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Survey on the p-adic Hayman conjecture

by Alain Escassut and Jacqueline Ojeda

Introduction

We denote by IK an algebraically closed field of characteristic 0, complete with respect
to an ultrametric absolute value | . | and by IK(x) the field of rational functions with
coefficients in IK. Given a ∈ IK and R ∈ IR∗+, we denote by d(a,R) the disk {x ∈
IK | |x − a| ≤ R}, by d(a,R−) the disk {x ∈ IK | |x − a| < R} and by C(a, r) the circle
{x ∈ IK | |x − a| = r}. Next, we denote by A(IK) the IK-algebra of analytic functions
in IK (i.e. the set of power series with an infinite radius of convergence) and by M(IK)
the field of meromorphic functions in IK (i.e. the field of fractions of A(IK)). Similarly,
we denote by A(d(a,R−)) the IK-algebra of analytic functions in d(a,R−) (i.e. the set of
power series with a radius of convergence ≥ R) [8], [11], [12], [13] and by M(d(a,R−))
its field of fractions and we denote by Ab(d(a,R−)) the IK-algebra of bounded analytic
functions in d(a,R−) and byMb(d(a,R−)) its field of fractions and we set Au(d(a,R−)) =
A(d(a,R−)) \ Ab(d(a,R−)) and Mu(d(a,R−)) =M(d(a,R−)) \Mb(d(a,R−)).

Given f ∈ M(IK) (resp. f ∈ Mu(d(a,R−))), a value b ∈ IK is called an exceptional
value for f if f − b has no zero in IK (resp. in d(a,R−)) and it is called a quasi-exceptional
value for f if f − b has finitely many zeros in IK (resp. in d(a,R−)).

In the complex field, in the fifties, Walter Hayman asked the question whether, given
a meromorphic function g in the whole plane lC and an integer n ∈ IN, the function g′gn

might admit an exceptional value b 6= 0 or a quasi-exceptional value b 6= 0 [10]. W. Hayman
showed that g′gn has no quasi-exceptional value, whenever n ≥ 3. Next , the problem was
solved for n = 2 by E. Mues in 1979 [15] and next, for n = 1, in 1995 by W. Bergweiler
and A. Eremenko [1] and separately by H. Chen and M. Fang.

The same problem occurs on the field IK, both inM(IK) and in a fieldM(d(a,R−)), a ∈
IK, R > 0. Several basic results will be necessary to examine this.

In ultrametric analysis as in complex analysis, we have this immediate correspondance:

Lemma 1: Let g ∈ M(IK) (resp. let g ∈ M(d(a,R−)), a ∈ IK, R > 0), let f =
1
g

and

let n ∈ IN∗. Then g′gn admits a quasi-exceptional value b ∈ IK∗ if and only if f ′ + bfn+2

has finitely many zeros that are not zeros of f .

Remark: We can also consider the same problem when n = −1 i.e. the question whether
f ′ + bf has infinitely many zeros. In lC the well known counter-example furnished by the
function exp(x) shows that f ′ + f may have no zero. When n = 0, in lC the well known
counter-example furnished by the function tan(−x) shows that f ′ + f2 may have no zero.
On the field IK, we will examine the cases n = −1 and n = 0.
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Henceforth, for n ≥ 3, we will examine that problem by considering the set of zeros of
f ′ + bfn+2, with b 6= 0. In the field IK, two theorems are specific to p-adic analysis. Both
are based on the following lemma. We set m = n+ 2.

Notation: Let f ∈ M(d(0, R−)). For every r ∈]0, R[, |f(x)| has a limit when |x| tends
to r while staing different from r and that limit is denoted by |f |(r) [8].

Let µ = log r. We set Ψ(f, µ) = log(|f |(r)) We denote by ν+(f, µ) the difference
between the number of zeros and the number of poles of f in d(0, r) and we denote by
ν−(f, µ) the difference between the number of zeros and the number of poles of f in
d(0, r−).

The following Lemma 1 and 2 are classical [17]:

Lemma 2: Let f ∈ M(IK). Then ν+(f, µ) is the right side derivative of Ψ(f, µ) and
ν+(f, µ) is the left side derivative of Ψ(f, µ) .

Lemma 3: Let f ∈M(IK), (resp. let f ∈M(d(a,R−)), a ∈ IK, R > 0), suppose that f
admits infinitely many zeros and suppose that there exists a sequence of intervals [r′n, r

′′
n]

such that lim
n→+∞

r′n = +∞ (resp. lim
n→+∞

r′n = lim
n→+∞

r′′n = R) and such that |(f ′+fm)|(r) =

|fm|(r) ∀r ∈
⋃
n∈IN

[r′n, r
′′
n]. Let m ∈ IN∗ be 6= 2. Then f ′ + fm has infinitely many zeros

that are not zeros of f .

Proof: Let J =
⋃
n∈IN

[r′n, r
′′
n]. When r is big enough, we have |fm|(r) > |f ′|(r) therefore

(1) ν+(f ′ + fm, log r) = ν+(fm, log r), ν−(f ′ + fm, log r) = ν−(fm, log r) ∀r ∈ J.

Consequently, in each disk d(0, r) with r ∈ J , f and f ′+ fm have the same difference
between the number of zeros and poles. Now, if m ≥ 3 the poles of f ′ + fm and fm are
the same taking multiplicity into account. And when m = 1, each pole of f is a pole of
f ′ + f with a greater order. Consequently, for each r ∈ J , the number of zeros of f ′ + fm

in d(0, r) is superior or equal to this of fm.
Now, for each n ∈ IN, let sn be the number of distinct zeros of f in d(0, r′′n). Since f

has infinitely many zeros, the sequence sn is increasing and tends to +∞. On the other
hand, for each zero α of order u of f , either α is not a zero of f ′ + fm (when u = 1), or
it is a zero of order u− 1. Consequently, the number of zeros of f ′ + fm in d(0, r′′n) which
are not zeros of f is at least sn. Thus we have proved that f ′ + fm has infinitely many
zeros that are not zeros of f .

Remark: Relation (1) above does not hold when m = 2 because poles of f2 and f ′ may
have the same order and therefore may kill each other.

In most of results, we will use the ultrametric Nevanlinna theory [33], [35]. The
Nevanlinna Theory was made by Rolf Nevanlinna on complex functions [16], [10]. It
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consists of defining counting functions of zeros and poles of a meromorphic function f and
giving an upper bound for multiple zeros and poles of various functions f − b, b ∈ lC.

A similar theory for functions in a p-adic field was constructed by A. Boutabaa [6].

Notations: Given three functions φ, ψ, ζ defined in an interval J =]a,+∞[ (resp.
J =]a,R[), with values in [0,+∞[, we shall write φ(r) ≤ ψ(r) + O(ζ(r)) if there exists a
constant b ∈ IR such that φ(r) ≤ ψ(r) + bζ(r). We shall write φ(r) = ψ(r) + O(ζ(r)) if
|ψ(r)− φ(r)| is bounded by a function of the form bζ(r).

Similarly, we shall write φ(r) ≤ ψ(r) + o(ζ(r)) if there exists a function h from J =

]a,+∞[ (resp. from J =]a,R[) to IR such that lim
r→+∞

h(r)
ζ(r)

= 0 (resp. lim
r→R

h(r)
ζ(r)

= 0) and

such that φ(r) ≤ ψ(r) + h(r). And we shall write φ(r) = ψ(r) + o(ζ(r)) if there exists a

function h from J =]a,+∞[ (resp. from J =]a,R[) to IR such that lim
r→+∞

h(r)
ζ(r)

= 0 (resp.

lim
r→R

h(r)
ζ(r)

= 0) and such that φ(r) = ψ(r) + h(r).

The p-adic Nevanlinna Theory was first stated and correctly proved by A. Boutabaa
in M(IK) [6]. In [7] the theory was extended to functions in M(d(0, R−)) by taking into
account Lazard’s problem [14].

Throughout the next paragraphs, we will denote by I the interval [t,+∞[ and by J

an interval of the form [t, R[ with t > 0.
We have to introduce the counting function of zeros and poles of f , counting or not

multiplicity. Here we will choose a presentation that avoids assuming that all functions we
consider admit no zero and no pole at the origin.

Definitions: We denote by Z(r, f) the counting function of zeros of f in d(0, r) in the
following way:

Let σ(r) be the number of distinct zeros of f in d(0, r) and let Let (an), 1 ≤ n ≤ σ(r)
be the finite sequence of zeros of f in d(0, r), of respective order sn.

We set Z(r, f) = max(ω0(f), 0) log r+
σ(r)∑
n=1

sn(log r − log |an|) and so, Z(r, f) is called

the counting function of zeros of f in d(0, r), counting multiplicity.
In order to define the counting function of zeros of f without multiplicity, we put

ω0(f) = 0 if ω0(f) ≤ 0 and ω0(f) = 1 if ω0(f) ≥ 1.

Now, we denote by Z(r, f) the counting function of zeros of f without multiplicity:

Z(r, f) = ω0(f) log r +
σ(r)∑
n=1

(log r − log |an|) and so, Z(r, f) is called the counting function

of zeros of f in d(0, r) ignoring multiplicity.
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In the same way, we denote by τ(r) the number of distinct poles of f in d(0, r) and
then, considering the finite sequence (bn), 1 ≤ n ≤ τ(r) of poles of f in d(0, r), with
respective multiplicity order tn, we put

N(r, f) = max(−ω0(f), 0) log r +
τ(r)∑
n=1

tn(log r − log |bn|) and then N(r, f) is called the

counting function of the poles of f , counting multiplicity
Next, in order to define the counting function of poles of f without multiplicity, we

put ω0(f) = 0 if ω0(f) ≥ 0 and ω0(f) = 1 if ω0(f) ≤ −1 and we set

N(r, f) = ω0(f) log r+
τ(r)∑
n=1

(log r − log |bn|) and then N(r, f) is called the counting function

of the poles of f , ignoring multiplicity
Now we can define the Nevanlinna function T (r, f) in I or J as

T (r, f) = max(Z(r, f), N(r, f)) and the function T (r, f) is called characteristic function of
f or Nevanlinna of f .

Finally, if S is a subset of IK we will denote by ZS0 (r, f ′) the counting function of zeros
of f ′, excluding those which are zeros of f − a for any a ∈ S.

Remark: If we change the origin, the functions Z, N, T are not changed, up to an
additive constant.

In a p-adic field such as IK, the first Main Theorem is almost immediate:

Theorem A: Let f ∈ M(IK) (resp. f ∈ M(d(0, R−))) have no zero and no pole at 0.
Then log(|f |(r)) = Ψ(f, log r) = log(|f(0)|) + Z(r, f)−N(r, f).

Corollary A.1: Let f, g ∈ M(IK) (resp. f, g ∈ M(d(0, R−))). Then Z(r, fg) ≤
Z(r, f) +Z(r, g), N(r, fg) ≤ N(r, f) +N(r, g), T (r, fg) ≤ T (r, f) +T (r, g), T (r, f + g) ≤

T (r, f) + T (r, g) +O(1), T (r, cf) = T (r, f) ∀c ∈ IK∗, T (r,
1
f

) = T (r, f)).

If f, g ∈ A(IK) (resp. if f, g ∈ A(d(0, R−))), then Z(r, fg) = Z(r, f)+Z(r, g), T (r, f) =
Z(r, f)), T (r, fg) = T (r, f) + T (r, g) +O(1) and T (r, f + g) ≤ max(T (r, f), T (r, g)).

We can now state the famous p-adic Second Main Theorem:

Theorem B: Let α1, ..., αq ∈ IK, with q ≥ 2, let S = {α1, ..., αq} and let f ∈ M(IK)
(resp. f ∈Mu(d(0, R−))). Then

(q−1)T (r, f) ≤
q∑
j=1

Z(r, f−αj)+N(r, f)−ZS0 (r, f ′)−log r+O(1) ∀r ∈ I (resp. ∀r ∈ J).

Definitions and notation: For each f ∈M(IK) (resp. f ∈M(d(a,R−))) we denote by
Mf (IK), (resp. Mf (d(a,R−))) the set of functions h ∈ M(IK), (resp. h ∈ M(d(a,R−)))
such that T (r, h) = o(T (r, f)) when r tends to +∞ (resp. when r tends to R). Similarly,
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if f ∈ A(IK) (resp. f ∈ A(d(a,R−))) we shall denote by Af (IK) (resp. Af (d(a,R−))) the
set Mf (IK) ∩ A(IK), (resp. Mf (d(a,R−)) ∩ A(d(a,R−))).

The elements ofMf (IK) (resp. Mf (d(a,R−))) are called small functions with respect
to f . Similarly, if f ∈ A(IK) (resp. f ∈ A(d(a,R−))) the elements of Af (IK) (resp.
Af (d(a,R−))) are called small functions with respect to f .

According to classical results [11], [18], we have the following Theorem C:

Theorem C: Let f ∈ A(IK) (resp. f ∈ Au(d(0, R−))) and let w1, w2 ∈ Af (IK) (resp.
w1, w2 ∈ Af (d(0, R−))) be distinct. Then T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) +
o(T (r, f))).

Definitions and notation: Given f, g ∈M(d(0, R−)), we denote by W (f, g) the Wron-
skian of f and g i.e. f ′g − fg′.

In [5], the following results are proven:

Theorem D: Let f, g ∈ A(IK) be such that W (f, g) is a non-identically zero polynomial.
Then both f, g are polynomials.

Notation: Let f ∈ A(IK). We can factorize f in the form ff̃ where the zeros of f are
the distinct zeros of f each with order 1. Moreover, if f(0) 6= 0 we will take f such that
f(0) = 1.

Theorem E: Let f ∈ M(IK) have finitely many multiple poles, such that for certain
b ∈ IK, f ′ − b has finitely many zeros. Then f belongs to IK(x).

Notation: Let f ∈M(d(0, R−)). For each r ∈]0, R[, we denote by ζ(r, f) the number of
zeros of f in d(0, r), taking multiplicity into account and set τ(r, f) = ζ(r, 1

f ). Similarly,
we denote by β(r, f) the number of multiple zeros of f in d(0, r), each counted with its
multiplicity and we set γ(r, f) = β(r, 1

f ).

Theorem F: Let f ∈ M(IK) be such that for some c, d ∈]0,+∞[, γ(r, f) satisfies
γ(r, f) ≤ crd in [1,+∞[. If f ′ has finitely many zeros, then f ∈ IK(x) .

Corollary F.1: Let f be a meromorphic function on IK such that, for some c, d ∈]0,+∞[,
γ(r, f) satisfies γ(r, f) ≤ crd in [1,+∞[. If for some b ∈ IK f ′− b has finitely many zeros,
then f is a rational function.

First results [17]

We will now prove together the following Theorems 1 and 2.
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Theorem 1: Let f ∈M(IK)\IK(x) satisfy lim sup
r→∞

|f |(r) > 0 and let b ∈ IK∗. Let m ∈ IN∗

be ≥ 3. Then f ′ + bfm has infinitely many zeros that are not zeros of f .

Theorem 2: Let f ∈ Mu(d(a,R−)) satisfy lim sup
r→R

|f |(r) = +∞ and let b ∈ IK∗. Let

m ∈ IN∗ be ≥ 3. Then f ′ + bfm has infinitely many zeros that are not zeros of f .

Proof : Without loss of generality, we can assume b = 1 and when f ∈M(d(a,R−)), we
may assume a = 0. By hypotheses, there exists a sequence of intervals [r′n, r

′′
n] such that

lim
n→+∞

r′n = +∞ (resp. lim
n→+∞

r′n = lim
n→+∞

r′′n = R) and such that, putting J =
⋃
n∈IN

[r′n, r
′′
n],

we have lim inf
r→∞,

r∈J

|f |(r) > 0 (resp. lim
r→R−

r∈J

|f |(r) = +∞).

Suppose first we assume the hypothesis of Theorem 1. Let M =
lim infr→+∞ |f |(r)

2
.

We will prove that there exists t > 0 such that |f ′ + fm|(r) = |fm|(r) ∀r ∈ J ∩ [t,+∞[.

We know that |f ′|(r) ≤ |f |(r)
r

. Consequently, when r lies in J , there exists s > 0 such

that |f |(r) ≥M ∀r ∈ [s,+∞[∩J .(
|f |(r)

)m ≥ |f |(r)Mm−1 ≥ r|f ′|(r)Mm−1.

Next, when r is big enough, rMm−1 is greater than 1, hence (|f |(r))m > |f ′|(r). Thus
there exists t ≥ s such that (|f |(r))m > |f ′|(r) ∀r ∈ J ∩ [t,+∞[. Let J ′ = J ∩ [t,+∞[.
And hence we have |f ′ + fm|(r) = |fm|(r) ∀r ∈ J ′.

Suppose now that we assume the hypothesis of Theorem 2 We have

|f ′|(r) ≤ |f |(r)
r
≤ |f |(r)

R
. Set B =

1
R

. Then we have

(
|f |(r)

)m ≥ B|f ′|(r)(|f |(r))m−1.

Now, when r is close enough to R, r ∈ J , B|f(x)|m−1 is strictly greater than 1, hence
(|f |(r))m > |f ′|(r). Thus there exists t > 0 such that (|f |(r))m > |f ′|(r) ∀r ∈ [t,+∞[∩J .
We can set again J ′ = J ∩ [t, R[ and then we have |f ′ + fm|(r) = |fm|(r) ∀r ∈ J ′

We can now conclude in both theorems 1 and 2. For each n ∈ IN, let qn be the number
of zeros of f in d(0, r′′n). Suppose the sequence (qn)n∈IN is bounded. Then, f has finitely

many zeros, hence it is of the form
P

h
with P ∈ IK[x] and h ∈ Au(d(0, R)). Consequently,

we have lim
r→+∞

|f |(r) = 0, a contradiction to the hypothesis in both theorems. Therefore,

the sequence (qn)n∈IN which is increasing by definition, tends to +∞. Now, in each Theo-
rems 1 and 2 we may apply Lemma 3 showing that f ′+ fm has infinitely many zeros that
are not zeros of f .

Consider now the case m = 1. We can have a better conclusion in M(IK).
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Theorem 3: Let f ∈M(IK) \ IK(x). For each b ∈ IK∗, f ′+ bf has infinitely many zeros
that are not zeros of f .

Proof: Without loss of generality, we can assume again b = 1. We have |f ′|(r) < |f |(r)
when r is big enough and hence |f ′ + f |(r) = |f |(r) in an interval I = [s,+∞[. Suppose
first that f has infinitely many zeros. We can then apply Lemma 3 and get the conclusion.

Suppose now that f has finitely many zeros. Then f has infinitely many poles cn
of respective order tn. Since IK has characteristic zero, f ′ admits each cn as a pole of
order tn + 1 and similarly, f ′ + f also admits each cn as a pole of order tn + 1. Thus, we
have N(r, f ′ + f) = N(r, f) + N(r, f). But since |f ′ + f |(r) = |f |(r) holds in I, we have
Ψ(f ′+f, log r) = Ψ(f, log r) ∀r ∈ I hence, by Lemma 2, ν(f ′+f, log r) = ν(f, log r) ∀r ∈ I
and hence Z(r, f ′+f)−N(r, f ′+f) = Z(r, f)−N(r, f), therefore Z(r, f ′+f)− (N(r, f)+
N(r, f)) = Z(r, f) − N(r, f) and hence Z(r, f ′ + f) = Z(r, f) + N(r, f). Since we have
supposed that f has finitely many zeros and since f has infinitely many poles, f ′ + f has
infinitely many zeros and all but finitely many are not zeros of f .

Theorem 4: Let f ∈ A(IK) \ IK(x) (resp. let a ∈ IK, let R ∈]0,+∞[ and let f ∈
Au(da(, R))). For each b ∈ IK∗, f ′+ bf2 has infinitely many zeros that are not zeros of f .

Proof: Without loss of generality, we can assume b = 1 and a = 0. Clearly, when r is
big enough, in ]0,+∞[ (resp. in ]0, R[), we have |f ′ + f2|(r) = |f2|(r) therefore f2 and
f ′ + f2 have the same number of zeros in C(0, r). Let α ∈ C(0, r) be a zero of f of order
q. When r is big enough, it is a zero of order 2q for f2 and it is a zero of order q − 1 for
f ′ + f2. Consequently, f ′ + f2 has at least q + 1 zero in C(0, r) that are not zeros of f
(taking multiplicity into account). This is true for every such zeros of f an hence f ′ + f2

has infinitely many zeros that are not zeros of f .

Corollary 4.1: Let m ∈ IN be ≥ 1, let f ∈ A(IK) \ IK(x). For each b ∈ IK∗, f ′ + bfm

has infinitely many zeros that are not zeros of f .

Corollary 4.2: Let m ∈ IN be ≥ 2, let a ∈ IK, let R ∈]0,+∞[ and let f ∈ Au(da(, R−))).
For each b ∈ IK∗, f ′ + bfm has infinitely many zeros that are not zeros of f .

Theorem 5 is given in [4]:

Theorem 5: Let f ∈ M(IK) \ IK(x) (resp. let a ∈ IK and R ∈ IR∗+ and let f ∈
M(d(a,R−))) and let m ∈ IN. If m ≥ 5 then for each b ∈ IK∗, f ′+bfm has infinitely many
zeros that are not zeros of f .

If m = 4, if f ∈ M(IK) \ IK(x) and if f admits at least s multiple zeros and at least
t multiple poles, then f ′ + bf4 admits a number of zeros that are not zeros of f (taken

account of multiplicity) which is strictly superior to
s+ t

2
.

Proof: We know that the zeros of f ′+bfm in IK are the same as in a spherically complete
algebraically closed extension ÎK of IK. So, for simplicity, we can suppose that the field IK
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is spherically complete without loss of generality. We can also suppose that b = 1. Then

if f ∈ M(IK) \ IK(x) we can obviously we can write f =
h

l
with h, l ∈ A(IK), having

no common zeros and if f ∈ M(d(a,R−)), since IK is spherically complete, we can write

f =
h

l
with h, l ∈ A(d(a,R−)), having no common zeros again.

Let g =
1
f

and let n = m− 2. So, by Lemma 1, the problem is reduced to show that

g′gn − 1 has infinitely many zeros. Then, g′gn − 1 =
(l′h− hl′)ln − hn+2

hn+2
and since h, l

have no common bzeros, this is of the form
P

hn+2
where P is a polynomial of degree q.

Now, set F = (l′h− hl′)ln. Applying Theorem C to F we have
(1) T (r, F ) = Z(r, F ) +O(1) ≤ Z(r, F ) +Z(r, F −P ) +T (r, P ) +O(1). By (1) we derive
Z(r, l′h−h′l) +nZ(r, l) ≤ Z(r, l′h−h′l) +Z(r, l) +Z(r, F −P ) +T (r, P ) +O(1). Actually,
Z(r, F − P ) = Z(r, h), hence nZ(r, l) ≤ Z(r, l) + Z(r, h) + T (r, P ) + O(1) and hence
(n− 1)Z(r, l) ≤ Z(r, h) + T (P ) +O(1). But since T (r, P ) = q log r +O(1), we have
(2) (n− 1)Z(r, l) ≤ Z(r, h) + q log r +O(1)

Now, consider the hypothesis f ∈M(IK). By Theorem 1, if lim inf
r→+∞

|f |(r) > 0 i.e. if

lim inf
r→+∞

Z(r, f)−N(r, f) > −∞ the claim is proved. Consequently, if the claim is not true,
we can assume
(3) lim inf

r→+∞
Z(r, f)−N(r, f) = −∞

But we see that (3) is impossible whenever n ≥ 3, i.e. m ≥ 5.

Now, suppose m = 4 .i.e n = 2. More precisely Z(r, l) ≤ Z(r, l) − s log r
2

and

Z(r, h) ≤ Z(r, h)− t log r
2

, so by Relation (1) we have

(4) (n− 1)Z(r, l) ≤ Z(r, h) + (q − s+ t

2
) log r +O(1).

Then Relation (3) implies q− s+ t

2
> 0 and hence f ′fn admits a number of zeros strictly

superior to
s+ t

2
.

Now, suppose that f ∈ M(d(0, R−)). By Theorem 2, if lim
r→R−

|f |(r) = +∞ i.e. if

lim inf
r→R−

Z(r, f)−N(r, f) = +∞ the claim is proved. Consequently, if the claim is not true,
we can assume
(5) lim inf

r→R−
Z(r, f)−N(r, f) < +∞.

But by (2), we see that (5) is impossible whenever n ≥ 3 i.e. m ≥ 5.

Corollary 4.1: Let f ∈ M(IK) \ IK(x). Then for each n ≥ 3 f ′fn has infinitely many
zeros that are not zeros of f .
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Corollary 4.2: Let f ∈ M(IK) \ IK(x) have s multiple zeros and t multiple poles. Let
b ∈ IK∗. Then f ′+bf4 has at least s+t+1 zeros taking account of multiplicity. Particularly,
if f has infinitely many multiple zeros or poles, then f ′ + bf4 has infinitely many zeros
that are not zeros of f .

Corollary 4.3: Let f ∈M(IK) \ IK(x) have s multiple zeros and t multiple poles. Given
b ∈ IK∗, If f has infinitely many multiple zeros or poles, then f ′f2 − b has infinitely many
zeros.

Case n = 2, m = 4

We will now thorougly examine the situation when m = 4 i.e. n = 2, as made in [9].
This requires several basic lemmas.

Lemma 4: Let f ∈M(IK) be transcendental and such that f ′ has finitely many multiple

zeros. Then
f ′′f

(f ′)2
has no quasi-exceptional value.

Proof: Let g =
f

f ′
. A pole of g is a zero of f ′, hence by hypothesis, g has finitely

many multiple poles. Consequently, by Theorem E, g′ has no quasi-exceptional value.

And hence neither has 1− g′. But g′ =
(f ′)2 − f ′′f

(f ′)2
= 1− f ′′f

(f ′)2
. Therefore

f ′′f

(f ′)2
has no

quasi-exceptional value.

Lemma 5: Let f ∈M(IK) be transcendental and have finitely many multiple zeros. Then
f ′′f + 2(f ′)2 has infinitely many zeros that are not zeros of f .

Proof: Suppose first that f ′ has infinitely many multiple zeros. Since f has finitely many
multiple zeros, the zeros of f ′ are not zeros of f except at most finitely many. Hence f ′

has infinitely many multiple zeros that are not zeros of f . And then, they are zeros of f ′′,
hence of f ′′f + 2(f ′)2, which proves the statement.

So we are now led to assume that f ′ has finitely many multiple zeros. By Lemma 4
f ′′f + 2(f ′)2

(f ′)2
has infinitely many zeros. Let c ∈ IK be a pole of order q of f . Without

loss of generality, we can suppose c = 0. The beginning of the Laurent developpement of

f at 0 is of the form
a−q
xq

+
ϕ(x)
xq−1

whereas ϕ ∈ M(IK) has no pole at 0. Consequently,

f ′′f + 2(f ′)2

(f ′)2
is of the form

(a−q)2(3q2 + q) + xφ(x)
(a−q)2(q2) + xψ(x)

whereas φ, ψ ∈M(IK) have no pole at 0. So, the function
f ′′f + 2(f ′)2

(f ′)2
has no zero at 0.
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Therefore, each zero of
f ′′f + 2(f ′)2

(f ′)2
is a zero of f ′′f + 2(f ′)2 and hence f ′′f + 2(f ′)2 has

infinitely many zeros.
Now, let us show that the zeros of f ′′f + 2(f ′)2 are not zeros of f , except maybe

finitely many. Let c be a zero of f ′′f + 2(f ′)2 and suppose that c is a zero of f . Then, it
is a zero of f ′ and hence it is a multiple zero of f . But by hypotheses, f has finitely many
multiple zeros, hence the zeros of f ′′f + 2(f ′)2 are not zeros of f , except at most finitely
many. That finishes proving the claim.

Lemma 6: Let f ∈ M(IK) be transcendental and let b ∈ IK∗ be such that f2f ′ − b has
finitely many zeros. Then, N(r, f) ≤ Z(r, f) +O(1).

Proof: Let F = f2f ′. Since F−b is transcendental and has finitely many zeros, it is of the

form
P (x)
h(x)

with h ∈ A(IK)\ IK[x]. Consequently, |F |(r) is a constant when r is big enough

and therefore, by Theorem A we have Z(r, F ) = N(r, F ) + O(1) when r is big enough.
Now, Z(r, F ) = 2Z(r, f)+Z(r, f ′) and, by Theorem A Z(r, f ′) ≤ Z(r, f)+N(r, f)− log r+
O(1). On the other hand, by Theorem A again, we have N(r, F ) = 3N(r, f) + N(r, f).
Consequently, 3N(r, f) + N(r, f) ≤ 3Z(r, f) + N(r, f) − log r + O(1), which proves the
claim.

Theorem 6: Let f ∈M(IK) \ IK(x) Then for each b ∈ IK∗, f ′f2 − b has infinitely many
zeros.

Proof: Let b ∈ IK and suppose that the claim is wrong, i.e. f2f ′ − b has q zeros, taking
multiplicity into account. By Theorem 5, we may assume that f has finitely many multiple
zeros and finitely multiple poles. Set F = f2f ′. Then F ′ = f(f ′′f + 2(f ′)2). By Lemma
5, f ′′f + 2(f ′)2 has infinitely many zeros that are not zeros of f . Consequently, F ′ admits
for zeros: the zeros of f and the zeros of f ′′f + 2(f ′)2. And by Lemma 4, there exists a
sequence of zeros of f ′′f + 2(f ′)2 that are not zeros of f .

Let S = {0, b} and let ZS0 (r, F ′) be the counting function of zeros of F ′ when F (x)
is different from 0 and b. Since F − b has finitely many zeros, the zeros c of F ′ which are
not zeros of f cannot satisfy F (c) = b except at most finitely many. Consequently, there
are infinitely many zeros of F ′ counted by the counting function ZS0 (r, F ′) and hence for
every fixed integer t ∈ IN, we have

(1) ZS0 (r, F ′) ≥ t log r +O(1).

Let us apply Theorem B to F . We have

(2) T (r, F ) ≤ Z(r, F ) + Z(r, F − b) +N(r, F )− ZS0 (r, F ′)− log(r) +O(1).

Now, we have

(3) Z(r, F ) ≤ Z(r, f) + Z(r, f ′)
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(4) N(r, F ) = N(r, f)

and since the number of zeros of F − b is q, taking multiplicity into account,

(5) Z(r, F − b) ≤ q log r +O(1).

Consequently, by (2), (3), (4), (5) we obtain

(6) T (r, F ) ≤ Z(r, f) + Z(r, f ′) +N(r, f)− ZS0 (r, F ′) + (q − 1) log r +O(1).

On the other hand, by construction, T (r, F ) ≥ Z(r, F ) = 2Z(r, f) +Z(r, f ′) hence by
(6) we obtain (7):

(7) Z(r, f) ≤ N(r, f)− ZS0 (r, F ′) + (q − 1) log r +O(1).

Now, by Lemma 6, we have N(r, f) ≤ Z(r, f) + O(1) hence by (7) we obtain 0 ≤
(q − 1) log r − ZS0 (r, F ′) + O(1) and hence by (1), fixing t > q − 1 we can derive 0 ≤
(q − 1) log r − t log r +O(1), a contradiction. That finishes the proof of Theorem 6.

By Lemma 1, Theorems 5 and 6 we can now state the general result on the p-adic
Hayman conjecture:

Corollary 6.1: Let f ∈ M(IK) be transcendental. Then for every n ∈ IN, n ≥ 2, for
every b ∈ IK∗, f2f ′ − b has infinitely many zeros and for every m ≥ 4, f ′ + bfm has
infinitely many zeros that are not zeros of f .

Case n = 1, m = 3

Concerning the case m = 3 i.e. n = 1 which remains unsolved, Corollary 6.1 has an
immediate application to the conjecture with additional hypotheses [2].

Theorem 7: Let f ∈M(IK). Suppose that there exists c, d ∈]0,+∞[, such that τ(r, f) ≤
crd ∀r ∈ [1,+∞[. If f ′fn − b has has finitely many zeros for some b ∈ IK, with n ∈ IN,
then f ∈ IK(x).

Proof: Suppose f is transcendental. By hypothesis, fn+1 satisfies ζ(r, 1
fn+1 ) = τ(r, fn+1) ≤

c(n+ 1)rd ∀r ∈ [1,+∞[ hence by Corollary 6.1, f ′fn has no quasi-exceptional value.

Theorem 7 may be writen in another way:

Corollary 7.1: Let f ∈ M(IK) \ IK(x). Suppose that there exists c, d ∈]0,+∞[, such
that ζ(r, f) ≤ crd ∀r ∈ [1,+∞[. Then for all m ∈ IN, m ≥ 3 and for all b ∈ IK, f ′ − bfm
admits infinitely many zeros that are not zeros of f .
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Proof: We set g =
1
f

. Then by Theorem 7 g′gm−2 has no quasi-exceptional value.

Consequently, given b ∈ IK∗, g′gm−2 + b has infinitely many zeros and hence f ′ − bfm
has infinitely many zeros that are not zeros of f . Next, if b = 0, by Theorem F, f ′ has
infinitely many zeros.

Theorem 8: Let f ∈M(IK). Suppose that there exists c, d ∈]0,+∞[, such that β(r, f) ≤

crd ∀r ∈ [1,+∞[. Then, for all b ∈ IK,
f ′

f2
− b has infinitely many zeros.

Proof: Set g =
1
f

again. Since the poles of g are the zeros of f , we have γ(r, g) ≤ crd.

Consequently, by Corollary F.1, g′ has no quasi-exceptional value.

Remark: Using Theorem 8 to study the zeros of f ′ − bf2 that are not zeros of f is not
so immediate, as we will see below because of residues of f at poles of order 1. Of course,
if 1
f is an affine function, f ′ + f2 has no zeros, except if it is identically zero. And if it is

not identically zero, the residue at the pole is not 1 in the general case.

Case n = 0 i.e. m = 2

As we noticed at the beginning, due to the counter-example provided by the function
tan, the case n = 0 has no solution in lC. However, we can notice certain conclusions.

Lemma 7: Let f =
h

l
∈ M(IK) with h, l ∈ A(IK) having no common zero, let b ∈ IK∗

and let a ∈ IK be a zero of h′l − hl′ + bh2 that is not a zero of f ′ + bf2. Then a is a pole

of order 1 of f and res(f, a) =
1
b

.

Proof: Clearly, if l(a) 6= 0, a is a zero of f ′ + bf2. Hence, a zero a of h′l − hl′ + bh2

that is not a zero of f ′ + bf2 is a pole of f . Now, when l(a) = 0, we have h(a) 6= 0 hence

l′(a) = bh(a) 6= 0 and therefore a is a pole of order 1 of f such that
h(a)
l′(a)

=
1
b

. But since

a is a pole of order 1, we have res(f, a) =
h(a)
l′(a)

, which ends the proof.

Theorem 9 is not a result specific to p-adic analysis but it will be useful in Theorem
10.

Theorem 9: Let f ∈M(IK), (resp. let a ∈ IK, let f ∈M(d(a,R−))), let b ∈ IK∗ and let
α ∈ IK (resp. let α ∈ d(a,R−)) be a point that is not a zero of f and such that the residue

of f at α is different from
1
b

. Then α is a zero of f ′ + bf2 if and only if it is a zero of

f ′

f2
+ b. Moreover, if it is a zero of both functions, it has the same multiplicity with both.
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Proof: Suppose first α is a zero of f ′ + bf2. If α is not a pole of f , of course it is

a zero of
f ′

f2
+ b with same multiplicity. Suppose now that α is a pole of f : since it

is not a pole of f ′ + bf2 it must be a pole of order 1 of f . Without loss of generality,
we may assume that α = 0 (resp. a = α = 0). Consider the Laurent series of f at 0:

f(x) =
a−1

x
+ a0 + a1x+ x2φ(x) with φ ∈M(IK) (resp. φ ∈M(d(0, R−)) and φ(0) 6=∞.

Then f ′ + bf2 is of the form

f ′(x) + bf(x)2 =
a−1(−1 + ba−1)

x2
+

2ba0a1

x
+ a1 + b(a2

0 + 2a1a−1) + xξ(x)

with ξ ∈M(IK) (resp. ξ ∈M(d(0, R−)) and ξ(0) 6=∞ and hence, we have
a−1(−1 + ba−1) = 0, a0a−1 = 0, a2

0 + 2a1a−1 = 0. Since by hypothesis res(f, α) 6= − 1
b we

have (1 + ba−1) 6= 0, hence a−1 = 0, a contradiction. Consequently, every zero of f ′ + bf2

that is not a zero of f is a zero of
f ′

f2
+ b with same multiplicity.

Conversely, suppose now that α is a zero of
f ′

f2
+ b. If α is not a pole of f , it is a zero

of f ′ + bf2, with the same multiplicity, because by hypothesis it is not a zero of f . Now

suppose that α is a zero of
f ′

f2
+ b and is a pole of f . Clearly, it is a pole of order 1 and

again, we may assume that α = 0.

Consider again the Laurent series of f at 0: f(x) =
a−1

x
+ a0 + a1x+ x2φ(x) with

φ ∈M(IK) and φ(0) 6=∞. Then

f ′

f2
=

−a−1
x2 + a1 + xψ(x)

(a−1)2

x2 + 2a0a1
x + a2

0 + 2a1a−1 + xξ(x)

where both ψ, ξ ∈ M(IK) have no pole at 0. Clearly,
f ′

f2
is analytic at 0 and its value is

−1
a−1

. But since 0 is a zero of
f ′

f2
+ b, we have a−1 =

1
b

, what is excluded by hypothesis.

Thus we have proved that every zero of
f ′

f2
+ b is a zero of f ′ + bf2 (that is not a zero of

f) with the same multiplicity and this ends the proof of Theorem 9.

Theorem 10: Let b ∈ IK∗ and let f ∈M(IK) have finitely many zeros and finitely many

residues at its simple poles equal to
1
b

and be such that f ′ + bf2 has finitely many zeros.

Then f belongs to IK(x).

Proof: Let f =
P

l
with P ∈ IK[x], l ∈ A(IK) having no common zero with P . Then
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f ′ + bf2 =
P ′l − l′P + bP 2

l2
. By hypothesis, this function has finitely many zeros. More-

over, if a is a zero of P ′l − l′P + bP 2 but is not a zero of f ′ + bf2, then by Lemma 7

it is a pole of order 1 of f such that res(f, a) =
1
b

. Consequently, P ′l − l′P + bP 2 has

finitely many zeros and hence, we may write
P ′l − l′P + bP 2

l2
=
Q

l2
with Q ∈ IK[x], hence

P ′l− l′P = −bP 2 +Q. But then, by Theorem D, l is a polynomial, which ends the proof.

Remark: If f(x) =
1
x

, the function f ′ + bf2 has no zero whenever b 6= 1.

Theorem 11: Let f ∈ M(IK) be transcendental and have finitely many zeros of order

≥ 2 and let b ∈ IK. Then
f ′

f2
+ b has infinitely many zeros. Moreover, if b 6= 0, every zero

α of
f ′

f2
+ b that is not a zero of f ′ + bf2 is a pole of f of order 1 such that the residue of

f at α is equal to
1
b

.

Proof: Let g =
f ′

f2
+ b. Since all zeros of f are of order 1 except maybe finitely many, g

has finitely many poles of order ≥ 3, hence a primitive G of g has finitely many poles of
order ≥ 2. Consequently, by Theorem E, g has infinitely many zeros.

Now, suppose b 6= 0. Let α be a zero of g. If α is not a pole of f , it is a zero of f ′+bf2

and we can see that it is not a zero of f .
Finally, suppose that α is a pole of f . Then it must be a pole of order 1 and then, by

Lemma 7, the residue of f at α is 1
b .

Corollary 11.1: Let f ∈M(IK)\IK(x) have finitely many zeros of order ≥ 2 and finitely
many poles of order 1 and let b ∈ IK∗. Then f ′ + bf2 has infinitely many zeros that are
not zeros of f .

Remarks: As noticed above, in Archimedean analysis, the typical example of a mero-
morphic function f such that f ′ − f2 has no zero is tan(x) and its residue is −1 at each
pole of f . Here we find the same implication but we can’t find an example satisfying such
properties.
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