Boussaf | Zeros of the derivative of a p-adic meromorphic function and applications Bull[END_REF] we obtain [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF] T (r, F ) ≤ Z(r, f ) + Z(r, f ) + N (r, f ) -Z S 0 (r, F ) + (q -1) log r + O(1).

On the other hand, by construction, T (r, F ) ≥ Z(r, F ) = 2Z(r, f ) + Z(r, f ) hence by [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF] we obtain ( 7):

Now, by Lemma 6, we have N (r, f ) ≤ Z(r, f ) + O(1) hence by ( 7) we obtain 0 ≤ (q -1) log r -Z S 0 (r, F ) + O(1) and hence by (1), fixing t > q -1 we can derive 0 ≤ (q -1) log r -t log r + O(1), a contradiction. That finishes the proof of Theorem 6.

By Lemma 1, Theorems 5 and 6 we can now state the general result on the p-adic Hayman conjecture: Corollary 6.1: Let f ∈ M(IK) be transcendental. Then for every n ∈ IN, n ≥ 2, for every b ∈ IK * , f 2 f -b has infinitely many zeros and for every m ≥ 4, f + bf m has infinitely many zeros that are not zeros of f .

Concerning the case m = 3 i.e. n = 1 which remains unsolved, Corollary 6.1 has an immediate application to the conjecture with additional hypotheses [START_REF] Bezivin | Zeros of the derivative of a p-adic meromorphic function[END_REF]. . Then by Theorem 7 g g m-2 has no quasi-exceptional value.

Consequently, given b ∈ IK * , g g m-2 + b has infinitely many zeros and hence f -bf m has infinitely many zeros that are not zeros of f . Next, if b = 0, by Theorem F, f has infinitely many zeros. Remark: Using Theorem 8 to study the zeros of f -bf 2 that are not zeros of f is not so immediate, as we will see below because of residues of f at poles of order 1. Of course, if 1 f is an affine function, f + f 2 has no zeros, except if it is identically zero. And if it is not identically zero, the residue at the pole is not 1 in the general case.

Case n = 0 i.e. m = 2

As we noticed at the beginning, due to the counter-example provided by the function tan, the case n = 0 has no solution in l C. However, we can notice certain conclusions.

and let a ∈ IK be a zero of h l -hl + bh 2 that is not a zero of f + bf 2 . Then a is a pole of order 1 of f and res(f, a) = 1 b .

Proof: Clearly, if l(a) = 0, a is a zero of f + bf 2 . Hence, a zero a of h l -hl + bh 2 that is not a zero of f + bf 2 is a pole of f . Now, when l(a) = 0, we have h(a) = 0 hence l (a) = bh(a) = 0 and therefore a is a pole of order 1 of f such that h(a) l (a) = 1 b . But since a is a pole of order 1, we have res(f, a) = h(a) l (a) , which ends the proof.

Theorem 9 is not a result specific to p-adic analysis but it will be useful in Theorem 10.