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Let K be an algebraically closed field of characteristic 0, complete with respect to an ultrametric absolute value. Results on branched values obtained in a previous paper are used to prove that algebraic functional equations of the form g q = hf q + w have no solution among transcendental entire functions f, g or among unbounded analytic functions inside an open disk, when w is a polynomial or a bounded analytic function and h is a polynomial or an analytic function whose zeros are of order multiple of q.

We also show that an analytic function whose zeros are multiple of an integer q inside a disk is the q-th power of another analytic function, provided q is prime to the residue characteristic.

Let K be an algebraically closed field of characteristic 0, of residue characteristic p, complete with respect to an ultrametric absolute value | • |. Given α ∈ K and R ∈ R * + , we denote by d(α, R) the closed disk {x ∈ K : |x -α| ≤ R} and by d(α, R -) the open disk {x ∈ K : |x -α| < R} contained in K, by A(K) the K-algebra of analytic functions in K (i.e. the set of power series with an infinite radius of convergence) and by M(K) the field of meromorphic functions in K and by K(x) the field of rational functions.

In the same way, given α ∈ K and R > 0, we denote by A(d(α, R -)) the K-algebra of analytic functions in d(α, R -) (i.e. the set of power series with a radius of convergence ≥ R) and by M(d(α, R -)) the field of fractions of A(d(α, R -)). We then denote by A b (d(α, R -)) the Kalgebra of bounded analytic functions in d(α, R -) and by M b (d(α, R -)) the field of fractions of

.

 the same notion was introduced on M(K) and on M u (d(a, R -)).

Let us recall these notions. Definition: Let f be a meromorphic function in C (resp. K, resp. d(a, R -)). A value b ∈ C will be called a perfectly branched value for f if all zeros of f -b are of multiple order except finitely many. And b is called a totally branched value for f if all zeros of f -b are of multiple order, without exception.

Here we want to apply these properties in order to examine certain algebraic functional equations.

In C it is known that a transcendental meromorphic function admits at most 4 perfectly branched values and an entire function admits at most 2 perfectly branched values [START_REF] Charak | Value distribution theory of meromorphic functions[END_REF]. As explained by K. S. Charak in [START_REF] Charak | Value distribution theory of meromorphic functions[END_REF], these numbers, respectively 4 and 2, are sharp. Weierstrass function ℘ has 4 totally branched values (considering ∞ as a value) and of course, sine and cosine functions admit two totally branched values: 1 and -1.

On the field K, in [START_REF] Escassut | Branched values and quasi-exceptional values for p-adic mermorphic functions[END_REF] it is proven that a meromorphic function f ∈ M(K) or f ∈ M u (d(a, R -)) has at most 4 perfectly branched values and more precisely, a meromorphic function f ∈ M(K) has at most 3 totally branched values. An unbounded analytic function f ∈ A(d(a, R -)) has at most 2 perfectly branched values. But it is also proven that a transcendental a transcendental meromorphic function having finitely many poles f ∈ M(K) has at most 1 perfectly branched value.

Notation: Given f ∈ A(d(0, r), we put |f |(r) = lim First, we must recall some classical results:

Theorem A [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], [START_REF] Escassut | p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF]: Let f, g ∈ A(K) (resp. let f, g ∈ Ad(0, R -))). Theorem B [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], [START_REF] Escassut | p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF]:

Given h ∈ A(d(0, R -)), then i) h has no zero inside the disk d(0, R -) if and only if |h(x) -h(a)| < |h(a)| ∀x ∈ d(a, R -), ii) |h|(r) ≤ O(r t ) for some t ∈ N if and only if h ∈ K[x].
Theorem C [START_REF] Escassut | p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF]:

Let f, g ∈ A(K) (resp. let f, g ∈ A(d(a, R -))) be different from 0. If f.g belongs to K[x] (resp. if f.g belong A b (d(a, R -))), then both f, g belong to K[x] (resp. both f, g belong to A b (d(a, R -))).
Theorem D [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], [START_REF] Escassut | p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF]: Let q ∈ N * be prime to p (resp. let p = q = 2). Given an analytic function

w ∈ A(d(a, R -)) such that |w(x) -1| < 1 ∀x ∈ d(a, R -) (resp. |w(x) -1| < 1 2 ∀x ∈ d(a, R -)), the function q w(x) is defined in d(a, R -) and belongs to A b (d(a, R -)).
Theorem E [START_REF] Escassut | p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF], [START_REF] Lazard | Les zéros des fonctions analytiques sur un corps valué complet[END_REF] : Suppose K is spherically complete. Let (a n ) n∈N be a sequence of d(a, R -) such that lim n→+∞ |a n | = R and |a n | < |a n+1 | ∀n ∈ N and let (q n ) n∈N be a sequence of positive integers. There exists f ∈ A(d(a, R -)) admitting each a n as a zero of f of order q n . Theorem F [START_REF] Escassut | Branched values and quasi-exceptional values for p-adic mermorphic functions[END_REF] : Let f ∈ M(K) be transcendental and have finitely many poles or zeros. Then f has at most one perfectly branched value.

Remark :

In [START_REF] Escassut | Branched values and quasi-exceptional values for p-adic mermorphic functions[END_REF], Theorem F was stated without mentioning the hypothesis when f has finitely many zeros.

Theorem G is well known and easily proven [START_REF] Escassut | p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF] Theorem H : Let f ∈ M(K) be transcendental. There exists at most one value b ∈ KK such that f -b has finitely many zeros.

Theorem I : Let f ∈ M(K) be transcendental and have finitely many poles or zeros. Then f has at most one perfectly branched value.

We want now to generalize the notion of branched value.

Definition: Let f ∈ M(K) and let P ∈ K(x). The rational function P will be called a branched rational function for f if all zeros of f -P are multiple except at most finitely many.

Theorem 1: Let f ∈ M(K) be transcendental and have finitely many poles or zeros. Then f has at most one perfectly branched rational function.

Proof. Suppose that f has two distinct perfectly branched rational functions P and Q. Then f -Q has two distinct perfectly branched rational functions: P -Q and 0. So, without loss of generality, we can assume Q = 0. Now, let g = f P . We can see that g satisfies all hypotheses of Theorem F and has two perfectly branched values: 0 and 1. Consequently, g is not transcendental and therefore neither is f , a contradiction.

The following Theorem 2 generalizes a Theorem in [START_REF] Boutabaa | Applications of the p-adic Nevanlinna Theory to Functional Equations[END_REF].

Theorem 2: Let P, Q, S ∈ K(x) be non-dentically zero and suppose that two functions f, g ∈ M(K) have finitely many poles or zeros and satisfy P (x)(g(x)

) n = Q(x)(f (x)) m + S(x) ∀x ∈ K with min(m, n) ≥ 2.
Then f and g belong to K(x).

Proof: Let F (x) = Q(x)(f (x)) m + S(x).
Then F belongs to M(K) and has finitely many poles. Since P (x)(g(x)) n = F (x), 0 is a perfectly branched value for F . On the other hand,

F (x) -S(x) = Q(x)(f (x)) m , hence S(x)
is a perfectly branched polynomial for F . But then by Theorem 1, F is not transcendental and hence belongs to K(x) and then, so does (f (x)) m . But since the entire function f is algebraic over K(x), actually it belongs to K(x). But then, so does g n and similarly, so does g. Corollary 2.1: Let P, Q, S ∈ K[x] be non-dentically zero and suppose that two entire functions f, g ∈ A(K) satisfy P (x)(g(x)

) n = Q(x)(f (x)) m + S(x) ∀x ∈ K with min(m, n) ≥ 2. Then f and g belong to K[x].
In Theorem 3 we will use the following lemma whose proof is classical [START_REF] Escassut | p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF]:

Lemma 1: Let f ∈ A(K)
have all zeros of order multiple of an integer q. Then there exists φ ∈ A(K) such that f = φ q .

Proof: Let (ζ n ) n∈N be the sequence of zeros, each of order qs n . By classical results [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], [START_REF] Escassut | p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF], there exists a function ψ ∈ A(K) admitting each ζ n as a zero of order s n . Consequently, the function f (ψ) q is a meromorphic function in K having no zero and no pole and therefore is a constant λ. Now taking α ∈ K such that α q = λ and putting φ = αψ, we have f

= (φ) q . Lemma 2: Let f, g ∈ A(K) \ K[x] (resp. let f, g ∈ A u (d(0, R -))) with f = g. Then for every integer q ≥ 2, if f q -g q is not identically zero, it belongs to A(K) \ K[x] (resp. to A u (d(0, R -))).
Proof: Let ζ be a primitive q-th root of 1. We have f q -g q = q-1 j=0 (f -ζ j g). By Theorem C, trhough an immediate induction, we can see that if f q -g q belongs to K

[x] (resp. to A b (d(0, R -))) then all factors (f -ζ j g) belong to K[x] (resp. to A b (d(0, R -))). But then, (f -g) + (f -ζg) belongs to K[x] (resp. to A b (d(0, R -))
) and so do f and g. Theorem 3: Let h ∈ A(K) have all its zeros of order multiple of q ≥ 2 and let w ∈ K[x] be non identically 0. Then the functional equation

(E) (g(x)) q = h(x)(f (x)) q + w(x) has no solution f, g ∈ A(K) \ K[X]. Moreover, if h ∈ A(K) \ K[x], then (E) has no solution except maybe if f is identically zero. Proof: Let f, g ∈ A(K) satisfy (E). If h ∈ K[x]
, by Corollary 2.1 both f and g are polynomials. Now suppose that h / ∈ K[x]. By Lemma 1 there exists φ ∈ A(K) such that φ q = h. Consequently, we have w(x) = (g(x)) q -(φ(x)f (x)) q and hence, by Lemma 2, both g and φ.f belong to K[x]. Now, since h is transcendental, so is φ. And hence so is φ.f , a contradiction if f is not identically zero.

We can now prove Theorems 4 and 5:

Theorem 4: Let q be an integer prime to p. Let R ∈]0, +∞[ and let h, w ∈ A b (d(0, R -)) be such that |h(x) -h(0)| < |h(0)| ∀x ∈ d(0, R -). Then the equation (E) g q = hf q + w has no solution f, g ∈ A u (d(0, R -)). Theorem 5: Suppose K has residue characteristic 2. Let R ∈]0, +∞[ and let h, w ∈ A b (d(0, R -)) be such that |h(x) -h(0)| < |h(0)| 2 ∀x ∈ d(0, R -). Then the equation (E) g 2 = hf 2 + w has no solution f, g ∈ A u (d(0, R -)).
Proof of Theorems 4 and 5: Suppose that (E) has solutions f, g ∈ A u (d(0, R -)). By Theorem D, in both theorems we can apply the root function q √ . to the function h and therefore there exists σ ∈ A b (d(0, R -)) such that σ q = h. Consequently, we have g q -(σf ) q = w. But by Lemma 2, g q -(σf ) q is unbounded, a contradiction since w is bounded. This ends the proof.

Corollary 4.1: Let q be an integer prime to p. Let R ∈]0, +∞[ and let h, w ∈ A b (d(0, R -)) be such that h(x) = 0 ∀x ∈ d(0, R -). Then the equation (E) g q = hf q + w has no solution f, g ∈ A u (d(0, R -)).

Proof: Indeed, since h has no zero in d(a, R -), by Theorem B it satisfies

|h(x) -h(a)| < |h(a)| ∀x ∈ d(0, R -).
In the proof of Theorem 6 we will need the following Lemma 3;

Lemma 3: Let q ∈ N * and let L be a complete algebraically closed extension of K. Let f ∈ A(d(a, R -)) and suppose that there exists a power series g with coefficients in L, with radius of convergence R such that (g(x)) q = f (x) ∀x ∈ d(a, R -). Then g has all coefficients in K and belongs to A(d(a, R -)).

Proof: Without loss of generality we can obviously suppose a = 0. Let

f (x) = +∞ n=0 b n x n (with b n ∈ K) and let g(x) = +∞ n=0
a n x n . Then (a 0 ) q = b 0 , hence a 0 ∈ K because K is algebraically closed. Now suppose we have proven that a n ∈ K ∀n ≤ t-1. We can see that b t is of the form a t (a 0 ) q-t +z where z is a polynomial in a 0 , a 1 , ..., a t-1 . Therefore a t also belongs to K. Consequently, g has all coefficients in K, which ends the proof.

Theorem 6 applies to functions inside a disk. It is similar to Lemma 1 for functions in K but is more delicate.

Theorem 6: Let q ∈ N * be prime to p. Let f ∈ A(d(a, R -)) and suppose that all zeros of f are of order multiple of q. Then there exists a function g ∈ A(d(a, R -)) such that f (x) = (g(x)) q ∀x ∈ d(a, R -).

Proof: Suppose first that K is spherically complete. Let (α n ) n∈N be the sequence of zeros of the function h in d(a, R -), with lim n→+∞ |α n | = R, each being of respective order qs n .

By Theorem E, there exists φ ∈ A(d(a, R -)) admitting for zeros (α n ) n∈N , each being of respective order s n . Thus, f (x) (φ(x) q ) has no zero and no pole and therefore is an invertible bounded function which belongs to

A b (d(a, R -)). Let ψ(x) = (x) (a)
and let λ be a q-th root of (a).

Then, since has no zero in d(a, R -), we have

| (x) -(a)| < | (a)| ∀x ∈ d(a, R -) and therefore |ψ(x) -ψ(a)| = |ψ(x) -1| < 1.
Consequently, since p does not divide q, by Theorem D, the function q √ . applies to ψ(x) in d(a, R -) and then q ψ(x) belongs to A b (d(a, R -)). So, we have f (x) = λφ(x) q ψ(x) q , which proves the claim when K is spherically complete. Consider now the general case, when K is no longer supposed to be spherically complete. Let K be a spherically complete algebraically closed extension of K. Given a disk d(a, r -) of K, we will denote by d(a, r -) the similar disk of K: {x ∈ K | |x -a| < r}.

The function f has continuation to a function f which belongs to A( d(α, R -)) and hence there exists a function g ∈ A( d(α, R -)) such that g q = f . Then by Lemma 3, g is a power series that has all coefficients in K and hence belongs to A(d(a, R -)).

The following Theorems 7 and 8 complete previous results obtained with help of the p-adic Nevanlinna Theory [START_REF] Boutabaa | Applications of the p-adic Nevanlinna Theory to Functional Equations[END_REF], [START_REF] Escassut | p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF].

Theorem 7: Let q ∈ N * be prime to p. Let h ∈ A(da, R -)) be such that that all zeros of h are of order multiple of q and let w ∈ A b (d(a, R -)). Then the functional equation

(E) (g(x)) q = h(x)(f (x)) q + w(x) has no solution in A u (d(a, R -)).
Proof: Suppose that (E) has solutions f, g ∈ A u (d(a, R -)). By Theorem 4 there exists a function φ ∈ A(d(a, R -)) such that h(x) = (φ(x)) q ∀x ∈ d(a, R -). Consequently we can write (g(x)) q -(φ(x)f (x)) q = w(x). But by Lemma 2, (g(x)) q -(φ(x)f (x)) q is unbounded, a contradiction to the hypothesis on w.

In order to prove Theorems 8 we must briefly recall the p-adic Nevanlinna Theory and its Main Theorem on 3 small functions with its corollary for analytic functions [START_REF] Escassut | p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF], [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF].

We have to introduce the counting function of zeros and poles of f , counting or not multiplicity. Here we will choose a presentation that avoids assuming that all functions we consider admit no zero and no pole at the origin.

We denote by Z(r, f ) the counting function of zeros of f in d(0, r) in the following way: Let (a n ), 1 ≤ n ≤ σ(r) be the finite sequence of zeros of f such that 0 < |a n | ≤ r, of respective order s n .

We set Z(r, f ) = max(ω 0 (f ), 0) log r +

σ(r) n=1 s n (log r -log |a n |).
In order to define the counting function of zeros of f without multiplicity, we put ω 0

(f ) = 0 if ω 0 (f ) ≤ 0 and ω 0 (f ) = 1 if ω 0 (f ) ≥ 1.
Now, we denote by Z(r, f ) the counting function of zeros of f without multiplicity:

Z(r, f ) = ω 0 (f ) log r + σ(r) n=1 (log r -log |a n |).
In the same way, considering the finite sequence (b n ), 1 ≤ n ≤ τ (r) of poles of f such that 0 < |b n | ≤ r, with respective multiplicity order t n , we put

N (r, f ) = max(-ω 0 (f ), 0) log r + τ (r) n=1 t n (log r -log |b n |).
Next, in order to define the counting function of poles of f without multiplicity, we put ω 0 (f ) = 0 if ω 0 (f ) ≥ 0 and ω 0 (f ) = 1 if ω 0 (f ) ≤ -1 and we set Given f ∈ M(K) (resp. f ∈ M(d(0, R -)), resp. f ∈ M(C) ), we denote by M f (K) (resp. M f (d(0, R -)), resp. M f (C)), the set of functions w ∈ M(K) (resp. the set of functions w ∈ M(d(0, R -)), resp. w ∈ M(C)) which are small functions respectively to f . Similarly, we denote by A f (K) (resp. A f (d(0, R -)), resp. A f (C)), the set of functions w ∈ A(K) (resp. the set of functions w ∈ A(d(0, R -)), resp. w ∈ A(C)) which are small functions respectively to f .

N (r, f ) = ω 0 (f ) log r + τ (r) n=1 (log r -log |b n |).
Remarks: 1) Given f ∈ A(K) (resp. f ∈ A(d(0, R -)))), we have T (r, f ) = Z(r, f ). 2) In M(d(0, R -)), oncerning small functions, obviously given any f ∈ M u (d(0, R -)), all functions u ∈ M b (d(0, R -)) belong to M f (d(0, R -)).
In the proof of Theorem 8, we will use the following Lemma L and Theorem N, known as Nevanlinna second main Theorem on 3 small functions.

Lemma J [START_REF] Escassut | p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF]

: Let f, g ∈ f ∈ A(K) (resp.f ∈ A(d(0, R -))). Then Z(r, f.g) = Z(r, f ) + Z(r, g) and Z(r, f + g) ≤ max(Z(r, f ), Z(r, g)) + O(1). Let f, g ∈ f ∈ M(K) (resp.f, g ∈ M(d(0, R -))).
Then T (r, f.g) ≤ T (r, f ) + T (r, g) and T (r, f + g) ≤ T (r, f ) + T (r, g).

Theorem 10: Let f ∈ M(K)\K(x), (resp.f ∈ M u (d(0, R -)). There exists at most one function w ∈ M f (K), (resp. w ∈ M f (d(0, R -))) such that f -w has finitely many zeros. Proof: Suppose that there exist two distinct functions g 1 , g 2 ∈ M f (K), (resp. g 1 , g 2 ∈ M f (d(0, R -))) such that f -g k has finitely many zeros. So, there exist P 1 , P 2 ∈ K[x] and Consequently, putting g = g 2 -g 1 , we have

h 1 , h 2 ∈ A(K) (resp. h 1 , h 2 ∈ A(d(0, R -))) such that f -g k = P k h k , k = 1,
P 1 h 1 = P 2 h 2
+ g and of course, by Lemma L, g belongs to M f (K) (resp. to M f (d(0, R -))). Therefore P 1 h 2 -P 2 h 1 = gh 1 h 2 and hence

(2) T (r, P 1 h 2 -P 2 h 1 ) = T (r, gh 1 h 2 ). Now, by Lemma J we have T (r, P 1 h 2 -P 2 h 1 ) ≤ max(T (r, P 1 h 2 ), T (r, P 2 h 1 )) ≤ max(T (r, h 1 ), T (r, h 2 )) + o(T (r, f ))

and hence by (1), we obtain

(3) T (r, P 1 h 2 -P 2 h 1 ) ≤ T (r, f ) + o(T (r, f )).

On the other hand, by Lemma J, we have T (r, gh 1 h 2 ) ≥ T (r, h 1 h 2 ) -T (r, g). But by Lemma J again, we have T (r, h 1 h 2 ) = T (r, h 1 ) + T (r, h 2 ) = 2T (r, f ) + o(T (r, f )). Consequently, (2) and (3) yield 2T (r, f ) + o(T (r, f )) ≤ T (r, f ) + o(T (r, f )), a contradiction.

Remark: Concerning complex meromorphic functions, it is well known that a meromorphic function f in the whole field C can have at most two exceptional or quasi-exceptional values (i.e. values b such that f -b has finitely many zeros). Thanks to the complex Nevanlinna Theorem on 3 small functions [START_REF] Hayman | Picard values of meromorphic functions and their derivatives[END_REF], we can easily show that there exist at most two small functions g (with respect to f ) such that f -g has finitely many zeros.

  Then |f + g|(r) ≤ max(|f |(r), |g|(r)), |f.g|(r) = |f |(r)|g|(r), If |f |(r) > |g|(r), then |f + g|(r) = |f |(r).

  Now we can define the the Nevanlinna function T (r, f ) in I or J asT (r, f ) = max(Z(r, f ), N (r, f )) and the function T (r, f ) is called characteristic function of f .Concerning meromorphic functions on C, the definition of T (r, f ) isT (r, f ) = 1 2π2π0 log + |f (re it )|dt + N (r, f ) Given f and w ∈ M(K) (resp. f and w ∈ M(d(0, R -))), resp. f and w ∈ M(C)), w is called a small function respectively to f if lim r→+∞ T (r, w) T (r, f ) = 0 (resp. lim r→R - T (r, w) T (r, f ) = 0, resp. lim r→+∞ T (r, w) T (r, f ) = 0).

2 and hence we notice that ( 1 )

 1 T (r, f ) = T (r, P k h k ) + o(T (r, f )) = T (r, h k ) + o(T (r, f )) k = 1, 2.

The following Lemma L is an obvious consequence:

Lemma L [START_REF] Escassut | p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF]: Given f ∈ M(K) (resp.f ∈ M(d(0, R -))), then M f (K) (resp. M f (d(0, R -))) is a subfield of M(K) (resp. M(d(0, R -))).

Lemma M [START_REF] Escassut | p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF]:

Theorem N.2 [START_REF] Escassut | p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF], [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF]:

We can now state and prove Theorem 8

Proof: Let F (x) = g(x) n . Thanks to Corollary N2, we can write

Now, it appears that Z(r, F ) ≤ 1 n Z(r, F ). Moreover, since h is bounded, by Lemma M Z(r, h) is bounded, hence by Lemma L, we have Z(r, hf m ) ≤ Z(r, f ) + Z(r, h) = Z(r, f ) + O(1), therefore

On the other hand, Z(r, F ) = Z(r, F -w) + O(1) = T (r, F ) + O(1). Consquently, by (1), we can derive

Therefore we have

We will now examine a kind of generalization of Theorem H: By Theorem N1, Theorem 9 is immediate:

. There exist at most two functions w 1 , w 2 ∈ M f (C) such that f -w j have finitely many zeros (j = 1, 2). Moreover, if f ∈ A(C) \ C[x] then here exists at most one function w ∈ A f (C) such that f -w has finitely many zeros. Proof: Suppose that there exist three functions w j ∈ M f (C) such that f -w j has finitely many zeros 1 ≤ j ≤ 3. Then 3 j=1 Z(r, f -w j ) admits an upper bound of the form q log(r) + O(1). Consequently, by Theorem N1, we have T (r, f ) ≤ q log(r) + O(1), a contradiction since f is transcendental. If f ∈ A(C) \ C[x], we can directly apply Theorem N with N (r, f ) = 0.