
HAL Id: hal-01920274
https://uca.hal.science/hal-01920274v1

Submitted on 13 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unique range sets of 5 points for unbounded analytic
functions inside an open disk

Alain Escassut, Jacqueline Ojeda

To cite this version:
Alain Escassut, Jacqueline Ojeda. Unique range sets of 5 points for unbounded analytic functions
inside an open disk. Bulletin mathématique de la Société des Sciences mathématiques de Roumanie,
2014. �hal-01920274�

https://uca.hal.science/hal-01920274v1
https://hal.archives-ouvertes.fr


Unique range sets of 5 points for unbounded

analytic functions inside an open disk

Alain Escassut and Jacqueline Ojeda1

Abstract

Let IK be a complete algebraically closed p-adic field of characteristic
p ≥ 0 and let Au(d(a, R−)) be the set of unbounded analytic functions
inside the disk d(a, R−) = {x ∈ IK | : |x − a| < R}. We recall the
definition of urscm and the ultrametric Nevanlinna Theory on 3 small
functions in order to find new urscm for Au(d(a, R−)). Results depend
on the characteristic. In characteristic 0, we can find urscm of 5 points.
Some results on bi-urscm are given for meromorphic functions.

1 Introduction and main result

We shall introduce URSCM for p-adic meromorphic functions. Many studies
were made in the eighties and the nineties concerning URSCM for functions in
lC, [3], [6], [16]. Studies were also made in the non-archimedean context by the

late nineties and next [1], [2], [3], [4], [5], [8], [9], [10], [11], [13]. Here, we will
only consider the situation in an ultrametric field.

Definitions and notation: Throughout the paper, E is an algebraically
closed field of characteristic p ≥ 0 without any assumption on the existence
of an absolute value. A subset S of E is said to be affinely rigid if there is no
similarity t on E other than the identity, such that t(S) = S.

We denote by IK an algebraically closed field complete with respect to an
ultrametric absolute value | . | and of characteristic p ≥ 0. We will denote by q
the characteristic exponent of IK: if p 6= 0, then q = p and if p = 0 then q = 1.

Given α ∈ IK and R ∈ IR∗+, we denote by d(α,R) the disk {x ∈ IK | |x−
α| ≤ R}, by d(α,R−) the disk {x ∈ IK | |x−α| < R}, by A( IK) the IK-algebra
of analytic functions in IK (i.e. the set of power series with an infinite radius
of convergence) and by M( IK) the field of meromorphic functions in IK (i.e.
the field of fractions of A( IK)).

In the same way, given α ∈ IK, R > 0 we denote by A(d(α,R−)) the
IK-algebra of analytic functions in d(α,R−) (i.e. the set of power series with
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an radius of convergence ≥ R) and by M(d(α,R−)) the field of fractions of
A(d(α,R−)). We then denote by Ab(d(α,R−)) the IK-algebra of bounded
analytic functions in d(α, r−) and by Mb(d(α, r−)) the field of fractions of
Ab(d(α, r−)). And we set Au(d(α,R−)) = A(d(α,R−)) \ Ab(d(α,R−)) and
Mu(d(α,R−)) =M(d(α,R−)) \Mb(d(α,R−)).

Given a family of functions F defined in IK or in a subset S of IK (resp. in
E or in a subset S of E), with values in IK (resp. in E), S is called an ursim for
F if for any two non-constant functions f, g ∈ F satisfying f−1(S) = g−1(S),
these functions are equal.

That definition particularly applies to A( IK), M( IK), Au(d(a,R−)),
Mu(d(a,R−)), IK[x], IK(x), E[x], E(x).

We will now recall the definition of URSCM. Given a subset S of E and
f ∈ E(x), we denote by E(f, S) the set in E× IN∗:⋃

a∈S
{(z, q) ∈ E× IN∗| z is a zero of order q of f(x)− a}.

Similarly, consider now meromorphic functions in the field IK. For a subset
S of IK and f ∈M( IK) (resp. f ∈M(d(a,R−))) we denote by E(f, S) the set
in IK× IN∗:

⋃
a∈S
{(z, q) ∈ IK× IN∗| z is a zero of order q of f(x)− a}.

Let F be a non-empty subset ofA( IK) (resp. ofM( IK), resp. ofA(d(a,R−)),
resp. of M(d(a,R−))). We say that two non-constant functions f, g ∈ F
share S, counting multiplicity if E(f, S) = E(g, S); and the set S is called a
unique range set counting multiplicity (an URSCM in brief) for F if for any two
non-constant f, g ∈ F sharing S counting multiplicity, one has f = g. Next,
the set S will be called a bi-URSCM for F if for two non-constant functions
f, g ∈ Mu(d(a,R−)) sharing S counting multiplicity and having the same
poles, counting multiplicity, one has f = g [8].

Particularly, if we consider a family F ⊂ A(K) or F ⊂ Au(d(a,R−)) and a
set S = {a1, ..., at} ⊂ IK (resp. a set S = {a1, ..., at} ⊂ E) with ai 6= aj ∀i 6= j,

we can set P (X) =
t∏

j=1

(X − aj) and then the set S = {a1, ..., at} is an URSCM

for F if for any two functions f, g ∈ F such that P ◦ f and P ◦ g have the same
zeros with the same multiplicity, then f = g.

Similarly, if we consider a family F ⊂M(K) or F ⊂Mu(d(a,R−)) and a set
S = {a1, ..., at} ⊂ IK (resp. a set S = {a1, ..., at} ⊂ E) with ai 6= aj ∀i 6= j, we

can set P (X) =
t∏

j=1

(X − aj) and then the set S = {a1, ..., at} is a bi-URSCM for

F if for any two functions f, g ∈ F having the same poles (counting multiplicity)
such that P ◦ f and P ◦ g have the same zeros with the same multiplicity, then
f = g.

Remark: An URSCM S for a family of functions F =M( IK), A( IK),
Mu(d(a,R−)), Au(d(a,R−)) must obviously be affinely rigid. Indeed suppose
that S is not affinely rigid and let t be a similarity of IK such that t(S) = S.
Then, if f belongs to F , so does f ◦ t and therefore we can check that E(f, S) =
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E(f ◦ t, S). And it is a bi-URSCM if for any two functions f, g ∈ F such that
P ◦ f and P ◦ g have the same zeros and the same poles, counting multiplicity,
then f = g.

Similar definitions were given for meromorphic functions on lC before these
questions were examined on the field IK. URSCM of only 11 points for complex

meromorphic functions in the whole field lC where found in [16] and the same
method showed the existence of URSCM of only 7 points for complex entire
functions. So far, they are the smallest known in lC.

In the field IK, the same method lets us find URSCM of 11 points for
Mu(d(a,R−)) and URSCM of 10 points for M( IK).

In 1996, URSCM for polynomials on a field such as E were characterized:
they are just the affinely rigid subsets of E [9]. Particularly, the smallest
URSCM for polynomials are the affinely rigid sets of 3 points. Concerning
entire functions on the field IK, URSCM of 3 points were found: they also are
the affinely rigid sets of 3 points [9]. Next, URSCM of 7 points were found for
unbounded analytic functions in a disk d(a,R−) [10]. Here we will show the
existence of another family of URSCM for Au(d(a,R−)), looking for sets of less
than 7 points.

The notion of URSCM is closely linked to that of strong uniqueness polyno-
mial.

Definition: A polynomial P ∈ IK[x] is called a strong uniqueness polynomial
for a subset F ⊂ E(x) (resp. F ⊂ M( IK), resp. F ⊂ M(d(a,R−))) if, given
f, g ∈ F , the equality P (f) = P (g) implies f = g.

The following basic result is immediate and useful to understand the role of
URSCM:
Proposition A: Let S = {a1, ..., an} ⊂ E, (resp. S = {a1, ..., an} ⊂ IK),

let a ∈ IK, let R ∈ IR∗+ and let P (x) =
n∏
i=1

(x− ai). Given any two functions

f, g ∈ E[x] (resp. f, g ∈ A( IK), resp. f, g ∈ A(d(a,R−))) then E(f, S) =

E(g, S) if and only if
P (f)
P (g)

is a constant in E∗ (resp. is a constant in IK∗, resp.

is an invertible function in A(d(a,R−))). Given any two functions f, g ∈ E(x)
(resp. f, g ∈ M( IK), resp. f, g ∈ M(d(a,R−))) having the same poles

counting multiplicity, then E(f, S) = E(g, S) if and only if
P (f)
P (g)

is a constant in

E∗ (resp. is a constant in IK∗, resp. is an invertible function in A(d(a,R−))).

Corollary A1 Let S = {a1, ..., an} ⊂ IK (resp. let S = {a1, ..., an} ⊂ E) and

let P (x) =
n∏
i=1

(x− ai). Then P is a polynomial of strong uniqueness for A( IK)

(resp. for E[x]) if and only if S = {a1, ..., an} is an URSCM for A( IK) (resp.
for E[x]).
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Remark: Let P (x) = x4−4x3 and let j be a primitive 3-rd root of 1. Clearly,
P (jf) = jP (f) ∀f ∈M( IK), hence P is not a polynomial of strong uniqueness
for A( IK) or for E[x].

As usual, given a ∈ IK and n ∈ IN, we denote by pn√
a the unique b ∈ IK

such that b(p
n) = a.

Given m, n ∈ IN we set m ≺ n if m divides n and m /≺ n if m does not
divide n. When p 6= 0, we denote by S the lFp-automorphism of IK defined
by S(x) = p

√
x. More generally this mapping has continuation to a IK-algebra

automorphism of IK[X] as S(c
n∏
j=1

(X − aj)) = S(c)
n∏
j=1

(X − S(aj)), c ∈ IK.

Proposition B: Suppose p 6= 0. Let r > 0 and let f ∈M(d(a, r−)). Then p
√
f

belongs to M(d(a, r−)) if and only if f ′ = 0. Moreover, there exists a unique
t ∈ IN such that pt√

f ∈M(d(a, r−)) and ( pt√
f)′ 6= 0.

Proof: If f is of the form lp with l ∈ M(d(a, r−)), then of course we have
f ′ = 0. Now, suppose that f ′ = 0. If f ∈ A(d(a, r−)), then obviously all
non-zero coefficients have an index multiple of p, hence f is of the form lp,
with l ∈ A(d(a, r−)). We now consider the general case when f ∈M(d(a, r−)).
Let (bn, tn)n∈ IN be the sequence of poles of f inside d(a, r−) where tn is the
multiplicity order of bn. By Theorem 25.5 [14] we can find h ∈ A(d(a, r−)) such
that ωbn

(h) ≥ tn ∀n ∈ IN. Clearly fhp belongs to A(d(a, r−)) and satisfies
(fhp)′ = 0. Consqeuently, fhp is of the form gp, with g ∈ A(d(a, r−)), therefore

f =
( g
h

)p
. On the other hand, the set of integers s such that ps√

f belongs

to M(d(a, r−)) is obviously bounded and therefore admits a biggest element,
which ends the proof.

Definition and notation: Suppose p 6= 0. Given, f ∈ M(d(a, r−)), we will
call ramification index of f the integer t such that pt√

f ∈ M(d(a, r−)) and
( pt√

f)′ 6= 0.
In the same way, given an algebraically closed field B of characteristic p 6= 0

and P (x) ∈ B[x], we call ramification index of P the unique integer t such
that pt√

P ∈ B[x] and ( pt√
P )′ 6= 0. This ramification index will be denoted by

ram(f) for any f ∈M(d(a, r−)) or f ∈M( IK) and similarly it will be denoted
by ram(P ) for any P ∈ B[x].

Henceforth, given t ∈ IN∗, we will denote by At(d(a,R−)) the subset of the
functions f ∈ A(d(a,R−)) having a ramification index ≤ t and similarly, we put
Au,t(d(a,R−)) = At(d(a,R−)) ∩ Au(d(a,R−)).

Given k ∈ IK∗ and n,m ∈ IN∗ with m < n, we set Qn,m,k(x) = xn−xm+k
and we denote by Yn,m,k the set of zeros of Qn,m,k. In the same way, we set
Qn,k(x) = xn − xn−1 + k and we denote by Yn,k the set of zeros of Qn,k.

Remark: Suppose p 6= 0 and let f ∈ M(d(a, r−)) have ramification index t
as an element of M(d(a, r−)). For every r′ ∈]0, r[, f has the same ramification
index as an element of M(d(a, r′−)) because of course, on one hand, pt√

f ∈
M(d(a, r′−)) and on the other hand, by properties of analytic functions, ( pt√

f)′

is not identically zero inside d(a, r′).
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As recalled above, in [9] the smallest urscm for Au(d(a,R−)) have 7 points.
By Corollary 2.2 we can find a new family of urscm for Au(d(a,R−)), with
particularly urscm of 5 points.

Theorem 1: Let t ∈ IN∗ and let f, g ∈ Mu(d(a,R−)) be such that the

function φ =
fn − fm + k

gn − gm + k
is invertible in A(d(a,R−)). Let t be the ramification

index of
fn − fm − k(φ− 1)

fn − fm
. If 2mqt > n(2qt − 1) + 3qt then f = g.

Corollary 1.1 : Suppose IK is of characteristic 0. If 2m > n + 3 then
Y (n,m, k) is a bi-urscm for Mu(d(a,R−)) .

Corollary 1.2 : Suppose IK is of characteristic 0. If n ≥ 6, then Y (n, k) is
a bi-urscm for Mu(d(a,R−)).
Theorem 2: Let t ∈ IN∗ and let f, g ∈ Au(d(a,R−)) be such that the function

φ =
fn − fm + k

gn − gm + k
is invertible in A(d(a,R−)). Let t be the ramification index

of
fn − fm − k(φ− 1)

fn − fm
.

If 2mqt > n(2qt − 1) + 2qt then f = g.

Corollary 2.1 : Suppose IK is of characteristic 0. If 2m ≥ n + 3, then
Y (n,m, k), is an urscm for Au(d(a,R−)).

Corollary 2.2 : Suppose IK is of characteristic 0. If n ≥ 5, then Y (n, k), is
an urscm for Au(d(a,R−)).

Remark: We don’t know whether there exists an urscm for Au(d(a,R−)) of
4 points or 3 points.

2 The Proof

We must recall the definition of the counting functions in the Nevanlinna Theory.

Definitions and notation: Let f ∈ M(d(a,R−)) and let α ∈ d(a,R−). If
f admits α as a zero of order q, we set ωα(f) = q; if f admits α as a pole of
order q, we set ωα(f) = −q; and if α is neither a zero nor a pole for f , we set
ωα(f) = 0.

We denote by Z(r, f) the counting function of zeros of f in d(0, r) in the
following way:

Let (an), 1 ≤ n ≤ σ(r) be the finite sequence of zeros of f such that
0 < |an| ≤ |an+1| ≤ |aσ(r)| ≤ r, of respective order sn.

We set Z(r, f) = max(ω0(f), 0) log r +
σ(r)∑
n=1

sn(log r − log |an|).

Similarly, we set N(r, f) = Z(r,
1
f

).
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In order to define the counting function of zeros of f without multiplicity,
we put ω0(f) = 0 if ω0(f) ≤ 0 and ω0(f) = 1 if ω0(f) ≥ 1.

In the sequel, I will denote an interval of the form [ρ,+∞[, with ρ > 0, and
J will denote an interval of the form [ρ,R[.

Next, denoting by E(r, f) the set {a ∈ d(0, r) | ωa(f) > 0, pram(f)+1 6≺
ωa(f)},
if 0 /∈ E(r, f) we set Z̃(r, f) =

∑
α∈E(r,f)

log
r

|α|

and if 0 ∈ E(r, f) we set Z̃(r, f) = log r +
∑

α∈E(r,f),α6=0

log
r

|α|
.

Similarly we define Ñ(r, f) = Z̃(r,
1
f

).

We can now define the Nevanlinna characteristic function of f : T (r, f) =
max(Z(r, f), T (r, f)).

Assume that f ′ is not identically 0.
Let V (r, f) = {a ∈ d(0, r) | ωa(f) < 0, pram(f)+1 ≺ ωa(f)}. We put
N0(r, f ′) =

∑
α∈V (r,f)

[ωα(f ′)− ωα(f)] log
r

|α|
.

Given a finite subset S of IK, we put Λ′(r, f, S) = {a ∈ d(0, r) | f ′(a) =
0, f(a) /∈ S} and Λ′′(r, f, S) = {a ∈ d(0, r) | pram(f)+1 ≺ ωa(f − f(a)), f(a) ∈
S}. Then we can define

ZS0 (r, f ′) =
∑

α∈Λ′(r,f,S)

ωα(f ′) log
r

|α|
+

∑
α∈Λ′′(r,f,S)

[ωα(f ′)− ωα(f − f(α))] log
r

|α|
.

Remarks: 1) It is easily verified that all the above functions are positive.
2) If p = 0, we have Z(r, f) = Z̃(r, f) and N(r, f) = Ñ(r, f).

Lemma 1: Let f ∈ M(d(0, R−)), let t = r(f) and let g = qt√
f . Then

Z̃(r, f) = Z̃(r, g) and Ñ(r, f) = Ñ(r, g).
Proof: Let a be a zero of f and let s = ωa(f). Then s is of the form nt with
n ∈ IN∗. If n = 1, then a belongs to both E(r, f) and E(r, g); and if n > 1,
then a /∈ E(r, f). But then a is a zero of order n of g and hence, a does not
belong to E(r, g).

The following Lemmas 2 and 3 are easily checked [12]:

Lemma 2: Let α1, · · · , αn ∈ IK be pairwise distinct, let P (u) =
n∏
i=1

(u − αi)

and let f ∈M(d(0, R−)). Then Z(r, P (f)) =
n∑
i=1

Z(r, f −αi) and Z̃(r, P (f)) =

n∑
i=1

Z̃(r, f − αi).

Lemma 3: Let f ∈ M(d(0, R−)) be such that f ′ is not identically zero and
let α ∈ d(0, R−). We have ωα(f ′) = ωα(f)− 1 if p6≺ωα(f) and ωα(f ′) ≥ ωα(f)
if p ≺ ωα(f).
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Lemmas 4 and 5 are consequences of Lemma 3.
Lemma 4: Let f ∈ M(d(0, R−)) be such that f ′ 6= 0 and let S be a finite
subset of IK. Then:∑

b∈S

(
Z(r, f − b)− Z̃(r, f − b)

)
= Z(r, f ′)− ZS0 (r, f ′).

Lemma 5: Let f ∈M(d(0, R−)) be such that f ′ 6= 0 and let 0 < r < R. Then
N(r, f ′) = N(r, f) + Ñ(r, f)−N0(r, f ′).

Lemma 6: Let f ∈ M(d(0, R−)) be such that f ′ 6= 0 and let 0 < r < R.
Then:

Z(r, f ′) ≤ Z(r, f) + Ñ(r, f)−N0(r, f ′)− log r +O(1), (r ∈ J).

Proof: Without loss of generality, up to change of variable, we can assume
that both f and f ′ have no zero and no pole at 0. Let |f |(r) denote the circular
value of f defined as |f |(r) = lim

|x|→r, |x|6=r
|f(x)|

By classical results such as Theorem 23.13 [14], we have Z(r, f)−N(r, f) =
log(|f |(r))−log(|(f(0)|), and Z(r, f ′)−N(r, f ′) = log(|f ′|(r))−log(|f ′|(0)). But,

it is well-known that |f ′|(r) ≤ |f |(r)
r

(Theorem 1.5.10 [15]); hence we obtain

Z(r, f ′) ≤ N(r, f ′)−N(r, f) + Z(r, f)− log r +O(1).

Moreover, by Lemma 4 we have N(r, f ′)−N(r, f) = Ñ(r, f)−N0(r, f ′), which
completes the proof.

We know Proposition C [9].

Proposition C : Let f ∈ M(d(0, R−)). Then f belongs to Mb(d(0, R−)) if
and only if T (r, f) is bounded when r tends to R.

Corollary C1: Let f ∈ M(d(0, R−)). Then Mb(d(0, R−)) is a subset of
Mf (d(0, R−)) and Ab(d(0, R−)) is a subset of Af (d(0, R−)).

Remark: Particularly, an invertible function f ∈ A(d(a,R−)) has a constant
absolute value and therefore lies in Ab(d(a,R−)).

The following Theorem D1 is known as Second Main Theorem on Three
Small Functions [17]. It holds in p-adic analysis as well as in complex analysis,
where it was shown first [17]. Notice that this theorem was generalized to
any finite set of small functions by Yamanoy in complex analysis [18], through
methods that have no equivalent on a p-adic field.

Remark: Let f ∈ Mu(d(0, R−)) and let w ∈ Mb(d(0, R−)). Then of course,
w ∈Mf (d(0, R−)).

The previous results enable us to prove the ultrametric Nevanlinna Main
Theorem in a basic form:
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Theorem D1: Let α1, ..., αn ∈ IK, with n ≥ 2, and let f ∈ M(d(0, R−))
(resp. f ∈ M( IK)) of ramification index t. Let S = { qt√α1, ..., qt√αn}. Then
we have:
(n− 1)T (r, f)

qt
≤

n∑
i=1

Z̃(r, f − αi) + Z(r, ( qt
√
f)′)− ZS0 (r, ( qt

√
f)′) +O(1) ∀r ∈ J

(resp. ∀r ∈ I).
Moreover, if f belongs to A(d(0, R−)) (resp. f ∈ A( IK)), then

nT (r, f)
qt

≤
n∑
i=1

Z̃(r, f − αi) + Z(r, ( qt
√
f)′)− ZS0 (r, ( qt

√
f)′) +O(1) ∀r ∈ J

(resp. ∀r ∈ I).

Now, following the same method as in Theorem 2.5.9 [15], we can obtain
that classical form of the Nevalinna inequality where Z and N are replaced by
Z̃ and Ñ .

Theorem D2: Let α1, ..., αn ∈ IK, with n ≥ 2, and let f ∈M(d(0, R−))
(resp. f ∈ M( IK)) of ramification index t. Let S = { qt√α1, ..., qt√αn}. Then
we have:
(n− 1)T (r, f)

qt
≤

n∑
i=1

Z̃(r, f − αi) + Ñ(r, f) − ZS0 (r, ( qt
√
f)′) −N0(r, ( qt

√
f)′) −

log r +O(1) ∀r ∈ J (resp. ∀r ∈ I).

Proof of Theorems D1 and D2: The proof of Theorems D1 and D2 was
given in [12]. We will recall it. For convenience, we put g = qt√

f , and βi = qt√
αi

for every i = 1, ..., n. So S = {β1, ..., βn}.
Let f ∈ M(K) (resp. f ∈ M(d(a,R−))) and let (an, sn)n∈ IN be the set of

zeros of f in IK (resp. in d(a,R−)) with |an| ≤ |an+1| whereas sn is the order
of multiplicity of an. We denote by D(f) the sequence (an, sn)n∈ IN.

By Theorem 25.5 [14] there exist φ, ψ ∈ A(d(0, R−)) such that g =
φ

ψ
, and

(1) Z(r, φ) ≤ Z(r, g) + 1,
(2) Z(r, ψ) ≤ N(r, g) + 1.
By Lemma 2.5.5 [15], there exists A ∈ IR and for any r ∈ J (resp. r ∈ I), there
exists l(r) ∈ {1, ..., n} such that Z(r, φ−βjψ) ≥ max(Z(r, φ), Z(r, ψ))+A ∀j 6=
l(r), therefore there exists B ∈ IR such that
(3) Z(r, φ− βiψ) ≥ T (r, g) +B ∀i 6= l(r), ∀r ∈ J (resp. ∀r ∈ I).

We check that D(φ)−D(
φ

ψ
) = D(ψ)−D(

ψ

φ
), therefore

D(φ− βiψ) = D(g − βi) +D(ψ)−D(
1

g − βi
) = D(g − βi) +D(ψ)−D(

1
g

).

Then, applying counting functions, we have Z(r, φ − βiψ) = Z(r, g − βi) +
Z(r, ψ)−N(r, g), and therefore, by (2), we obtain
(4) Z(r, φ− βiψ) ≤ Z(r, g − βi) + 1.
Then, by (3) and (4) we obtain (n− 1)

(
T (r, g) +B

)
≤

∑
1≤i≤n,
i6=l(r)

Z(r, φ− βiψ) ≤
∑

1≤i≤n,
i6=l(r)

Z(r, g − βi) + n− 1 ∀r ∈ J (resp. ∀r ∈ I).

Putting M = (n− 1)(1−B), we obtain:
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(5) (n − 1)T (r, g) ≤
n∑
i=1

Z(r, g − βi) +M − Z(r, g − βl(r)) ∀r ∈ J (resp. ∀r ∈

I).
By Lemma 4, we have

n∑
i=1

Z(r, g− βi) =
n∑
i=1

Z̃(r, g− βi) +Z(r, g′)−ZS0 (r, g′), hence by (5) we obtain,

(6) (n−1)T (r, g) ≤
n∑
i=1

Z̃(r, g−βi)+Z(r, g′)−ZS0 (r, g′)−Z(r, g−βl(r))+O(1) ∀r ∈

J (resp. ∀r ∈ I).

Now, since T (r, g) =
T (r, f)
qt

and since Z̃(r, g−βi) = Z̃(r, f−αj) ∀j = i, ..., n,

we obtain

(n− 1)T (r, f)
qt

≤
n∑
i=1

Z̃(r, f −αi) +Z(r, ( qt
√
f)′)−ZS0 (r, ( qt

√
f)′) +O(1) ∀r ∈ J

(resp. ∀r ∈ I).
Suppose now that f belongs to A(d(a,R−)) or to A( IK). Then so does g. By

Lemma 2.5.5 [15] we have Z(r, g−βl(r)) = T (r, g) +O(1) ∀r ∈ J (resp. ∀r ∈ I)
so, by (6) we obtain

nT (r, g) ≤
n∑
i=1

Z̃(r, g − βi) + Z(r, g′)− ZS0 (r, g′) +O(1) ∀r ∈ J (resp. ∀r ∈ I),

and consequently,
nT (r, f)

qt
≤

n∑
i=1

Z̃(r, f − αi) + Z(r, ( qt
√
f)′)− ZS0 (r, ( qt

√
f)′) +O(1) ∀r ∈ J (resp.

∀r ∈ I).
Now, returning to the general case, we have g′ = (g − βl(r))′ and Ñ(r, g) =
Ñ(r, g − βl(r)). So, by Lemma 6, we have:

(7) Z(r, g′)− Z(r, g − βl(r)) ≤ Ñ(r, g)−N0(r, g′)− log r +O(1).
Finally, by (6), (7) we obtain
(n− 1)T (r, f)

qt
≤

n∑
i=1

Z̃(r, f − αi) + Ñ(r, f) − ZS0 (r, ( qt
√
f)′) −N0(r, ( qt

√
f)′) −

log r ∀r ∈ J (resp. ∀r ∈ I).
That completes the proof.

Theorem D3: Let f ∈M( IK) (resp. f ∈Mu(d(0, R−))) and let u1, u2, u3 ∈
Mf ( IK) (resp. u1, u2, u3 ∈Mf (d(0, R−))) be pairwaise distinct. Let

φ(x) =
(f(x)− u1(x))(u2(x)− u3(x))
(f(x)− u3(x))(u2(x)− u1(x))

and let t be the ramifucation index of φ.

Then
T (r, f)
qt

≤
3∑
j=1

Z̃(r, f − uj) + o(T (r, f)).

Proof: By Theorem D2, we have

(1)
T (r, φ)
qt

≤ Z̃(r, φ) + Z̃(r, φ− 1) + Ñ(r, φ) +O(1).
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Next, we have T (r, f) ≤ T (r, f − uj) + T (r, uj) (j = 1, 2, 3), hence T (r, f) ≤
T (r,

u3 − u1

f − u3
) + o(T (r, f)), thereby T (r, f) ≤ T (r,

u3 − u1

f − u3
+ 1) + o(T (r, f)) =

T (r,
f − u1

f − u3
) + o(T (r, f)).

Now, T (r,
u2 − u1

u2 − u3
) = o(T (r, f). Consequently, by writing

f − u1

f − u3
= φ

(u2 − u1

u2 − u3

)
we have T (r,

f − u1

f − u3
) ≤ T (r, φ) + T (r,

u2 − u1

u2 − u3
) ≤ T (r, φ) + o(T (r, f)) and finally

T (r, f) ≤ T (r, φ) + o(T (r, f)). Thus, by (1) we obtain

(2)
T (r, f)
qt

≤ Z̃(r, φ) + Z̃(r, φ− 1) + Ñ(r, φ) + o(T (r, f)).

Now, we can check that

Z̃(r, φ) + Z̃(r, φ− 1) + Ñ(r, φ) ≤
3∑
j=1

Z̃(r, f − uj) +
∑

1≤j<k≤3

Z̃(r, uk − uj) ≤
3∑
j=1

Z̃(r, f − uj) + o(T (r, f))

which, by (2), completes the proof.

We are now ready to state and prove Theorem D4.

Theorem D4: Let f ∈ M( IK) (resp. f ∈ Mu(d(0, R−))), let u1, u2 ∈
Mf ( IK) (resp. u1, u2 ∈Mf (d(0, R−))) be distinct and let t be the ramification

index of
f(x)− u1(x)
f(x)− u2(x)

. Then

T (r, f)
qt

≤ Z̃(r, f − u1) + Z̃(r, f − u2) + Ñ(r, f) + o(T (r, f)).

Proof: Let g =
1
f
, wj =

1
uj
, j = 1, 2, w3 = 0. Clearly, T (r, g) = T (r, f) +

O(1), T (r, wj) = T (r, uj), j = 1, 2, so we can apply Theorem D3 to g, w1, w2, w3.
On the other hand,

(g(x)− w1(x))w2(x)
(g(x)− w2(x))w1(x)

=
f(x)− u1(x)
f(x)− u2(x)

.

Thus by Theorem D3 we have:
T (r, g)
qt

≤ Z̃(r, g−w1) + Z̃(r, g−w2) + Z̃(r, g) +

o(T (r, g)).
But we notice that Z̃(r, g − wj) = Z̃(r, f − uj) for j = 1, 2 and Z̃(r, g) =

Ñ(r, f). Moreover, we know that o(T (r, g)) = o(T (r, f)). Consequently, the
claim is proven when u1u2 is not identically zero.

Next, by setting g = f − u1 and u = u2 − u1, we obtain Corollary D5:

Corollary D5: Let g ∈ M( IK) (resp. g ∈ Mu(d(0, R−))), let u ∈ Mg( IK)

(resp. u ∈Mg(d(0, R−))) and let t be the ramification index of
g − u
g

.

Then
T (r, g)
qt

≤ Z̃(r, g) + Z̃(r, g − u) + Ñ(r, g) + o(T (r, g)).
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Corollary D6: Let f ∈ A( IK) (resp. f ∈ Au(d(0, R−))) and let u1, u2 ∈
Af ( IK) (resp. u1, u2 ∈ Af (d(0, R−))) be distinct and let t be the ramification

index of
f − u1

f − u2
. Then

T (r, f)
qt

≤ Z̃(r, f − u1) + Z̃(r, f − u2) + o(T (r, f)).

Corollary D7: Let f ∈ A( IK) (resp. f ∈ Au(d(0, R−))) and let u ∈ Af ( IK)
(resp. u ∈ Af (d(0, R−))) be non-identically zero and let t be the ramification

index of
f − u
f

. Then

T (r, f)
qt

≤ Z̃(r, f) + Z̃(r, f − u) + o(T (r, f)).

In the proof of Theorems 1 and 2 we will need the following lemma:

Lemma 7: Let f ∈ A( IK) (resp. f ∈ Au(d(0, R−))) and let t be the ramifica-
tion index of f . Let m, n ∈ IN∗, m < n, be prime to p. Then the ramification
index of fn − fm is also equal to t.

Proof: Since the lemma is trivial when p = 0, we suppose p 6= 0, hence
p = q. Set h = pt and F = fn − fm. By hypothesis, since both m, n are
prime to p, the ramification index of both fm, fn is equal to t and hence so
are those of fn−m and fn−m − 1. Let g = h

√
f . Then g belongs to A( IK)

(resp. to Au(d(0, R−))) and so does h
√
F . Let G = h

√
F . Then we can check

that G′ = g′gm−1(ngn−m −m) hence G′ is not identically 0. Consequently, the
ramification index of F is t.

Proof of Theorem 1 and Theorem 2: We can obviously suppose a = 0.
Suppose that f, g are two distinct functions. Let F = fn − fm. By Corollary
D5, we can obtain

T (r, F )
qt

≤ Z̃(r, F ) + Z̃(r, F − k(φ− 1)) + Ñ(r, F ) + o(T (r, f).

Now, clearly, Ñ(r, F ) ≤ T (r, f) and Z̃(r, F ) ≤ Z̃(r, f) + Z̃(r, fn−m − 1) +O(1)
and Z̃(r, fn−m − 1) ≤ (n−m)T (r, f); hence

(1) Z̃(r, F ) ≤ (n−m+ 1)T (r, f) + o(T (r, f)).
Similarly,
(2) Z̃(r, F − k(φ− 1)) = Z̃(r, gn − gm) ≤ Z̃(r, g) + Z̃(r, gn−m − 1).
Of course, since φ is bounded, by Proposition C we have T (r, f) = T (r, g)+O(1);
hence , by (1) and (2), we obtain T (r, F ) ≤ qt(2n− 2m+ 3)T (r, f) + o(T (r, f)).

On the other hand, by 2.4.15 [15], we have T (r, F ) = nT (r, f) +O(1); hence
nT (r, f) ≤ qt(2n−2m+3)T (r, f)+o(T (r, f)). That yields 2mqt ≤ n(2qt−1)+
3qt, a contradiction to the hypothesis of Theorem 1.
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Next, in the hypotheses of Theorem 2, we have N(r, f) = N(r, g) = 0;
hence we can get T (r, F ) ≤ qt(2n − 2m + 2)T (r, f) + o(T (r, f)) and hence
2mqt ≤ n(2qt− 1) + 2qt, a contradiction to the hypotheses of Theorem 2. That
ends the proofs of Theorems 1 and 2.

Proof of Corollary 1.1: Suppose Y (n,m, k) is not a bi-urscm forMu(d(a,R−))
and let f, g ∈ Mu(d(a,R−)) be such that E(f, Y (n,m, k)) = E(g, Y (n,m, k)).

By Proposition A, the function φ =
fn − fm + k

gn − gm + k
is an invertible element

of A(d(a,R−)). And since IK has characteristic zero, we have nT (r, f) >
2(n−m+ 1)T (r, f) + o(T (r, f)), hence by Theorem 1, f = g.

The proof of Corollary 2.1 is similar by applying Theorem 2.

Acknowledgement The authors thank the referee for pointing out many
misprints.
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