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Let IK be a complete algebraically closed p-adic field of characteristic p ≥ 0 and let Au(d(a, R -)) be the set of unbounded analytic functions inside the disk d(a, R -) = {x ∈ IK | : |x -a| < R}. We recall the definition of urscm and the ultrametric Nevanlinna Theory on 3 small functions in order to find new urscm for Au(d(a, R -)). Results depend on the characteristic. In characteristic 0, we can find urscm of 5 points. Some results on bi-urscm are given for meromorphic functions.

In the same way, given α ∈ IK, R > 0 we denote by A(d(α, R -)) the IK-algebra of analytic functions in d(α, R -) (i.e. the set of power series with 0 2000

Introduction and main result

We shall introduce URSCM for p-adic meromorphic functions. Many studies were made in the eighties and the nineties concerning URSCM for functions in l C, [START_REF] An | Strong uniqueness polynomials: the complex case[END_REF], [START_REF] Bartels | Meromorphic functions sharing a set with 17 elements, ignoring multiplicities[END_REF], [START_REF] Frank | A unique range set for meromorphic functions with 11 elements[END_REF]. Studies were also made in the non-archimedean context by the late nineties and next [START_REF] An | Unique range sets and uniqueness polynomials in positive characteristic II[END_REF], [START_REF] An | Unique range sets for non-archimedean entire functions in positive characteristic field. Ultrametric Functional Analysis[END_REF], [START_REF] An | Strong uniqueness polynomials: the complex case[END_REF], [START_REF] An | On uniqueness polynomials and bi-urs for p-adic meromorphic functions[END_REF], [START_REF] An | A Meromorphic solutions of equations over non-Archimedean fields[END_REF], [START_REF] Boutabaa | On uniqueness of p-adic meromorphic functions[END_REF], [START_REF] Boutabaa | On uniqueness of p-adic entire functions[END_REF], [START_REF] Boutabaa | URS and URSIMS for p-adic meromorphic functions inside a disk[END_REF], [START_REF] Boutabaa | Unique Range sets in positive characteristic[END_REF], [START_REF] Escassut | Ursim, and nonurs[END_REF]. Here, we will only consider the situation in an ultrametric field.

Definitions and notation: Throughout the paper, E is an algebraically closed field of characteristic p ≥ 0 without any assumption on the existence of an absolute value. A subset S of E is said to be affinely rigid if there is no similarity t on E other than the identity, such that t(S) = S.

We denote by IK an algebraically closed field complete with respect to an ultrametric absolute value | . | and of characteristic p ≥ 0. We will denote by q the characteristic exponent of IK: if p = 0, then q = p and if p = 0 then q = 1.

Given α ∈ IK and R ∈ IR * + , we denote by d(α, R) the disk {x ∈ IK | |x -α| ≤ R}, by d(α, R -) the disk {x ∈ IK | |x -α| < R}, by A( IK) the IK-algebra of analytic functions in IK (i.e. the set of power series with an infinite radius of convergence) and by M( IK) the field of meromorphic functions in IK (i.e. the field of fractions of A( IK)).

an radius of convergence ≥ R) and by M(d(α, R -)) the field of fractions of A(d(α, R -)). We then denote by A b (d(α, R -)) the IK-algebra of bounded analytic functions in d(α, r -) and by M b (d(α, r -)) the field of fractions of A b (d(α, r -)). And we set A u (d(α, R -)) = A(d(α, R -)) \ A b (d(α, R -)) and

M u (d(α, R -)) = M(d(α, R -)) \ M b (d(α, R -)).
Given a family of functions F defined in IK or in a subset S of IK (resp. in E or in a subset S of E), with values in IK (resp. in E), S is called an ursim for F if for any two non-constant functions f, g ∈ F satisfying f -1 (S) = g -1 (S), these functions are equal.

That definition particularly applies to

A( IK), M( IK), A u (d(a, R -)), M u (d(a, R -)), IK[x], IK(x), E[x], E(x).
We will now recall the definition of URSCM. Given a subset S of E and f ∈ E(x), we denote by

E(f, S) the set in E× IN * : a∈S {(z, q) ∈ E× IN * | z is a zero of order q of f (x) -a}.
Similarly, consider now meromorphic functions in the field IK. For a subset S of IK and

f ∈ M( IK) (resp. f ∈ M(d(a, R -))) we denote by E(f, S) the set in IK× IN * : a∈S {(z, q) ∈ IK× IN * | z is a zero of order q of f (x) -a}.
Let F be a non-empty subset of A( IK) (resp. of M( IK), resp. of A(d(a, R -)), resp. of M(d(a, R -))). We say that two non-constant functions f, g ∈ F share S, counting multiplicity if E(f, S) = E(g, S); and the set S is called a unique range set counting multiplicity (an URSCM in brief) for F if for any two non-constant f, g ∈ F sharing S counting multiplicity, one has f = g. Next, the set S will be called a bi-URSCM for F if for two non-constant functions f, g ∈ M u (d(a, R -)) sharing S counting multiplicity and having the same poles, counting multiplicity, one has f = g [START_REF] Boutabaa | On uniqueness of p-adic meromorphic functions[END_REF].

Particularly, if we consider a family F ⊂ A(K) or F ⊂ A u (d(a, R -)) and a set S = {a 1 , ..., a t } ⊂ IK (resp. a set S = {a 1 , ..., a t } ⊂ E) with a i = a j ∀i = j, we can set P (X) = t j=1 (X -a j ) and then the set S = {a 1 , ..., a t } is an URSCM for F if for any two functions f, g ∈ F such that P • f and P • g have the same zeros with the same multiplicity, then f = g.

Similarly, if we consider a family

F ⊂ M(K) or F ⊂ M u (d(a, R -)) and a set S = {a 1 , ..., a t } ⊂ IK (resp. a set S = {a 1 , ..., a t } ⊂ E) with a i = a j ∀i = j, we can set P (X) = t j=1
(X -a j ) and then the set S = {a 1 , ..., a t } is a bi-URSCM for F if for any two functions f, g ∈ F having the same poles (counting multiplicity) such that P • f and P • g have the same zeros with the same multiplicity, then f = g.

Remark: An URSCM S for a family of functions F = M( IK), A( IK), M u (d(a, R -)), A u (d(a, R -)) must obviously be affinely rigid. Indeed suppose that S is not affinely rigid and let t be a similarity of IK such that t(S) = S. Then, if f belongs to F, so does f • t and therefore we can check that E(f, S) = E(f • t, S). And it is a bi-URSCM if for any two functions f, g ∈ F such that P • f and P • g have the same zeros and the same poles, counting multiplicity, then f = g. Similar definitions were given for meromorphic functions on l C before these questions were examined on the field IK. URSCM of only 11 points for complex meromorphic functions in the whole field l C where found in [START_REF] Frank | A unique range set for meromorphic functions with 11 elements[END_REF] and the same method showed the existence of URSCM of only 7 points for complex entire functions. So far, they are the smallest known in l C. In the field IK, the same method lets us find URSCM of 11 points for M u (d(a, R -)) and URSCM of 10 points for M( IK).

In 1996, URSCM for polynomials on a field such as E were characterized: they are just the affinely rigid subsets of E [START_REF] Boutabaa | On uniqueness of p-adic entire functions[END_REF]. Particularly, the smallest URSCM for polynomials are the affinely rigid sets of 3 points. Concerning entire functions on the field IK, URSCM of 3 points were found: they also are the affinely rigid sets of 3 points [START_REF] Boutabaa | On uniqueness of p-adic entire functions[END_REF]. Next, URSCM of 7 points were found for unbounded analytic functions in a disk d(a, R -) [START_REF] Boutabaa | URS and URSIMS for p-adic meromorphic functions inside a disk[END_REF]. Here we will show the existence of another family of URSCM for A u (d(a, R -)), looking for sets of less than 7 points.

The notion of URSCM is closely linked to that of strong uniqueness polynomial.

Definition: A polynomial P ∈ IK[x] is called a strong uniqueness polynomial for a subset F ⊂ E(x) (resp. F ⊂ M( IK), resp. F ⊂ M(d(a, R -))) if, given f, g ∈ F, the equality P (f ) = P (g) implies f = g.
The following basic result is immediate and useful to understand the role of URSCM:

Proposition A: Let S = {a 1 , ..., a n } ⊂ E, (resp. S = {a 1 , ..., a n } ⊂ IK), let a ∈ IK, let R ∈ IR * + and let P (x) = n i=1 (x -a i ). Given any two functions f, g ∈ E[x] (resp. f, g ∈ A( IK), resp. f, g ∈ A(d(a, R -))) then E(f, S) = E(g, S) if and only if P (f ) P (g) is a constant in E * (resp. is a constant in IK * , resp. is an invertible function in A(d(a, R -))). Given any two functions f, g ∈ E(x) (resp. f, g ∈ M( IK), resp. f, g ∈ M(d(a, R -))) having the same poles counting multiplicity, then E(f, S) = E(g, S) if and only if P (f ) P (g) is a constant in E * (resp. is a constant in IK * , resp. is an invertible function in A(d(a, R -)))
.

Corollary A1 Let S = {a 1 , ..., a n } ⊂ IK (resp. let S = {a 1 , ..., a n } ⊂ E) and let P (x) = n i=1 (x -a i ).
Then P is a polynomial of strong uniqueness for A( IK)

(resp. for E[x]) if and only if S = {a 1 , ..., a n } is an URSCM for A( IK) (resp. for E[x]).
Remark: Let P (x) = x 4 -4x 3 and let j be a primitive 3-rd root of 1. Clearly,

P (jf ) = jP (f ) ∀f ∈ M( IK), hence P is not a polynomial of strong uniqueness for A( IK) or for E[x].
As usual, given a ∈ IK and n ∈ IN, we denote by

p n √ a the unique b ∈ IK such that b (p n ) = a. Given m, n ∈ IN we set m ≺ n if m divides n and m / ≺ n if m does not divide n.
When p = 0, we denote by S the lF p -automorphism of IK defined by S(x) = p √ x. More generally this mapping has continuation to a IK-algebra

automorphism of IK[X] as S(c n j=1 (X -a j )) = S(c) n j=1 (X -S(a j )), c ∈ IK. Proposition B: Suppose p = 0. Let r > 0 and let f ∈ M(d(a, r -)). Then p √ f belongs to M(d(a, r -)) if and only if f = 0. Moreover, there exists a unique t ∈ IN such that p t √ f ∈ M(d(a, r -)) and ( p t √ f ) = 0. Proof: If f is of the form l p with l ∈ M(d(a, r -)), then of course we have f = 0. Now, suppose that f = 0. If f ∈ A(d(a, r -))
, then obviously all non-zero coefficients have an index multiple of p, hence f is of the form l p , with l ∈ A(d(a, r -)). We now consider the general case when f ∈ M(d(a, r -)). Let (b n , t n ) n∈ IN be the sequence of poles of f inside d(a, r -) where t n is the multiplicity order of b n . By Theorem 25.5 [START_REF] Escassut | Analytic elements in p-adic analysis WSCP[END_REF] we can find

h ∈ A(d(a, r -)) such that ω bn (h) ≥ t n ∀n ∈ IN. Clearly f h p belongs to A(d(a, r -)) and satisfies (f h p ) = 0. Consqeuently, f h p is of the form g p , with g ∈ A(d(a, r -)), therefore f = g h p .
On the other hand, the set of integers s such that p s √ f belongs to M(d(a, r -)) is obviously bounded and therefore admits a biggest element, which ends the proof.

Definition and notation: Suppose p = 0. Given, f ∈ M(d(a, r -)), we will call ramification index of f the integer t such that p t √ f ∈ M(d(a, r -)) and

( p t √ f ) = 0.
In the same way, given an algebraically closed field B of characteristic p = 0 and P (x) ∈ B[x], we call ramification index of P the unique integer t such that p t √ P ∈ B[x] and ( p t √ P ) = 0. This ramification index will be denoted by ram(f ) for any f ∈ M(d(a, r -)) or f ∈ M( IK) and similarly it will be denoted by ram(P ) for any

P ∈ B[x].
Henceforth, given t ∈ IN * , we will denote by A t (d(a, R -)) the subset of the functions f ∈ A(d(a, R -)) having a ramification index ≤ t and similarly, we put

A u,t (d(a, R -)) = A t (d(a, R -)) ∩ A u (d(a, R -)). Given k ∈ IK * and n, m ∈ IN * with m < n, we set Q n,m,k (x) = x n -x m + k
and we denote by Y n,m,k the set of zeros of Q n,m,k . In the same way, we set Q n,k (x) = x n -x n-1 + k and we denote by Y n,k the set of zeros of Q n,k .

Remark: Suppose p = 0 and let f ∈ M(d(a, r -)) have ramification index t as an element of M(d(a, r -)). For every r ∈]0, r[, f has the same ramification index as an element of M(d(a, r -)) because of course, on one hand, p t √ f ∈ M(d(a, r -)) and on the other hand, by properties of analytic functions, ( p t √ f ) is not identically zero inside d(a, r ).

As recalled above, in [START_REF] Boutabaa | On uniqueness of p-adic entire functions[END_REF] the smallest urscm for A u (d(a, R -)) have 7 points. By Corollary 2.2 we can find a new family of urscm for A u (d(a, R -)), with particularly urscm of 5 points.

Theorem 1: Let t ∈ IN * and let f, g ∈ M u (d(a, R -)) be such that the function φ = f n -f m + k g n -g m + k is invertible in A(d(a, R -)). Let t be the ramification index of f n -f m -k(φ -1) f n -f m . If 2mq t > n(2q t -1) + 3q t then f = g. Corollary 1.1 : Suppose IK is of characteristic 0. If 2m > n + 3 then Y (n, m, k) is a bi-urscm for M u (d(a, R -)) . Corollary 1.2 : Suppose IK is of characteristic 0. If n ≥ 6, then Y (n, k) is a bi-urscm for M u (d(a, R -)). Theorem 2: Let t ∈ IN * and let f, g ∈ A u (d(a, R -)) be such that the function φ = f n -f m + k g n -g m + k is invertible in A(d(a, R -)). Let t be the ramification index of f n -f m -k(φ -1) f n -f m . If 2mq t > n(2q t -1) + 2q t then f = g. Corollary 2.1 : Suppose IK is of characteristic 0. If 2m ≥ n + 3, then Y (n, m, k), is an urscm for A u (d(a, R -)).
Corollary 2.2 : Suppose IK is of characteristic 0. If n ≥ 5, then Y (n, k), is an urscm for A u (d(a, R -)).

Remark: We don't know whether there exists an urscm for A u (d(a, R -)) of 4 points or 3 points.

The Proof

We must recall the definition of the counting functions in the Nevanlinna Theory.

Definitions and notation: Let f ∈ M(d(a, R -)) and let α ∈ d(a, R -). If f admits α as a zero of order q, we set ω α (f ) = q; if f admits α as a pole of order q, we set ω α (f ) = -q; and if α is neither a zero nor a pole for f , we set ω α (f ) = 0. We denote by Z(r, f ) the counting function of zeros of f in d(0, r) in the following way:

Let (a n ), 1 ≤ n ≤ σ(r) be the finite sequence of zeros of f such that 0

< |a n | ≤ |a n+1 | ≤ |a σ(r) | ≤ r, of respective order s n . We set Z(r, f ) = max(ω 0 (f ), 0) log r + σ(r) n=1 s n (log r -log |a n |). Similarly, we set N (r, f ) = Z(r, 1 f ).
In order to define the counting function of zeros of f without multiplicity, we put ω 0 (f ) = 0 if ω 0 (f ) ≤ 0 and ω 0 (f ) = 1 if ω 0 (f ) ≥ 1.

In the sequel, I will denote an interval of the form [ρ, +∞[, with ρ > 0, and J will denote an interval of the form [ρ, R[.

Next, denoting by E(r, f ) the set {a ∈ d(0, r) | ω a (f ) > 0, p ram(f )+1 ≺ ω a (f )}, if 0 / ∈ E(r, f ) we set Z(r, f ) = α∈E(r,f ) log r |α| and if 0 ∈ E(r, f ) we set Z(r, f ) = log r + α∈E(r,f ),α =0 log r |α| .
Similarly we define N (r, f ) = Z(r, 1 f ).

We can now define the Nevanlinna characteristic function of f :

T (r, f ) = max(Z(r, f ), T (r, f )). Assume that f is not identically 0. Let V (r, f ) = {a ∈ d(0, r) | ω a (f ) < 0, p ram(f )+1 ≺ ω a (f )}. We put N 0 (r, f ) = α∈V (r,f ) [ω α (f ) -ω α (f )] log r |α| .
Given a finite subset S of IK, we put Λ (r, f, S)

= {a ∈ d(0, r) | f (a) = 0, f (a) / ∈ S} and Λ (r, f, S) = {a ∈ d(0, r) | p ram(f )+1 ≺ ω a (f -f (a)), f (a) ∈ S}. Then we can define Z S 0 (r, f ) = α∈Λ (r,f,S) ω α (f ) log r |α| + α∈Λ (r,f,S) [ω α (f ) -ω α (f -f (α))] log r |α| .
Remarks: 1) It is easily verified that all the above functions are positive.

2) If p = 0, we have Z(r, f ) = Z(r, f ) and N (r, f ) = N (r, f ).

Lemma 1: Let f ∈ M(d(0, R -)), let t = r(f ) and let g = q t √ f . Then Z(r, f ) = Z(r, g) and N (r, f ) = N (r, g). Proof: Let a be a zero of f and let s = ω a (f ). Then s is of the form nt with n ∈ IN * . If n = 1, then a belongs to both E(r, f ) and E(r, g); and if n > 1, then a / ∈ E(r, f ). But then a is a zero of order n of g and hence, a does not belong to E(r, g).

The following Lemmas 2 and 3 are easily checked [START_REF] Boutabaa | Nevanlinna Theory in characteristic p[END_REF]: 

Lemma 2: Let α 1 , • • • , α n ∈ IK be pairwise distinct, let P (u) = n i=1 (u -α i ) and let f ∈ M(d(0, R -)). Then Z(r, P (f )) = n i=1 Z(r, f -α i ) and Z(r, P (f )) = n i=1 Z(r, f -α i ). Lemma 3: Let f ∈ M(d(0, R -)) be such that f is not identically zero and let α ∈ d(0, R -). We have ω α (f ) = ω α (f ) -1 if p ≺ω α (f ) and ω α (f ) ≥ ω α (f ) if p ≺ ω α (f ).
Z(r, f -b) -Z(r, f -b) = Z(r, f ) -Z S 0 (r, f ). Lemma 5: Let f ∈ M(d(0, R -)) be such that f = 0 and let 0 < r < R. Then N (r, f ) = N (r, f ) + N (r, f ) -N 0 (r, f ).
Lemma 6: Let f ∈ M(d(0, R -)) be such that f = 0 and let 0 < r < R.

Then: 1), (r ∈ J).

Z(r, f ) ≤ Z(r, f ) + N (r, f ) -N 0 (r, f ) -log r + O(
Proof: Without loss of generality, up to change of variable, we can assume that both f and f have no zero and no pole at 0. Let |f |(r) denote the circular value of f defined as |f |(r) = lim

|x|→r, |x| =r |f (x)|
By classical results such as Theorem 23.13 [START_REF] Escassut | Analytic elements in p-adic analysis WSCP[END_REF], we have 5.10 [15]); hence we obtain

Z(r, f ) -N (r, f ) = log(|f |(r))-log(|(f (0)|), and Z(r, f )-N (r, f ) = log(|f |(r))-log(|f |(0)). But, it is well-known that |f |(r) ≤ |f |(r) r (Theorem 1.
Z(r, f ) ≤ N (r, f ) -N (r, f ) + Z(r, f ) -log r + O(1).
Moreover, by Lemma 4 we have N (r, f ) -N (r, f ) = N (r, f ) -N 0 (r, f ), which completes the proof.

We know Proposition C [START_REF] Boutabaa | On uniqueness of p-adic entire functions[END_REF].

Proposition C : Let f ∈ M(d(0, R -)). Then f belongs to M b (d(0, R -)) if
and only if T (r, f ) is bounded when r tends to R.

Corollary C1: Let f ∈ M(d(0, R -)). Then M b (d(0, R -)) is a subset of M f (d(0, R -)) and A b (d(0, R -)) is a subset of A f (d(0, R -)).
Remark: Particularly, an invertible function f ∈ A(d(a, R -)) has a constant absolute value and therefore lies in

A b (d(a, R -)).
The following Theorem D1 is known as Second Main Theorem on Three Small Functions [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF]. It holds in p-adic analysis as well as in complex analysis, where it was shown first [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF]. Notice that this theorem was generalized to any finite set of small functions by Yamanoy in complex analysis [START_REF] Yamanoi | The second main theorem for small functions and related problems[END_REF], through methods that have no equivalent on a p-adic field.

Remark: Let f ∈ M u (d(0, R -)) and let w ∈ M b (d(0, R -)). Then of course, w ∈ M f (d(0, R -)).
The previous results enable us to prove the ultrametric Nevanlinna Main Theorem in a basic form:

Theorem D1: Let α 1 , ..., α n ∈ IK, with n ≥ 2, and let f ∈ M(d(0, R -)) (resp. f ∈ M( IK)) of ramification index t. Let S = { q t
√ α 1 , ..., q t √ α n }. Then we have:

(n -1)T (r, f ) q t ≤ n i=1 Z(r, f -α i ) + Z(r, ( q t f ) ) -Z S 0 (r, ( q t f ) ) + O(1) ∀r ∈ J (resp. ∀r ∈ I). Moreover, if f belongs to A(d(0, R -)) (resp. f ∈ A( IK)), then nT (r, f ) q t ≤ n i=1 Z(r, f -α i ) + Z(r, ( q t f ) ) -Z S 0 (r, ( q t f ) ) + O(1) ∀r ∈ J (resp. ∀r ∈ I).
Now, following the same method as in Theorem 2.5.9 [START_REF] Escassut | p-adic Value Distribution[END_REF], we can obtain that classical form of the Nevalinna inequality where Z and N are replaced by Z and N .

Theorem D2: Let α 1 , ..., α n ∈ IK, with n ≥ 2, and let f ∈ M(d(0, R -)) (resp. f ∈ M( IK)) of ramification index t. Let S = { q t
√ α 1 , ..., q t √ α n }. Then we have:

(n -1)T (r, f ) q t ≤ n i=1 Z(r, f -α i ) + N (r, f ) -Z S 0 (r, ( q t f ) ) -N 0 (r, ( q t f ) ) - log r + O(1) ∀r ∈ J (resp. ∀r ∈ I).
Proof of Theorems D1 and D2: The proof of Theorems D1 and D2 was given in [START_REF] Boutabaa | Nevanlinna Theory in characteristic p[END_REF]. We will recall it. For convenience, we put g = q t √ f , and

β i = q t √ α i for every i = 1, ..., n. So S = {β 1 , ..., β n }. Let f ∈ M(K) (resp. f ∈ M(d(a, R -))
) and let (a n , s n ) n∈ IN be the set of zeros of f in IK (resp. in d(a, R -)) with |a n | ≤ |a n+1 | whereas s n is the order of multiplicity of a n . We denote by D(f ) the sequence (a n , s n ) n∈ IN . By Theorem 25.5 [START_REF] Escassut | Analytic elements in p-adic analysis WSCP[END_REF] there exist φ, ψ ∈ A(d(0, R -)) such that g = φ ψ , and

(1) Z(r, φ) ≤ Z(r, g) + 1,

(2) Z(r, ψ) ≤ N (r, g) + 1.

By Lemma 2.5.5 [START_REF] Escassut | p-adic Value Distribution[END_REF], there exists A ∈ IR and for any r ∈ J (resp. r ∈ I), there exists l(r) ∈ {1, ..., n} such that Z(r, φ-β j ψ) ≥ max(Z(r, φ), Z(r, ψ))+A ∀j = l(r), therefore there exists B ∈ IR such that

(3) Z(r, φ -β i ψ) ≥ T (r, g) + B ∀i = l(r), ∀r ∈ J (resp. ∀r ∈ I).

We check that D(φ) -D(

φ ψ ) = D(ψ) -D( ψ φ ), therefore D(φ -β i ψ) = D(g -β i ) + D(ψ) -D( 1 g -β i ) = D(g -β i ) + D(ψ) -D( 1 g ).
Then, applying counting functions, we have Z(r, φ -β i ψ) = Z(r, g -β i ) + Z(r, ψ) -N (r, g), and therefore, by (2), we obtain (4) Z(r, φ -

β i ψ) ≤ Z(r, g -β i ) + 1.
Then, by ( 3) and (4) we obtain (n -1) T (r, g)

+ B ≤ 1≤i≤n, i =l(r) Z(r, φ -β i ψ) ≤ 1≤i≤n, i =l(r) Z(r, g -β i ) + n -1 ∀r ∈ J (resp. ∀r ∈ I).
Putting M = (n -1)(1 -B), we obtain:

(5) (n -1)T (r, g) ≤ n i=1 Z(r, g -β i ) + M -Z(r, g -β l(r) ) ∀r ∈ J (resp. ∀r ∈ I).

By Lemma 4, we have

n i=1 Z(r, g -β i ) = n i=1
Z(r, g -β i ) + Z(r, g ) -Z S 0 (r, g ), hence by ( 5) we obtain, (6) (n-1)T (r, g)

≤ n i=1
Z(r, g-β i )+Z(r, g )-Z S 0 (r, g )-Z(r, g-β l(r) )+O(1) ∀r ∈ J (resp. ∀r ∈ I).

Now, since T (r, g) = T (r, f ) q t and since Z(r, g-β i ) = Z(r, f -α j ) ∀j = i, ..., n, we obtain

(n -1)T (r, f ) q t ≤ n i=1
Z(r, f -α i ) + Z(r, ( q t f ) ) -Z S 0 (r, ( q t f ) ) + O(1) ∀r ∈ J (resp. ∀r ∈ I).

Suppose now that f belongs to A(d(a, R -)) or to A( IK). Then so does g. By Lemma 2.5.5 [START_REF] Escassut | p-adic Value Distribution[END_REF] we have Z(r, g -β l(r) ) = T (r, g) + O(1) ∀r ∈ J (resp. ∀r ∈ I) so, by [START_REF] Bartels | Meromorphic functions sharing a set with 17 elements, ignoring multiplicities[END_REF] we obtain

nT (r, g) ≤ n i=1 Z(r, g -β i ) + Z(r, g ) -Z S 0 (r, g ) + O(1) ∀r ∈ J (resp. ∀r ∈ I),
and consequently, nT (r, f )

q t ≤ n i=1
Z(r, f -α i ) + Z(r, ( q t f ) ) -Z S 0 (r, ( q t f ) ) + O(1) ∀r ∈ J (resp.

∀r ∈ I). Now, returning to the general case, we have g = (g -β l(r) ) and N (r, g) = N (r, g -β l(r) ). So, by Lemma 6, we have:

(7) Z(r, g ) -Z(r, g -β l(r) ) ≤ N (r, g) -N 0 (r, g ) -log r + O(1).
Finally, by ( 6), [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF] we obtain (n -1)T (r, f )

q t ≤ n i=1 Z(r, f -α i ) + N (r, f ) -Z S 0 (r, ( q t f ) ) -N 0 (r, ( q t f ) ) - log r ∀r ∈ J (resp. ∀r ∈ I).
That completes the proof.

Theorem D3: Let f ∈ M( IK) (resp. f ∈ M u (d(0, R -))) and let u 1 , u 2 , u 3 ∈ M f ( IK) (resp. u 1 , u 2 , u 3 ∈ M f (d(0, R -))) be pairwaise distinct. Let φ(x) = (f (x) -u 1 (x))(u 2 (x) -u 3 (x)) (f (x) -u 3 (x))(u 2 (x) -u 1 (x))
and let t be the ramifucation index of φ.

Then T (r, f ) q t ≤ 3 j=1 Z(r, f -u j ) + o(T (r, f )).
Proof: By Theorem D2, we have

(1) T (r, φ) q t ≤ Z(r, φ) + Z(r, φ -1) + N (r, φ) + O(1). Corollary D6: Let f ∈ A( IK) (resp. f ∈ A u (d(0, R -))) and let u 1 , u 2 ∈ A f ( IK) (resp. u 1 , u 2 ∈ A f (d(0, R -)
)) be distinct and let t be the ramification

index of f -u 1 f -u 2 . Then T (r, f ) q t ≤ Z(r, f -u 1 ) + Z(r, f -u 2 ) + o(T (r, f )). Corollary D7: Let f ∈ A( IK) (resp. f ∈ A u (d(0, R -))) and let u ∈ A f ( IK) (resp. u ∈ A f (d(0, R -)
)) be non-identically zero and let t be the ramification index of f -u f . Then

T (r, f ) q t ≤ Z(r, f ) + Z(r, f -u) + o(T (r, f )).
In the proof of Theorems 1 and 2 we will need the following lemma:

Lemma 7: Let f ∈ A( IK) (resp. f ∈ A u (d(0, R -))
) and let t be the ramification index of f . Let m, n ∈ IN * , m < n, be prime to p. Then the ramification index of f n -f m is also equal to t.

Proof: Since the lemma is trivial when p = 0, we suppose p = 0, hence p = q. Set h = p t and F = f n -f m . By hypothesis, since both m, n are prime to p, the ramification index of both f m , f n is equal to t and hence so are those of f n-m and f n-m -1. Let g = h √ f . Then g belongs to A( IK) (resp. to A u (d(0, R -))) and so does h √ F . Let G = h √ F . Then we can check that G = g g m-1 (ng n-m -m) hence G is not identically 0. Consequently, the ramification index of F is t.

Proof of Theorem 1 and Theorem 2: We can obviously suppose a = 0. Suppose that f, g are two distinct functions. Let F = f n -f m . By Corollary D5, we can obtain T (r, F ) q t ≤ Z(r, F ) + Z(r, F -k(φ -1)) + N (r, F ) + o(T (r, f ). Similarly,

(2) Z(r, F -k(φ -1)) = Z(r, g n -g m ) ≤ Z(r, g) + Z(r, g n-m -1).

Of course, since φ is bounded, by Proposition C we have T (r, f ) = T (r, g)+O(1); hence , by (1) and (2), we obtain T (r, F ) ≤ q t (2n -2m + 3)T (r, f ) + o(T (r, f )).

On the other hand, by 2.4.15 [START_REF] Escassut | p-adic Value Distribution[END_REF], we have T (r, F ) = nT (r, f ) + O(1); hence nT (r, f ) ≤ q t (2n -2m + 3)T (r, f ) + o(T (r, f )). That yields 2mq t ≤ n(2q t -1) + 3q t , a contradiction to the hypothesis of Theorem 1.

Next, in the hypotheses of Theorem 2, we have N (r, f ) = N (r, g) = 0; hence we can get T (r, F ) ≤ q t (2n -2m + 2)T (r, f ) + o(T (r, f )) and hence 2mq t ≤ n(2q t -1) + 2q t , a contradiction to the hypotheses of Theorem 2. That ends the proofs of Theorems 1 and 2. 

Lemmas 4 and 5 are consequences of Lemma 3 . 4 :

 34 Lemma Let f ∈ M(d(0, R -)) be such that f = 0 and let S be a finite subset of IK. Then:

  b∈S

  Now, clearly, N (r, F ) ≤ T (r, f ) and Z(r, F ) ≤ Z(r, f ) + Z(r, f n-m -1) + O(1) and Z(r, f n-m -1) ≤ (n -m)T (r, f ); hence (1) Z(r, F ) ≤ (n -m + 1)T (r, f ) + o(T (r, f )).

Proof of Corollary 1 . 1 :

 11 Suppose Y (n, m, k) is not a bi-urscm for M u (d(a, R -)) and let f, g ∈ M u (d(a, R -)) be such that E(f, Y (n, m, k)) = E(g, Y (n, m, k)). By Proposition A, the function φ = f n -f m + k g n -g m + k is an invertible element of A(d(a, R -)).And since IK has characteristic zero, we have nT (r, f) > 2(n -m + 1)T (r, f ) + o(T (r, f )), hence by Theorem 1, f = g.The proof of Corollary 2.1 is similar by applying Theorem 2.
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Next, we have T (r, f ) ≤ T (r, f -u j ) + T (r, u j ) (j = 1, 2, 3), hence T (r, f ) ≤

. Thus, by (1) we obtain

(2)

Now, we can check that

which, by (2), completes the proof.

We are now ready to state and prove Theorem D4.

) be distinct and let t be the ramification

Proof: Let g = 1 f , w j = 1 u j , j = 1, 2, w 3 = 0. Clearly, T (r, g) = T (r, f ) + O(1), T (r, w j ) = T (r, u j ), j = 1, 2, so we can apply Theorem D3 to g, w 1 , w 2 , w 3 . On the other hand,

Thus by Theorem D3 we have:

But we notice that Z(r, g -w j ) = Z(r, f -u j ) for j = 1, 2 and Z(r, g) = N (r, f ). Moreover, we know that o(T (r, g)) = o(T (r, f )). Consequently, the claim is proven when u 1 u 2 is not identically zero.

Next, by setting g = f -u 1 and u = u 2 -u 1 , we obtain Corollary D5:

(resp. u ∈ M g (d(0, R -))) and let t be the ramification index of g -u g .

Then T (r, g) q t ≤ Z(r, g) + Z(r, g -u) + N (r, g) + o(T (r, g)).