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Complex and p-adic meromorphic functions f ′P ′(f ), g′P ′(g)

sharing a small function

Alain Escassut, Kamal Boussaf and Jacqueline Ojeda1

November 3, 2013

Abstract

Let K be a complete algebraically closed p-adic field of characteristic zero. We apply results
in algebraic geometry and a new Nevanlinna theorem for p-adic meromorphic functions in order
to prove results of uniqueness in value sharing problems, both on K and on C. Let P be a
polynomial of uniqueness for meromorphic functions in K or C or in an open disk. Let f, g
be two transcendental meromorphic functions in the whole field K or in C or meromorphic
functions in an open disk of K that are not quotients of bounded analytic functions. We
show that if f ′P ′(f) and g′P ′(g) share a small function α counting multiplicity, then f = g,
provided that the multiplicity order of zeros of P ′ satisfy certain inequalities. A breakthrough
in this paper consists of replacing inequalities n ≥ k + 2 or n ≥ k + 3 used in previous papers
by Hypothesis (G). In the p-adic context, another consists of giving a lower bound for a sum
of q counting functions of zeros with (q−1) times the characteristic function of the considered
meromorphic function.

Notation and definition: Let K be an algebraically closed field of characteristic zero, complete
with respect to an ultrametric absolute value | . |. We will denote by E a field that is either K
or C. Throughout the paper we denote by a a point in K. Given R ∈]0,+∞[ we define disks
d(a,R) = {x ∈ K | |x− a| ≤ R} and disks d(a,R−) = {x ∈ K | |x− a| < R}.

A polynomial Q(X) ∈ E[X] is called a polynomial of uniqueness for a family of functions F
defined in a subset of E if Q(f) = Q(g) implies f = g. The definition of polynomials of uniqueness
was introduced in [19] by P. Li and C. C. Yang and was studied in many papers [11], [13], [20] for
complex functions and in [1], [2], [9], [10], [17], [18], for p-adic functions.

Throughout the paper we will denote by P (X) a polynomial in E[X] such that P ′(X) is of the

form b

l∏
i=1

(X − ai)ki with l ≥ 2 and k1 ≥ 2. The polynomial P will be said to satisfy Hypothesis

(G) if P (ai) + P (aj) 6= 0 ∀i 6= j.
We will improve the main theorems obtained in [5] and [6] with the help of a new hypothesis

denoted by Hypothesis (G) and by thorougly examining the situation with p-adic and complex
analytic and meromorphic functions in order to avoid a lot of exclusions. Moreover, we will prove
a new theorem completing the 2nd Main Theorem for p-adic meromorphic functions. Thanks to
this new theorem we will give more precisions in results on value-sharing problems.
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Notation: Let L be an algebraically closed field, let P ∈ L[x]\L and let Ξ(P ) be the set of zeros
c of P ′ such that P (c) 6= P (d) for every zero d of P ′ other than c. We denote by Φ(P ) its cardinal.

We denote by A(E) the E-algebra of entire functions in E, by M(E) the field of meromor-
phic functions in E, i.e. the field of fractions of A(E) and by E(x) the field of rational func-
tions. Throughout the paper, we denote by A(d(a,R−)) the K-algebra of analytic functions in

d(a,R−) i.e. the K-algebra of power series
∞∑
n=0

an(x − a)n converging in d(a,R−) and we denote

by M(d(a,R−)) the field of meromorphic functions inside d(a,R−), i.e. the field of fractions of
A(d(a,R−)). Moreover, we denote by Ab(d(a,R−)) the K - subalgebra of A(d(a,R−)) consisting
of the bounded analytic functions in d(a,R−), i.e. which satisfy sup

n∈N
|an|Rn < +∞. We denote

byMb(d(a,R−)) the field of fractions of Ab(d(a,R−)) and finally, we denote by Au(d(a,R−)) the
set of unbounded analytic functions in d(a,R−), i.e. A(d(a,R−)) \ Ab(d(a,R−)). Similarly, we set
Mu(d(a,R−)) =M(d(a,R−)) \Mb(d(a,R−)).

Theorem O1 [9]: Let P (X) ∈ K[X]. If Φ(P ) ≥ 2 then P is a polynomial of uniqueness for
A(K). If Φ(P ) ≥ 3 then P is a polynomial of uniqueness for M(K) and for Au(d(a,R−)). If
Φ(P ) ≥ 4 then P is a polynomial of uniqueness for Mu(d(a,R−)).

Let P (X) ∈ C[X]. If Φ(P ) ≥ 3 then P is a polynomial of uniqueness for A(C). If Φ(P ) ≥ 4
then P is a polynomial of uniqueness for M(C).

Concerning polynomials such that P ′ has exactly two distinct zeros, we know other results:

Theorem O2 [1], [2], [18]: Let P ∈ K[x] be such that P ′ has exactly two distinct zeros γ1 of
order c1 and γ2 of order c2 with min{c1, c2} ≥ 2. Then P is a polynomial of uniqueness forM(K).

Theorem O3 [9], [17]: Let P ∈ K[x] be of degree n ≥ 6 be such that P ′ only has two distinct
zeros, one of them being of order 2. Then P is a polynomial of uniqueness for Mu(d(0, R−)).

Theorem O4 [18]: Let P ∈ C[x] be such that P ′ has exactly two distinct zeros γ1 of order c1
and γ2 of order c2 with min{c1, c2} ≥ 2 and max(c1, c2) ≥ 3. Then P is a polynomial of uniqueness
for M(C).

In order to state theorems and recall the definition of a small function, we must recall the
definition of the classical Nevanlinna functions both on a p-adic field and on the field C together
with a few specific properties of ultrametric analytic or meromorphic functions [7], [11], [13].

Notation: Let log be a real logarithm function of base b > 1 and let log+(x) = max(0, log(x)).
Let f ∈ M(E)

(
resp. f ∈ M(d(0, R−))

)
having no zero and no pole at 0. Let r ∈]0,+∞[

(
resp.

r ∈]0, R[
)

and let γ ∈ d(0, r). If f has a zero of order n at γ, we put ωγ(h) = n. If f has a pole of
order n at γ, we put ωγ(f) = −n and finally, if f(γ) 6= 0,∞, we set ωγ(f) = 0. These definitions
of Nevanlinna’s functions are equivalent to thise defined in [7].

We denote by Z(r, f) the counting function of zeros of f in d(0, r), counting multiplicities, i.e.

Z(r, f) = max(ω0, 0) log r +
∑

ωγ(f)>0, 0<|γ|≤r

ωγ(f)(log r − log |γ|).
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Similarly, we denote by Z(r, f) the counting function of zeros of f in d(0, r), ignoring multi-
plicities, and set

Z(r, f) = u log r +
∑

ωγ(f)>0, 0<|γ|≤r

(log r − log |γ|)

with u = 1 when ω0(f) > 0 and u = 0 else.

In the same way, we set N(r, f) = Z
(
r,

1
f

) (
resp. N(r, f) = Z

(
r,

1
f

))
to denote the counting

function of poles of f in d(0, r), counting multiplicities (resp. ignoring multiplicities).
For f ∈ M(K) or f ∈ M(d(0, R−)), we call Nevanlinna function of f the function T (r, f) =

max
{
Z(r, f), N(r, f)

}
.

Consider now a function f ∈M(C). We can define a functionm(r, f) =
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ

and we call Nevanlinna function of f the function T (r, f) = m(r, f) +N(r, f).

Now, we must recall the definition of a small function with respect to a meromorphic function
and some pertinent properties.

Definition. Let f ∈ M(E)
(
resp. let f ∈ M(d(0, R−))

)
such that f(0) 6= 0,∞. A function

α ∈ M(E)
(
resp. α ∈ M(d(0, R−))

)
is called a small function with respect to f , if it satisfies

lim
r→+∞

T (r, α)
T (r, f)

= 0
(

resp. lim
r→R−

T (r, α)
T (r, f)

= 0
)

.

We denote by Mf (E)
(
resp. Mf (d(0, R−))

)
the set of small meromorphic functions with

respect to f in E
(
resp. in d(0, R−)

)
.

Remark 1. Thanks to classical properties of the Nevanlinna function T (r, f) with respect to the
operations in a field of meromorphic functions, such as T (r, f + g) ≤ T (r, f) + T (r, g) + O(1)
and T (r, fg) ≤ T (r, f) + T (r, g) +O(1), for f, g ∈ M(K) and r > 0, it is easily proven that
Mf (E)

(
resp. Mf (d(0, R−))

)
is a subfield of M(E)

(
resp. M(d(0, R−))

)
and that M(E)

(
resp.

M(d(0, R))
)

is a transcendental extension of Mf (E)
(
resp. of Mf (d(0, R−))

)
[10].

Let us remember the following definition.

Definitions. Let f, g, α ∈ M(E)
(
resp. let f, g, α ∈ M(d(0, R−))

)
. We say that f and g share

the function α C.M., if f−α and g−α have the same zeros with the same multiplicities in E
(
resp.

in d(0, R−)
)
.

In [5] and [6] we have obtained this general Theorem (where results of [5] and [6] here are
gathered):

Theorem T: Let P be a polynomial of uniqueness for M(K), (resp for M(C), resp. for
M(d(0, R−))) with l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l − 1 and let k =

∑l
i=2 ki. Suppose P satisfies

the following conditions:

k1 ≥ 10 +
l∑
i=3

max(0, 4− ki) + max(0, 5− k2),

k1 ≥ k + 2 (resp. k1 ≥ k + 3, resp. k1 ≥ k + 3)
if l = 2, then k1 6= k + 1, 2k, 2k + 1, 3k + 1,
if l = 3, then k1 6= k + 1, 2k + 1, 3ki − k ∀i = 2, 3.
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If l ≥ 4, then k1 6= k + 1
Let f, g ∈ M(E) ( resp. f, g ∈ Mu((d(a,R−)) be transcendental and let α ∈ Mf (E) ∩Mg(K)

(resp. α ∈Mf (d(a,R−))∩Mg(d(a,R−))) be non-identically zero. If f ′P ′(f) and g′P ′(g) share α
C.M., then f = g.

In the field K, several particular applications were given when the small function is a constant
or a Moebius function. On C, we can’t get similar refinements because the complex Nevanlinna
Theory is less accurate than the p-adic Nevanlinna Theory.

In the present paper, thanks to the new Hypothesis (G) introduced below, we mean to avoid
the hypothesis k1 ≥ k + 2 for M(K) and k1 ≥ k + 3 for M(C) and for M(d(a,R−)).

But first, we have a new theorem for p-adic analytic functions:

First we can improve results of [5] concerning p-adic analytic functions.

Theorem 1. Let P (X) ∈ K[X] be a polynomial of uniqueness for A(K) (resp. for Au(d(a,R−)))

and let P ′(X) = b

l∏
i=1

(X − ai)ki . Let f, g ∈ A(K) be transcendental (resp. let f, g ∈ Au(d(a,R−))),

be such that f ′P ′(f) and g′P ′(g) share a small function α ∈ Af (K)∩Ag(K) (resp. α ∈ Af (d(, R−))∩

Ag(d(a,R−))). If
l∑
i=1

ki ≥ 2l + 2 then f = g. Moreover, if f, g belong to A(K), if α is a constant

and if
l∑
i=1

ki ≥ 2l + 1 then f = g.

Corollary 1.1: Let P (X) ∈ K[X] be such that Φ(P ) ≥ 2 and let P ′(X) = b

l∏
i=1

(X − ai)ki .

Let f, g ∈ A(K) be transcendental such that f ′P ′(f) and g′P ′(g) share a small function α ∈

Af (K) ∩ Ag(K). If
l∑
i=1

ki ≥ 2l + 2 then f = g. Moreover, if α is a constant and if
l∑
i=1

ki ≥ 2l + 1

then f = g.

Example: Let c ∈ K be a solution of the algebraic equation:

X11
( 1

11
− 1

10

)
−X9

(1
9
− 1

8

)
+X

( 1
10
− 1

8

)
− 1

11
+

1
9

= 0.

Let

P (X) =
X11

11
− cX10

10
− X9

9
+
cX8

8
Then we can check that P ′(X) = X7(X − 1)(X + 1)(X − c),

P (1) = P (c) 6= 0 and that P (1) 6= 0, P (−1) 6= 0, P (1)+P (−1) = c(
1
4
− 1

5
) and P (−1)−P (1) =

2
( 1

11
− 1

9

)
, hence P (−1) 6= P (c). Consequently, we can apply Corollary 1.1 and show that if

f ′P ′(f) and g′P ′(g) share a small function α ∈ Af (K) ∩ Ag(K), then f = g.
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Remark 2. Recall Hypothesis (F) due to H. Fujimoto [12]. A polynomial Q is said to satisfy
Hypothesis (F) if the restriction of Q to the set of zeros of Q′ is injective. In the last example, we
may notice that Hypothesis (F) is not satisfied by P .

Corollary 1.2: Let P (X) ∈ K[X] be such that Φ(P ) ≥ 3 and let P ′(X) = b

l∏
i=1

(X − ai)ki . Let

f, g ∈ Au(d(a,R−)) be such that f ′P ′(f) and g′P ′(g) share a small function α ∈ Af (d(a,R−)) ∩

Ag(d(a,R−)). If
l∑
i=1

ki ≥ 2l + 2 then f = g.

Corollary 1.3: Let P (X) ∈ K[X] be such that Φ(P ) ≥ 2 (resp. Φ(P ) ≥ 3) and let P ′(X) =

bXn
l∏
i=2

(X − ai) with l ≥ 3 and let f, g ∈ A(K) (resp. f, g ∈ Au(d(a,R−))) be such that f ′P ′(f)

and g′P ′(g) share a small function α ∈ Af (K) ∩Ag(K) (resp. α ∈ Af (d(a,R−)) ∩Ag(d(a,R−))).
If n ≥ l + 3 then f = g. Moreover, if f, g belong to A(K), if α is a constant and if n ≥ l + 2 then
f = g.

In order to improve results of [5] on p-adic meromorphic functions and of [6] on complex
meromorphic functions, we have to state Propositions P1 and P2 derived from results of [3] and
[4].

Notation and definition: Henceforth we assume that P (a1) = 0 and that P ′(X) is of the

form b

l∏
i=1

(X − ai)ki with l ≥ 2. The polynomial P will be said to satisfy Hypothesis (G) if

P (ai) + P (aj) 6= 0 ∀i 6= j

Proposition P1: Let P ∈ K[X] satisfy Hypothesis (G) and n ≥ 2 (resp. n ≥ 3). If meromorphic
functions f, g ∈M(K) (resp. f, g ∈M(d(a,R−))) satisfy P (f(x)) = P (g(x))+C (C ∈ K∗), ∀x ∈
K (resp. ∀x ∈ d(a,R−)) then both f and g are constant (resp. f and g belong to Mb(d(a,R−))).

Proposition P2: Let P ∈ C[X] satisfy Hypothesis (G) and n ≥ 3. If meromorphic functions
f, g ∈M(C) satisfy P (f(x)) = P (g(x)) + C (C ∈ C∗), ∀x ∈ C then both f and g are constant.

From [5] and thanks to Propositions P1 we can now derive the following Theorems 2, 3, 4, 5:

Theorem 2. Let P be a polynomial of uniqueness for M(K), (resp for M(d(0, R−))) with l ≥ 2,

let P ′(X) = b

l∏
i=1

(X − ai)ki with b ∈ K∗, ki ≥ ki+1, 2 ≤ i ≤ l − 1, let k =
∑l
i=2 ki, let u5 be the

biggest of the i such that ki > 4 and let s5 = max(0, u5 − 3) and for each m ∈ N, let um be the
biggest of the i such that ki > m and let sm = max(0, um − 2). Suppose P satisfies the following
conditions:

k1 ≥ 10 + max(0, 5− k2) +
l∑
i=3

max(0, 4− ki)−min(2l,
∞∑
m=5

sm,)

either k1 ≥ k + 2 (resp. k1 ≥ k + 3, resp. k1 ≥ k + 3) or P satisfies Hypothesis (G),
if l = 2, then k1 6= k + 1, 2k, 2k + 1, 3k + 1,
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if l = 3, then k1 6= k
2 , k1 6= k + 1, 2k + 1, 3ki − k ∀i = 2, 3.

If l ≥ 4, then k1 6= k + 1
Let f, g ∈ M(K) (resp. f, g ∈ M((d(a,R−)) be transcendental and let α ∈ Mf (K) ∩Mg(K)

(resp. α ∈Mf (d(a,R−))∩Mg(d(a,R−))) be non-identically zero. If f ′P ′(f) and g′P ′(g) share α
C.M., then f = g.

Remark 3. the sum
∑∞
m=5 sm is obviously finite.

Corollary 2.1 Let P ∈ K[x] satisfy Φ(P ) ≥ 3 and hypothesis (G), let P ′ = b

l∏
i=1

(X − ai)ki with

b ∈ K∗, l ≥ 3, ki ≥ ki+1, 2 ≤ i ≤ l− 1, let k =
∑l
i=2 ki, and for each m ∈ N, let um be the biggest

of the i such that ki > 4, let s5 = max(0, u5 − 3) and for every m ≥ 6, let sm = max(0, um − 2) .
Suppose P satisfies the following conditions:

k1 ≥ 10 + max(0, 5− k2) +
l∑
i=3

max(0, 4− ki)−min(2l − 1,
∞∑
m=5

sm

if l = 3, then k1 6=
k

2
, k + 1, 2k + 1, 3ki − k ∀i = 2, 3,

if l ≥ 4, then n 6= k + 1. Let f, g ∈ M(K) be transcendental and let α ∈ Mf (K) ∩Mg(K) be
non-identically zero. If f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

Example: Let

P (X) =
X20

20
− X19

19
− 4X18

18
+

4X17

17

+
6X16

16
− 6X15

15
− 4X14

14
+

4X13

13
+
X12

12
− X11

11
We can check that P ′(X) = X10(X − 1)5(X + 1)4 and

P (0) = 0, P (1) =
4∑
j=0

Cj4(−1)j
( 1

10 + 2j
− 1

9 + 2j

)
,

P (−1) = −
4∑
j=0

Cj4

( 1
10 + 2j

+
1

9 + 2j

)
Consequently, we have Φ(P ) = 3 and we check that Hypothesis (G) is satisfied. Now, let f, g ∈
M(K) be transcendental and let α ∈ Mf (K) ∩Mg(K) be non-identically zero. If f ′P ′(f) and
g′P ′(g) share α C.M., then f = g.

Remark: In that example, we have k1 = 10, k = 9. Applying our previous work, a conclusion
would have required n ≥ k + 2 = 11.

Theorem 3. Let P be a polynomial of uniqueness forM(C), with l ≥ 2, let P ′(X) = b

l∏
i=1

(X − ai)ki

with b ∈ K∗, ki ≥ ki+1, 2 ≤ i ≤ l − 1, let k =
∑l
i=2 ki, let u5 be the biggest of the i such that

ki > 4 and let s5 = u5− 3 and for each m ∈ N, let um be the biggest of the i such that ki > m and
let sm = max(0, um − 2). Suppose P satisfies the following conditions:
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k1 ≥ 10 + max(0, 5− k2) +
l∑
i=3

max(0, 4− ki)−min(2l,
∞∑
m=5

sm,)

either k1 ≥ k + 3 or P satisfies Hypothesis (G),
if l = 2, then k1 6= k + 1, 2k, 2k + 1, 3k + 1,
if l = 3, then k1 6= k

2 , k1 6= k + 1, 2k + 1, 3ki − k ∀i = 2, 3.
If l ≥ 4, then k1 6= k + 1
Let f, g ∈ M(C) be transcendental and let α ∈ Mf (C) ∩Mg(C) be non-identically zero. If

f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

Corollary 3.1 Let P ∈ C[X] satisfy Φ(P ) ≥ 4 and Hypothesis (G), let P ′ = b

l∏
i=1

(X − ai)ki ,

ki ≥ ki+1, 2 ≤ i ≤ l − 1, let k =
∑l
i=2 ki, and for each m ∈ N, let um be the biggest of the i such

that ki > 4, let s5 = max(0, u5 − 3) and for every m ≥ 6, let sm = max(0, um − 2). Suppose P
satisfies the following conditions:

k1 ≥ 10 + max(0, 5− k2) +
l∑
i=3

max(0, 4− ki)−min(2l,
∞∑
m=5

sm)

k1 6= k + 1.
Let f, g ∈M(C) and let α ∈Mf (C))∩Mg(C) be non-identically zero. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.

As noticed in [5], if f, g belong to M(K) and if α is a constant or a Moebius function, we can
get a more acurate statement:

Theorem 4. Let P be a polynomial of uniqueness for M(K), let P ′ = b

l∏
i=1

(x− ai)ki with b ∈ K∗,

l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l− 1, let k =
∑l
i=2 ki, and for each m ∈ N, let um be the biggest of the i

such that ki > 4, let s5 = max(0, u5 − 3) and for every m ≥ 6, let sm = max(0, um − 2).
Suppose P satisfies the following conditions:

n ≥ 9 + max(0, 5− k2) +
l∑
i=3

max(0, 4− ki)−min(2l − 1,
∞∑
m=5

sm)

either k1 ≥ k + 2 or P satisfies (G)
if l = 2, then k1 6= k + 1, 2k, 2k + 1, 3k + 1,
if l = 3, then k1 6= k

2 , k + 1, 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.

By Theorem O1, we can derive Corollary 4.1.

Corollary 4.1 Let P ∈ K[x] satisfy Φ(P ) ≥ 3, let P ′ = b

l∏
i=1

(x− ai)ki with b ∈ K∗, l ≥ 3,

ki ≥ ki+1, 2 ≤ i ≤ l − 1, let k =
∑l
i=2 ki, and for each m ∈ N, let um be the biggest of the i such

that ki > 4, let s5 = max(0, u5 − 3) and for every m ≥ 6, let sm = max(0, um − 2) .
Suppose P satisfies the following conditions:
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n ≥ 9 + max(0, 5− k2) +
l∑
i=3

max(0, 4− ki)−min(2l − 1,
∞∑
m=5

sm)

either n ≥ k + 2 or P satisfies (G),
if l = 3, then k1 6= k

2 , k + 1, 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.

And by Theorem O2 we have Corollary 4.2.

Corollary 4.2 Let P ∈ K[x] be such that P ′ is of the form b(x− a1)n(x− a2)k with k ≤ n,
min(k, n) ≥ 2 and with b ∈ K∗. Suppose P satisfies the following conditions:

n ≥ 9 + max(0, 5− k),
either n ≥ k + 2 or P satisfies (G),
n 6= k + 1, 2k, 2k + 1, 3k + 1,
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.

Theorem 5. Let P be a polynomial of uniqueness for M(K), let P ′ = b

l∏
i=1

(x− ai)ki with b ∈ K∗,

l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l− 1, let k =
∑l
i=2 ki, and for each m ∈ N, let um be the biggest of the i

such that ki > 4, let s5 = max(0, u5 − 4) and for every m ≥ 6, let sm = max(0, um − 3) . Suppose
P satisfies the following conditions:

either k1 ≥ k + 2 or P satisfies (G)

k1 ≥ 9 + max(0, 5− k2) +
l∑
i=3

max(0, 4− ki)−min(2l − 1,
∞∑
m=5

sm)

k1 6= k + 1
Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.

By Theorem O1, we can derive Corollary 5.1.

Corollary 5.1 Let P ∈ K[x] satisfy Φ(P ) ≥ 3, let P ′ = b

l∏
i=1

(x− ai)ki with b ∈ K∗, l ≥ 3,

ki ≥ ki+1, 2 ≤ i ≤ l − 1, let k =
∑l
i=2 ki, and for each m ∈ N, let um be the biggest of the i such

that ki > 4, let s5 = max(0, u5 − 3) and for every m ≥ 6, let sm = max(0, um − 2) . Suppose P
satisfies the following conditions:

k1 ≥ k + 2 or P satisfies Hypothesis (G),

n ≥ 9 + max(0, 5− k2) +
l∑
i=3

max(0, 4− ki)−min(2l − 1,
∞∑
m=5

sm)

Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′P ′(f) and g′P ′(g)
share α C.M., then f = g.

And by Theorem O2, we have Corollary 5.2

Corollary 5.2 Let P ∈ K[x] be such that P ′ is of the form b(x− a1)n(x− a2)k with min(k, n) ≥ 2
and with b ∈ K∗. Suppose P satisfies the following conditions:
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n ≥ 9 + max(0, 5− k),
either n ≥ k + 2 or P satisfies (G)
n 6= k + 1.
Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.

Example: Let

P (X) =
X24

24
− 10X23

23
+

36X22

22
− 40X21

21
− 74X20

20
+

226X19

19

−84X18

18
− 312X17

17
+

321X16

16
+

88X15

15

−280X14

14
+

48X13

13
+

80X12

12
− 32X11

11
We can check that P ′(X) = X10(X − 2)5(X + 1)4(X − 1)4. Next, we have P (2) < −134378,
P (1) ∈]−2, 11;−2, 10[, P (−1) ∈]2, 18; 2, 19[. Therefore, P (0), P (1), P (−1), P (2) are all distinct,
hence Φ(P ) = 4. Moreover, Hypothesis (G) is satisfied.

Now, let f, g ∈ M(K) (resp. let f, g ∈ Mu(d(a,R−)), resp. let f, g ∈ M(C)) and let
α ∈ M(K) (resp. let α ∈ M(d(a,R−)), resp. let α ∈ M(C)) be non-identically zero. If f ′P ′(f)
and g′P ′(g) share α C.M., then f = g.

Particularly, when f, g are entire functions in C we can simplify the hypothesis:

Theorem 6. Let P be a polynomial of uniqueness for A(C) with l ≥ 2 and ki ≥ ki+1, 1 ≤ i ≤
l − 1 when l > 2 and let k =

∑l
i=2 ki, let u5 be the biggest of the i such that ki > 4 and let

s5 = max(0, u5 − 3) and for each m ∈ N, let um be the biggest of the i such that ki > m and let
sm = max(0, um − 2). Suppose P satisfies the following conditions:

either k1 ≥ k + 2 or P satisfies hypothesis (G)

k1 ≥ 5 + max(0, 5− k2) +
l∑
i=3

max(0, 4− ki)−min(2l − 3,
∞∑
m=5

sm).

Let f, g ∈ A(C) be transcendental and let α ∈ Af (C)∩Ag(C) be non-identically zero. If f ′P ′(f)
and g′P ′(g) share α C.M., then f = g.

By Proposition P2, we have Corollaries 6.1 and 6.2:

Corollary 6.1 Let P ∈ C[X], let P ′ = b

l∏
i=1

(X − ai)ki with b ∈ C∗, ki ≥ ki+1, 1 ≤ i ≤ l− 1 and

let k =
∑l
i=2 ki, let u5 be the biggest of the i such that ki > 4 and let t5 = u5 − 3 and for each

m ∈ N, let um be the biggest of the i such that ki > m and let tm = max(0, um − 2).
Suppose P satisfies the following conditions
either k1 ≥ k + 2 or P satisfies hypothesis (G)

k1 ≥ 5 + max(0, 5− k2) +
l∑
i=3

max(0, 4− ki)−min(2l − 3,
∞∑
m=5

sm)

Let f, g ∈ M(C) be transcendental and let α ∈ Mf (C) ∩Mg(C) be non-identically zero. If
f ′P ′(f) and g′P ′(g) share α C.M., then f = g.
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Corollary 6.2 Let P ∈ C[X] and let P ′ = b(X − a1)n(X − a)k with min(k, n) ≥ 2 and max(n, k) ≥
3. Suppose that P satisfies n ≥ 5 + max(0, 5− k),

Let f, g ∈ A(C) be transcendental and let α ∈ Af (C) ∩ Ag(C) be non-identically zero. If
f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

Example: Let

P (X) =
X11

11
+

5X10

10
+

10X9

9
+

10X8

8
+

5X7

7
+
X6

6
.

Then P ′(X) = X5(X + 1)5. We can apply Corollary 6.2: given f, g ∈ A(C) transcendental such
that f ′P ′(f) and g′P ′(g) share a small function α ∈M(C) C.M., we have f = g.

1 The proofs:

Notation: As usual, given a function f ∈ M(E) (resp. M(d(0, R−))), we denote by Sf (r) a

function of r defined in ]0,+∞[ (resp. in ]0, R[) such that lim
r→+∞

Sf (r)
T (r, f)

= 0 (resp. lim
r→R

Sf (r)
T (r, f)

= 0)

We must recall the classical Nevanlinna Main Theorem:
Theorem N1: [7], [12] Let a1, ..., an ∈ K (resp. a1, ..., an ∈ K, resp. a1, ..., an ∈ C) with
n ≥ 2, n ∈ N, and let f ∈ M(K) (resp. let f ∈ M(d(0, R−)), resp. let f ∈ M(C)) . Let
S = {a1, ..., an}. Then, for r > 0 we have

(n− 1)T (r, f) ≤
n∑
j=1

Z(r, f − aj) +N(r, f)− log r +O(1),

resp.

(n− 1)T (r, f) ≤
n∑
j=1

Z(r, f − aj) +N(r, f) +O(1),

resp.

(n− 1)T (r, f) ≤
n∑
j=1

Z(r, f − aj) +N(r, f) + Sf (r).

Let us recall the following corollary of the Nevanlinna Second Main Theorem on three small
function:

Theorem N2: Let f ∈ A(K) (resp. let f ∈ A(d(0, R−)), resp. let f ∈ A(C) ) and let u ∈ f ∈
Af (K) (resp. let u ∈ Af (d(0, R−)), resp u ∈ f ∈ Af (C)). Then T (r, f) ≤ Z(r, f) + Z(r, f − u) +
Sf (r).

In order to prove Theorem N3 we need additional lemmas:

Notation: Let f ∈ M(d(a,R−)), and let r ∈]0, R[. By classical results [8], [10] we know that
|f(x)| has a limit when |x| tends to r, while being different from r.

We set |f |(r)= lim
|x|→r,|x|6=r

|f(x)|.
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Lemma 1. For every r ∈]0, R[, the mapping | . |(r) is an ultrametric multiplicative norm on
M(d(0, R−)).

The following Lemma 2 is the p-adic Schwarz formula:

Lemma 2. Let f ∈ A(K) (resp. f ∈ A(d(0, R−))) and let r′, r′′ ∈]0,+∞[ (resp. let r′, r′′ ∈]0, R[)
satisfy r′ < r′′. Then log(|f |(r′′))− log(|f |(r′)) = Z(r′′, f)− Z(r′, f).

Lemma 3. Let f ∈ M(K) (resp. f ∈ M(d(0, R−))). Suppose that there exists a ∈ K and
a sequence of intervals In = [un, vn] such that un < vn < un+1, limn→+∞ un = +∞ (resp.

limn→+∞ un = R) and lim
n→+∞

(
inf
r∈In

qT (r, f)− Z(r, f − a) = +∞. Set L =
+∞⋃
n=0

In. Let b ∈ K,

b 6= a. Then Z(r, f − b) = T (r, f) +O(1) ∀r ∈ L.

Proof: We know that the Nevanlinna functions of a meromorphic function f are the same in K
and in an algebraically closed complete extension of K whose absolute value extends that of K.
Consequently, without loss of generality, we can suppose that K is spherically complete because
we know that such a field does admit a spherically complete algeberaically closed extension whose
absolute value expands that of K. If f belongs to M(K), we can obviously set it in the form
g

h
where g, h belong to A(K) and have no common zero. Next, since K is supposed to be

spherically complete, if f belongs to M(d(0, R−)) we can also set it in the form
g

h
where g, h

belong to A(d(0, R−)) and have no common zero [8], [10]. Consequently, we have T (r, f) =
max(Z(r, g), Z(r, h)).

By hypothesis we have lim
n→+∞

(
inf
r∈In

T (r, f)− Z(r, f − a)
)

= +∞ i.e.

lim
n→+∞

(
inf
r∈In

T (r, f)− Z(r, f − a)
)

= +∞ i.e.

lim
n→+∞

(
inf
r∈In

max(Z(r, g), Z(r, h))− Z(r, g − ah)
)

= +∞.

Set Bn = infr∈In max(Z(r, g), Z(r, h)) − Z(r, g − ah)). Since the sequence Bn tends to +∞,

clearly, by Lemma 2, the sequence (Dn) defined as Dn = sup
r∈In

( |g − ah|(r)
max(|g|(r), |h|(r))

)
tends to zero.

Therefore, by Lemma 1 we have |g|(r) = |ah|(r) in In when n is big enough. Consequently,
by Lemma 2 we have Z(r, g) = Z(r, ah) + O(1) ∀r ∈ L and hence T (r, f) = Z(r, h) + O(1) =
Z(r, g) +O(1) ∀r ∈ L.

Now, consider g − bh = g − ah+ (a− b)h. By hypothesis we have

lim
n→+∞

(
inf
r∈In

Z(r, h)− Z(r, g − ah)
)

= +∞.

On the other hand, of course Z(r, (a− b)h) = Z(r, h) +O(1). Consequently, since
Z(r, g − bh) = Z(r, g − ah+ (a− b)h) we have lim

n→+∞

(
inf
r∈In

(Z(r, (a− b)h)− Z(r, g − ah)
)

= +∞.

Consider now the sequence (En) defined as En = sup
r∈In

( |g − ah|(r)
|(a− b)h|(r)

)
. By Lemma 2, that

sequence tends to zero and hence, when r is big enough in L, by Lemma 1 we have |g − bh|(r) =
|a−bh|(r). Consequently, when r is big enough in L we have Z(r, g−bh) = Z(r, bh) = Z(r, h)+O(1).
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Moreover, we have seen that Z(r, g) = Z(r, h) + O(1) in L, hence max(Z(r, g), Z(r, h)) = Z(, g −
bh) +O(1) = max(Z(r, g − bh), Z(r, h) +O(1) i.e. T (r, f) = T (r, f − b) +O(1) in L.

The second Main Theorem is well known in complex and p-adic analysis and is recalled below.
But first, we can give here a new theorem of that kind which will be efficient in Theorem 3, 4, 5.

Theorem N3: Let f ∈ M(K) (resp. f ∈ M(d(0, R−))) and let a1, ..., aq ∈ K be distinct. Then
(q − 1)T (r, f) ≤

∑q
j=1 Z(r, f − aj) +O(1).

Proof: Suppose the theorem is wrong. There exists f ∈ M(K) (resp. f ∈ M(d(0, R−))) and
a1, ..., aq such that (q − 1)T (r, f) −

∑q
j=1 Z(r, f − aj) admits no superior bound in ]0,+∞[. So,

there exists a sequence of intervals Js = [ws, ys] such that ws < ys < ws+1, lims→+∞ ws = +∞
(resp. lims→+∞ ws = R) and

lim
s→+∞

(
inf
r∈Js

(q − 1)T (r, f)−
q∑
j=1

Z(r, f − aj)
)

= +∞. (1)

Let M =
∞⋃
s=0

Js. For each j = 1, ..., q, we have Z(r, f − ai) ≤ T (r, f) + O(1) in R+ and hence (1)

implies that there exists an index t and a sequence of intervals In = [un, vn] included in M , such
that un < vn < un+1, limn→+∞ un = +∞ (resp. limn→+∞ un = R) and

lim
n→+∞

(
inf
r∈In

(T (r, f)− Z(r, f − at))
)

= +∞. (2)

Let L =
∞⋃
n=1

In. Then by Lemma 3, in L we have Z(r, g − akh) = T (rf) +O(1) ∀k 6= t. Therefore∑q
j=1 Z(r, f −aj) ≥ (q− 1)T (r, f) +O(1) in L, a contradiction to (1). Consequently, the Theorem

is not wrong.

Remark 4. Theorem N3 is trivial for analytic functions since by definition, for a function f ∈
A(K) or A(d(0, R−)) we have T (r, f) = Z(r, f). On the other hand, the theorem does not apply
to meromorphic functions in C. Indeed, consider a meromorphic function f on C omitting two
values a and b. We have Z(r, f − a) + Z(r, f − b) = 0.

In the proof of Theorems 2- 6 will need the following Lemmas:

Lemma 4. Let Q ∈ K[x] (resp. Q ∈ K[X], resp. Q ∈ C[x]) be of degree n and let f ∈ M(K),
(resp. f ∈ M(d(0, R−)), resp. f ∈ M(C)) be transcendental. Then N(r, f ′) = N(r, f) +
N(r, f), Z(r, f ′) ≤ Z(r, f)+N(r, f)+O(1), nT (r, f) ≤ T (r, f ′Q(f)) ≤ (n+2)T (r, f)− log r+O(1)
(resp. nT (r, f) ≤ T (r, f ′Q(f)) ≤ (n+ 2)T (r, f) +O(1), resp. nT (r, f) ≤ T (r, f ′Q(f)) +m(r, 1

f ′ ) ≤
(n+ 2)T (r, f) + Sf (r)).

Particularly, if f ∈ A(K), (resp. f ∈ A(d(0, R−))), then nT (r, f) ≤ T (r, f ′Q(f)) ≤ (n +
1)T (r, f)− log r +O(1) (resp. nT (r, f) ≤ T (r, f ′Q(f)) ≤ (n+ 1)T (r, f) +O(1))

Let us recall the following corollary of the Nevanlinna Second Main Theorem on three small
function:
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Lemma 5. Let Q(X) ∈ K[X] and let f, g ∈ A(K) (resp. let f, g ∈ Au(d(0, R−))) be such that
Q(f)−Q(g) is bounded. Then f = g.

Proof: The polynomial Q(X) − Q(Y ) factorizes in the form (X − Y )F (X,Y ) with F (X,Y ) ∈
K[X,Y ]. Since Q(f) − Q(g) is bounded, so are both factors because the semi-norm | . |(r) is
multiplicative on A(K) (resp. on Au(d(0, R−))) Consequently, f − g is a constant c (resp. is a
bounded function u ∈ Ab(d(0, R−))). Therefore F (f, g) = F (f, f+c) (resp. F (f, g) = F (f ; f+u)).
Let n = deg(Q). Then we can check that F (X,X + c) is a polynomial in X of degree n − 1.
Consequently, if f ∈ (K), F (f, f + c) is a non-constant entire function and therefore is unbounded
in K. Similarly,f ∈ (d(0, R−)), F (X,X + u) is a polynomial in X of degree n− 1 with coefficients
in A(d(0, R−)) and therefore F (f, f + u) is unbounded in d(0, R−), which ends the proof.

Proof of Theorem 1. Without loss of genearlity, we may assume that b = 1. Put F =

f ′
l∏

j=1

(f − aj)kj and G = g′
l∏

j=1

(g − aj)kj . Since f, g ∈ A(K) and since F and G share α C.M.,

then
F − α
G− α

is a meromorphic function having no zeros and no poles in K (resp. in d(0, R−)) ,

hence it is a constant u in K \ {0} (resp. it is an invertible function u ∈ A(d(0, R−))).
Suppose u 6= 1. Then,

F = uG+ α(1− c). (1)

Let r > 0. Since α(1− u) ∈ Af (K) (resp. α(1− u) ∈ Af (d(0, R))), α(1− u) obviously belongs
to AF (K) (resp. to AF (d(0, R−))). So, applying Theorem N2 to F , we obtain

T (r, F ) ≤ Z(r, F ) + Z
(
r, F − α(1− c)

)
+ SF (r) = Z(r, F ) + Z(G) + SF (r)

=
l∑

j=1

Z
(
r, (f − aj)k

)
+ Z(r, f ′) +

l∑
j=1

Z
(
r, (g − aj)k

)
+ Z(r, g′) + Sf (r)

≤ l(T (r, f) + T (r, g)) + Z(r, f ′) + Z(r, g′) + Sf (r).

We also notice that if f, g ∈ A(K) and if α ∈ K, we have
T (r, F ) ≤ Z(r, F ) + Z

(
r, F − α(1− c)

)
− log r +O(1) and therefore we obtain

T (r, F ) ≤ l(T (r, f) + T (r, g)) + Z(r, f ′) + Z(r, g′)− log r +O(1).

Now, let us go back to the general case. Since f is entire, by Lemma 4 we have
T (r, F ) = (

∑l
j=1 kj)T (r, f) + Z(r, f ′) +O(1). Consequently,

(
∑l
j=1 kj)T (r, f) ≤ l(T (r, f) + T (r, g)) + Z(r, g′) + Sf (r).

Similarly, (
∑l
j=1 kj)T (r, g) ≤ l(T (r, g) + T (r, g)) + Z(r, f ′) + Sf (r). Therefore

(
l∑

j=1

kj)(T (r, f) + T (r, g)) ≤ 2l(T (r, f) + T (r, g)) + Z(r, f ′) + Z(r, g′) + Sf (r)

≤ (2l + 1)(T (r, f) + T (r, g)) + Sf (r).
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So,
l∑

j=1

kj ≤ 2l + 1. Thus, since
l∑

j=1

kj > 2l + 1 we have u = 1.

And if α ∈ K, we obtain

l∑
j=1

)kj(T (r, f) + T (r, g)) ≤ 2l(T (r, f) + T (r, g)) + Z(r, f ′) + Z(r, g′) + Sf (r)

≤ (2l + 1)(T (r, f) + T (r, g))− 3 log r +O(1)

because T (r, f ′) ≤ T (r, f)− log r + O(1), hence
l∑

j=1

kj ≤ 2l which also contradicts the hypothesis

c 6= 1 whenever
l∑

j=1

kj > 2l

Consquently, in the general case, whenever
l∑

j=1

kj > 2l + 1, we have u = 1 and therefore

f ′P ′(f) = g′P ′(g) hence P (f)−P (g) is a constant D. But then by Lemma 5 , we have P (f) = P (g).
And since P is a polynomial of uniqueness for A(K) (resp. for A(d(0, R−))), we can conclude f = g.

Similarly, if f, g ∈ A(K) and if α is a non-zero constant, we have have u = 1 whenever
l∑

j=1

kj > 2l

and we conclude in the same way. �

On K, we have this theorem from results of [4]:

Theorem A: Let P, Q ∈ K[x] satisfy one of the following two statements:∑
ai∈F ′

ki ≥ s−m+ 2 (resp.
∑
ai∈∆

ki ≥ s−m+ 3,)∑
bj∈F ′′

qj ≥ 2 (resp.
∑
bi∈Λ

qj ≥ 3,)

If two meromorphic functions f, g ∈ M(K) (resp. f, g ∈ M(d(a,R−)))) satisfy P (f(x)) =
Q(g(x)), x ∈ K, (resp. x ∈ d(a,R−)) then both f and g are constant (resp. belong toMb(d(a,R−)))).

and on C, we have this theorem from results of [3]:.

Theorem B: Let P, Q ∈ C[X] satisfy one of the two following two conditions:∑
ai∈F ′

kj ≥ s−m+ 3,∑
bj∈F ′′

qi ≥ 3,

and if the polynomial P (X)−Q(Y ) has no factor of degree 1, then there is no non-constant function
f, g ∈M(C) such that P (f(x))−Q(g(x)) = 0 ∀x ∈ C.

From Theorem B we can derive the following Theorem C:

Theorem C: Let P, Q ∈ C[X] satisfy one of the two following conditions:∑
ai∈F ′

ki ≥ s−m+ 3.
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∑
bj∈F ′′

qj ≥ 3.

Then there is no non-constant function f, g ∈M(C) such that P (f(x))−Q(g(x)) = 0 ∀x ∈ C.

Proof of Theorem C: Let F (X,Y ) = P (X)−Q(Y ). Since C is algebraically isomorphic to an
ultrametric field such as Cp (with p any prime integer), without loss of generality we can transfer
the problem onto the field Cp. So, the image of the polynomial F in Cp[X,Y ] is a polynomial
F̃ (X,Y ).

Thus, the hypothesis
∑
ai∈F ′

ki ≥ s−m+ 3 still holds in Cp and similarly, for the hypothesis∑
bj∈F ′′

qj ≥ 3. Suppose for instance
∑
ai∈F ′

ki ≥ s−m+ 3. By Theorem B, there is no pair of non-

constant functions f, g ∈M(Cp) such that P (f(x))−Q(g(x)) = 0. Particularly, F̃ (X,Y ) admits
no factor of degree 1 in Cp[X,Y ]. But then, F (X,Y ) does not admit a factor of degree 1 in C[X,Y ]
either, because the factorization is conserved by a transfer. Now, we can apply Theorem B proving
that when two functions f, g ∈M(C) satisfy P (f(x)) = Q(g(x)) ∀x ∈ C, then they are constant.

Proof of Proposition P1: Suppose that two functions f, g ∈M(K) (resp. f, g ∈M(d(a,R−)))
satisfy P (f(x)) = P (g(x)) +C (C ∈ K), ∀x ∈ K (resp. ∀x ∈ d(a,R−)). We can apply Theorem A
by putting Q(X) = P (X) + C. So, we have h = l and bi = ai, i = 1, ..., l. Let Γ be the curve of
equation P (X)−P (Y ) = C. By hypothesis we have n ≥ 2, hence deg(P ) ≥ 3, so Γ is of degree ≥ 3.
Therefore, if Γ has no singular point, it is of genus ≥ 1 and hence, by Picard-Berkovich Theorem,
the conclusion is immediate. Consequently, we can assume that Γ has a singular point (α, β). But
then P ′(α) = P ′(β) = 0 and hence (α, β) is of the form (ah, ak). Consequently, C = P (ah)−P (ak)
and since C 6= 0, we have h 6= k. We will prove that either a1 ∈ F ′, or a1 ∈ F ′′.

Suppose first that a1 /∈ F ′ ∪ F ′′. Since a1 /∈ F ′, there exists i ∈ {2, ..., l} such that P (a1) =
P (ai) + C. Now since 1 /∈ F ′′, there exists j ∈ {2, ..., l} such that P (a1) + C = P (ai). But since
C = −P (ai), we have P (aj) = −P (ai), therefore P (ai) + P (aj) = 0. Since P satisfies (G), we
have i = j, hence P (ai) = 0. But then C = 0, a contradiction. Therefore, we have proven that
a1 ∈ F ′ ∪F ′′. Now, by Theorem A, f and g are constant (resp. f and g belong toMb(d(a,R−))).

Proof of Proposition P2: Suppose that two functions f, g ∈ M(C) satisfy P (f(x)) =
P (g(x)) + C (C ∈ C), ∀x ∈ C. We will apply Theorem C by putting Q(X) = P (X) + C. Since
n ≥ 3, we have deg(P ) ≥ 4 and hence Γ is of degree ≥ 4. Consequently, if Γ has no singular point,
it has genus ≥ 2 and hence, by Picard’s Theorem, there exists no functions f, g ∈ M(C) such
that P (f(x)) = P (g(x)) +C, x ∈ C. Consequently, we can assume that Γ admits a singular point
(ah, ak). The proof is then similar to that of Prposition 1.
Notation: Let f ∈M(C) be such that f(0) 6= 0,∞. We denote by Z[2](r, f) the counting function
of the zeros of f each being counted with multiplicity when it is at most 2 and with multiplicity 2
when it is bigger.

The following basic lemma applies to both complex and meromorphic functions. A proof is
given in [5] for p-adic meromorphic functions and in [6] for complex meromorphic functions.

The following Theorem Y is indispensable in the proof of theorems:

Theorem Y: Let P (x) = (x − a1)n
∏l
i=2(x − ai)ki ∈ E[x] (ai 6= aj , ∀i 6= j) with l ≥ 2

and n ≥ max{k2, .., kl} and let k =
∑l
i=2 ki. Let f, g ∈ M(E) be transcendental (resp. let

f, g ∈ M(d(a,R−))) and let θ = P (f)f ′P (g)g′. If θ belongs to Mf (E) ∩ Mg(E), (resp. if θ
belongs to Mf (d(a,R−)) ∩Mg(d(a,R−))) then we have the following :
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if l = 2 then n belongs to {k, k + 1, 2k, 2k + 1, 3k + 1},
if l = 3 then n belongs to {k2 , k + 1, 2k + 1, 3k2 − k, 3k3 − k},
if l ≥ 4 then n = k + 1.
Moreover, if f, g belong to M(K) and if θ is a constant, then n = k + 1.
Further, if f, g belong to A(E), then θ does not belong to Af (E).

Lemma 6. Let f ∈M(K), (resp. f ∈M(d′0, R−)), resp.f ∈M(C)). Then

T (r, f)− Z(r, f) ≤ T (r, f ′)− Z(r, f ′) +O(1).

Now, wee can extract the following Lemma 7 from a result that is proven in several papers and
particularly in Lemma 3 [14] when E = C and, with precisions in Lemma 11 [5] when E = K.

Lemma 7. Let f, g ∈M(C) (resp. f, g ∈M(K)) share the value 1 CM. If Ψf,g is not identically
zero, then, max(T (r, f), T (r, g)) ≤ N[2](r, f) + Z[2](r, f) + N[2](r, g) + Z[2](r, g) + Sf (r) + Sg(r)
(resp. max(T (r, f), T (r, g)) ≤ N[2](r, f) + Z[2](r, f) +N[2](r, g) + Z[2](r, g)− 6 log r).

We will need the following Lemma 8:

Lemma 8. Let f, g ∈ M(K) be transcendental (resp. f, g ∈ Mu(d(0, R−)), resp.f, g ∈ M(C)).
Let P (x) = xn+1Q(x) be a polynomial such that n ≥ deg(Q) + 2 (resp. n ≥ deg(Q) + 3, resp.
n ≥ deg(Q) + 3). If P ′(f)f ′ = P ′(g)g′ then P (f) = P (g).

For simplicity, we can assume a1 = 0. Set F =
f ′P ′(f)

α
and G =

g′P ′(g)
α

. Clearly F and G

share the value 1 C.M. Since f, g are transcendental, we notice that so are F and G. We put

ΨF,G =
F ′′

F ′
− 2F ′

F − 1
− G′′

G′
+

2G′

G− 1

We will prove that under the hypotheses of Theorems, ΨF,G is identically zero.

The following lemma holds in the same way in p-adic analysis and in complex analysis. It is
proven in [5] for the p-adic version and in [21] for the complex version. :

Lemma 9. Let f, g ∈M(E) (resp. let f, g ∈M(d(0, R−)) be non-constant and sharing the value
1 C.M. Suppose that Ψf,g = 0 and that

lim sup
r→+∞

(
Z(r, f) + Z(r, g) +N(r, f) +N(r, g)

max(T (r, f), T (r, g))

)
< 1

(resp.

lim sup
r→R−

(
Z(r, f) + Z(r, g) +N(r, f) +N(r, g)

max(T (r, f), T (r, g))

)
< 1.)

Then either f = g or fg = 1.
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Proofs of Theorem 2, 3, 4, 5, 6, 7

For simplicity, now we set n = k1. Set F =
f ′P ′(f)

α
, G =

g′P ′(g)
α

and F̂ = P (f), Ĝ = P (g).

Suppose F 6= G. We notice that P (x) is of the form xn+1Q(x) with Q ∈ K[x] of degree k. Now,
with help of Lemma 6, we can check that we have

T (r, F̂ )− Z(r, F̂ ) ≤ T (r, F̂ ′)− Z(r, F̂ ′) +O(1)

Consequently, since (F̂ )′ = αF , we have

T (r, F̂ ) ≤ T (r, F ) + Z(r, F̂ )− Z(r, F ) + T (r, α) +O(1), (1)

hence, by (1), we obtain

T (r, F̂ ) ≤ T (r, F )+(n+1)Z(r, f)+Z
(
r,Q(f)

)
−nZ(r, f)−

l∑
i=2

kiZ(r, f−ai)−Z(r, f ′)+T (r, α)+O(1).

i.e.

T (r, F̂ ) ≤ T (r, F ) + Z(r, f) + Z
(
r,Q(f)

)
−

l∑
i=2

kiZ(r, f − ai)− Z(r, f ′) + T (r, α) +O(1). (2)

and similarly,

T (r, Ĝ) ≤ T (r,G) + Z(r, g) + Z
(
r,Q(g)

)
−

l∑
i=2

kiZ(r, g − ai)− Z(r, g′) + T (r, α) +O(1). (3)

Now, it follows from the definition of F and G that

Z[2](r, F ) +N[2](r, F ) ≤ 2Z(r, f) + 2
l∑
i=2

Z(r, f − ai) + Z(r, f ′) + 2N(r, f) + T (r, α) +O(1) (4)

and similarly

Z[2](r,G) +N[2](r,G) ≤ 2Z(r, g) + 2
l∑
i=2

Z(r, g − ai) + Z(r, g′) + 2N(r, g) + T (r, α) +O(1) (5)

And particularly, if ki = 1, ∀i ∈ {2, .., l}, then

Z[2](r, F ) +N[2](r, F ) ≤ 2Z(r, f) +
l∑
i=2

Z(r, f − ai) + Z(r, f ′) + 2N(r, f) + T (r, α) +O(1) (6)

and similarly

Z[2](r,G) +N[2](r,G) ≤ 2Z(r, g) +
l∑
i=2

Z(r, g − ai) + Z(r, g′) + 2N(r, g) + T (r, α) +O(1). (7)

Suppose now that ΨF,G is not identically zero.
Let us place us in the p-adic context: E = K. By Lemma 7, we have
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T (r, F ) ≤ Z[2](r, F ) +N[2](r, F ) + Z[2](r,G) +N[2](r,G)− 3 log r

hence by (2), we obtain

T (r, F̂ ) ≤ Z[2](r, F ) +N[2](r, F ) + Z[2](r,G) +N[2](r,G) + Z(r, f) + Z(r,Q(f))

−
l∑
i=2

kiZ(r, f − ai)− Z(r, f ′) + T (r, α)− 3 log r +O(1)

and hence by (4) and (5):

T (r, F̂ ) ≤ 2Z(r, f)+2
l∑
i=2

Z(r, f−ai)+Z(r, f ′)+2N(r, f)+2Z(r, g)+2
l∑
i=2

Z(r, g−ai)+Z(r, g′)+

2N(r, g) + Z(r, f) + Z(r,Q(f))−
l∑
i=2

kiZ(r, f − ai)− Z(r, f ′) + 2T (r, α)− 3 log r +O(1) (8)

and similarly,

T (r, Ĝ) ≤ 2Z(r, g)+2
l∑
i=2

Z(r, g−ai)+Z(r, g′)+2N(r, g)+2Z(r, f)+2
l∑
i=2

Z(r, f−ai)+Z(r, f ′)+2N(r, f)

+Z(r, g) + Z(r,Q(g))−
l∑
i=2

kiZ(r, g − ai)− Z(r, g′) + 2T (r, α)− 3 log r +O(1). (9)

Consequently,

T (r, F̂ )+T (r, Ĝ) ≤ 5(Z(r, f)+Z(r, g))+
l∑
i=2

(4−ki)(Z(r, f−ai)+Z(r, g−ai))+(Z(r, f ′)+Z(r, g′))+

4(N(r, f) +N(r, g)) + (Z(r,Q(f)) + Z(r,Q(g))) + 4T (r, α)− 6 log r +O(1). (10)

Moreover, if ki = 1, ∀i ∈ {2, .., l}, then by (6) and (7) we have

T (r, F̂ ) ≤ 2Z(r, f) +
l∑
i=2

Z(r, f − ai) + Z(r, f ′) + 2N(r, f) + 2Z(r, g) +
l∑
i=2

Z(r, g − ai)+

Z(r, g′) + 2N(r, g) + Z(r, f) + Z(r,Q(f))−
l∑
i=2

Z(r, f − ai)− Z(r, f ′) + 2T (r, α)− 3 log r +O(1)

and similarly,

T (r, Ĝ) ≤ 2Z(r, g) +
l∑
i=2

Z(r, g − ai) + Z(r, g′) + 2N(r, g) + 2Z(r, f) +
l∑
i=2

Z(r, f − ai)+
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Z(r, f ′) + 2N(r, f) + Z(r, g) + Z(r,Q(g)))−
l∑
i=2

Z(r, g − ai)− Z(r, g′) + 2T (r, α)− 3 log r +O(1).

Consequently,

T (r, F̂ )+T (r, Ĝ) ≤ 5(Z(r, f)+Z(r, g))+
l∑
i=2

(Z(r, f−ai)+Z(r, g−ai))+Z(r,Q(f))+Z(r,Q(g))+

(Z(r, f ′) + Z(r, g′)) + 4(N(r, f) +N(r, g)) + 4T (r, α)− 6 log r +O(1) (11)

Now, let us go back to the general case. By Lemma 4 we can write Z(r, f ′) + Z(r, g′) ≤
Z(r, f − a2) + Z(r, g − a2) +N(r, f) +N(r, g)− 2 log r. Hence, in general, by (10) we obtain

T (r, F̂ ) + T (r, Ĝ) ≤

5(Z(r, f)+Z(r, g))+
l∑
i=3

(4−ki)
(
(Z(r, f−ai)+Z(r, g−ai))

)
+(5−k2)

(
(Z(r, f−a2)+Z(r, g−a2))

+5(N(r, f) +N(r, g)) + (Z(r,Q(f)) + Z(r,Q(g))) + 4T (r, α)− 8 log r +O(1)

and hence, since T (r,Q(f)) = kT (r, f) +O(1) and T (r,Q(g)) = kT (r, g) +O(1),

T (r, F̂ ) + T (r, Ĝ) ≤

5(T (r, f)+T (r, g))+
l∑
i=3

(4−ki)
(
(Z(r, f−ai)+Z(r, g−ai))

)
+(5−k2)

(
(Z(r, f−a2)+Z(r, g−a2))

+5(N(r, f) +N(r, g)) + k(T (r, f) + T (r, g)) + 4T (r, α)− 8 log r +O(1). (12)

Since F̂ is a polynomial in f of degree n+ k + 1, we have T (r, F̂ ) = (n+ k + 1)T (r, f) +O(1)
and similarly, T (r, Ĝ) = (n+ k + 1)T (r, g) +O(1), hence by (12) we can derive

(n+ k + 1)(T (r, f) + T (r, g)) ≤

5(T (r, f) +T (r, g)) + (5−k2)(Z(r, f −a2) +Z(r, g−a2)) +
l∑
i=3

(4−ki)
(
(Z(r, f −ai) +Z(r, g−ai))

)
+5(N(r, f) +N(r, g)) + k(T (r, f) + T (r, g)) + 4T (r, α)− 8 log r +O(1). (13)

hence

(n+ k + 1)(Tr, f) + T (r, g)) ≤

10(T (r, f)+T (r, g))+
l∑
i=3

(4−ki)
(
(Z(r, f−ai)+Z(r, g−ai))

)
+(5−k2)

(
(Z(r, f−a2)+Z(r, g−a2))

+k(T (r, f) + T (r, g)) + 4T (r, α)− 8 log r +O(1))

hence

n(Tr, f) + T (r, g)) ≤ 9(T (r, f) + T (r, g)) + (5− k2)
(
(Z(r, f − a2) + Z(r, g − a2))
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(14) +
l∑
i=3

(4− ki)
(
(Z(r, f − ai) + Z(r, g − ai))

)
+ 4T (r, α)− 8 log r +O(1))

Then (5−k2)(Z(r, f−a2)+Z(r, g−a2)) ≤ max(0, 5−k2)(T (r, f)+T (r, g))+O(1) and at least, for
each i = 3, .., l we have (4−ki)(Z(r, f−ai)+Z(r, g−ai)) ≤ max(0, 4−ki)(T (r, f)+T (r, g))+O(1).

Now suppose s5 > 0. That means that ki ≥ 5 ∀i = 3, ..., u5 with l ≥ 5. We notice that the
number of indicies i superior or equal to 2 such that ki ≥ 5 is u5 − 2. Similarly, for each m > 5,
the number of indicies superior or equal to 1 such that ki >≥ m is um − 1.

Suppose first E = K. then we can apply Theorem N3 and then we obtain
∑u5
i=3 Z(r, f − ai) ≥

(u5−3)T (r, f)− log r+O(1) and for each m ≥ 6,
∑um
i=3 Z(r, g−ai) ≥ (um−2)T (r, g)− log r+O(1),

i.e.
∑u5
i=3 Z(r, f − ai) ≥ s5T (r, f)− log r +O(1) i.e.

∑um
i=3 Z(r, g − ai) ≥ smT (r, g)− log r +O(1)

in Theorems 2, 3 ,5.

Consequently, by (14) we obtain

n(Tr, f) + T (r, g)) ≤ 9(T (r, f) + T (r, g)) + max(0, 5− k2)(Z(r, f − a2) + Z(r, g − a2))

(15)

+
l∑
i=3

max(0, 4−ki)
(
Z(r, f−ai)+Z(r, g−ai)

)
−
∞∑
m=5

sm(T (r, f)+T (r, g))+4T (r, α)−8 log r+O(1))

therefore

n ≤ 9 + max(5− k2) +
l∑
i=3

max(0, 4− ki)−
∞∑
j=5

sj ,

a contradiction to the hypotheses of Theorems 2.
Consider now the situation in Theorems 4 and 5. In Theorem 4, we have T (r, α) ≤ log r+O(1)

and in Theorem 5, T (r, α) = 0. Consequently, Relation (15) now implies

n(Tr, f) + T (r, g)) ≤ 9(T (r, f) + T (r, g)) + max(0, 5− k2)(Z(r, f − a2) + Z(r, g − a2))

+
l∑
i=3

max(0, 4− ki)
(
Z(r, f − ai) + Z(r, g − ai)

)
−
∞∑
m=5

sm(T (r, f) + T (r, g))− 4 log r +O(1))

therefore

n < 9 + max(0, 5− k2) +
l∑
i=3

max(0, 4− ki)−
∞∑
m=5

sm

but this is uncompatible with the hypothesis

n ≥ 9 + max(5− k2) +
l∑
i=3

max(0, 4− ki)−min(2l,
∞∑
j=5

sj).

Now, let us consider the complex context: E = C. All inequalities above hold just by replacing
each expression −q log r by Sf (r) + Sg(r). However, we cannot apply Theorem N3 here but only
Theorem N1. Therefore we obtain

u5∑
i=3

(Z(r, f − ai) + Z(r, g − ai) ≥ (u5 − 4)(T (r, f) + T (r, g)) = t5(T (r, f) + T (r, g))
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and

Um∑
i=3

(Z(r, f − ai) + Z(r, g − ai) ≥ (um − 3)(T (r, f) + T (r, g)) = tm(T (r, f) + T (r, g)).

Therefore we obtain

n ≤ 9 + max(5− k2) +
l∑
i=3

max(0, 4− ki)−
∞∑
m=5

tm

a contradiction to the hypothesis of Theorem 3.

Finally, consider the situation in Theorem 6. Since N(r, f) = N(r, g) = 0, Relation (13) gets

(n+ k + 1)(T (r, f) + T (r, g)) ≤ 5(T (r, f) + T (r, g)) + (5− k2)(Z(r, f − a2) + Z(r, g − a2))

+
l∑
i=3

(4− ki)
(
(Z(r, f − ai) + Z(r, g − ai))

)
+ k(T (r, f) + T (r, g)) + 4T (r, α) + Sf (r) + Sg(r).)

On the other hand, by applying Theorem N1 to f and g, which now are entire functions, we
have

u5∑
i=3

Z(r, f − ai) ≥ (u5 − 3)T (r, f) = s5T (r, f),
u5∑
i=3

Z(r, g − ai) ≥ (u5 − 3)T (r, g) = s5T (r, g)

and
um∑
i=3

Z(r, f − ai) ≥ (um − 2)T (r, f) = smT (r, f)
um∑
i=3

Z(r, g − ai) ≥ (um − 2)T (r, g) = smT (r, g).

Consequently, n+ k+ 1 ≤ 5 + k+ max(0, 5− k2) +
∑l
i=3 max(0, 4− ki)−

∑∞
m=1 sm and therefore

n ≤ 4 + max(0, 5 − k2) +
∑l
i=3 max(0, 4 − ki) −

∑∞
m=1 sm, a contradiction to the hypotheses

of Theorem 6. Thus, in the hypotheses of Theorems 2, 3, 4, 5, 6 we have proven that ΨF,G is

identically zero. Henceforth, we can assume that ΨF,G = 0 in each theorem. Note that we can

write ΨF,G =
φ′

φ
with φ =

( F ′

(F − 1)2

)( (G− 1)2

G′

)
. Since ΨF,G = 0, there exist A,B ∈ E such

that

(16)
1

G− 1
=

A

F − 1
+B

and A 6= 0.
We notice that Z(r, f) ≤ T (r, f),

N(r, f) ≤ T (r, f)Z(r, f − ai) ≤ T (r, f − ai) ≤ T (r, f) +O(1), i = 2, ..., l

and Z(r, f ′) ≤ T (r, f ′) ≤ 2T (r, f) +O(1). Similarly for g and g′. Moreover, if E = K by Lemma 4
we have
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(17) T (r, F ) ≥ (n+ k)T (r, f).

and if E = C, we have

(18) T (r, F ) ≥ (n+ k)T (r, f)−m(r,
1
f ′

) + Sf (r).

We will show that F = G in each therorem. We first notice that according to all hypotheses in
Theorems 2, 3, 4, 5, 6 we have

(19) n+ k ≥ 2l + 7

and in Theorem 6, we have

(20) n+ k ≥ 2l + 5.

We will consider the following two cases: B = 0 and B 6= 0.

Case 1: B = 0.
Suppose A 6= 1. Then, by (16), we have F = AG + (1 − A). Suppose first E = K. Applying

Theorem N1 to F , we obtain

T (r, F ) ≤ Z(r, F ) + Z
(
r, F −

(
1−A

))
+N(r, F )− log r +O(1) ≤ Z(r, f) +

l∑
i=2

Z(r, f − ai)

(21) +Z(r, f ′) + Z(r, g) +
l∑
i=2

Z(r, g − ai) + Z(r, g′) +N(r, f)− log r +O(1).

By (17) and (21) we obtain

(n+ k)T (r, f) ≤ Z(r, F ) + Z
(
r, F −

(
1−A

))
+N(r, F ) +− log r +O(1)

(22) ≤ Z(r, f)+
l∑
i=2

Z(r, f−ai)+Z(r, f ′)+Z(r, g)+
l∑
i=2

Z(r, g−ai)+Z(r, g′)+N(r, f)−log r+O(1).

By (22) we have

(n+ k)T (r, f) ≤ Z(r, F ) +Z
(
r, F −

(
1−A

))
+N(r, F )− log r+O(1) ≤ Z(r, f) +

l∑
i=2

Z(r, f − ai)

+Z(r, f ′) + Z(r, g) +
l∑
i=2

Z(r, g − ai) + Z(r, g′) +N(r, f)− log r +O(1)).

hence

(n+ k)T (r, f) ≤ Z(r, f) +
l∑
i=2

Z(r, f − ai) + Z(r, g) +
l∑
i=2

Z(r, g − ai)
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(23) +N(r, f) + Z(r, g′) + Z(r, f ′)− log r +O(1).

Then, considering all the previous inequalities, by Lemma 4 we can derive the following from (23):

(24) (n+ k)T (r, f) ≤ (l + 3)T (r, f) + (l + 2)T (r, g)− 3 log r +O(1).

Since f and g satisfy the same hypothesis, we also have

(25) (n+ k)T (r, g) ≤ (l + 3)T (r, g) + (l + 2)T (r, f)− 3 log r +O(1).

Hence, adding (24) and (25), we have

(n+ k)
[
T (r, f) + T (r, g)

]
≤ (2l + 5)

[
T (r, f) + T (r, g)

]
− 6 log r +O(1)

therefore

(26) n+ k < 2l + 5.

A contradiction to (20) proving that A 6= 1 is impossible whenever B = 0, in Theorems 2, 3, 5.

Suppose now E = C. By (18) we have

(n+k)T (r, f) ≤ Z(r, F )+Z
(
r, F−

(
1−A

))
+N(r, F )+m(r,

1
f ′

)+SF (r) ≤ Z(r, f)+
l∑
i=2

Z(r, f−ai)

+Z(r, f ′) +m(r,
1
f ′

) + Z(r, g) +
l∑
i=2

Z(r, g − ai) + Z(r, g′) +N(r, f) + Sf (r) + Sg(r).

Here we notice that Z(r, f ′) +m(r, 1
f ′ ) ≤ T (r, 1

f ′ ) = T (r, f ′) +O(1), hence (n+ k)T (r, f) ≤
(27)

≤ Z(r, f)+
l∑
i=2

Z(r, f−ai)+Z(r, g)+
l∑
i=2

Z(r, g−ai)+N(r, f)+Z(r, g′)+T (r, f ′)+Sf (r)+Sg(r).

Then, considering all the previous inequalities in (27), similarly we can derive

(28) (n+ k)T (r, f) ≤ (l + 3)T (r, f) + (l + 2)T (r, g) + Sf (r) + Sg(r).

Since f and g satisfy the same hypothesis, we also have

(29) (n+ k)T (r, g) ≤ (l + 3)T (r, g) + (l + 2)T (r, f) + Sf (r) + Sg(r).

Hence, adding (28) and (29), we have

(n+ k)
[
T (r, f) + T (r, g)

]
≤ (2l + 5)

[
T (r, f) + T (r, g)

]
+ Sf (r) + Sg(r)

therefore n+ k ≤ 2l+ 5, a contradiction to (20) proving that A 6= 1 is impossible whenever B = 0,
in Theorem 3.

Consider now the situation in Theorem 6. By hypothesis we have k1 ≥ 5 + max(0, 5 − k2) +
l∑
i=3

max(0, 4− ki)−min(2l,
∞∑
m=5

sm.) hence n+ k ≥ 10 + 4(l − 2)−
∞∑
m=5

sm = 4l + 2−
∞∑
m=5

sm
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Since N(r, f) = N(r, g) = 0, we can use Theorem N1 for entire functions and we obtain

u5∑
i=3

Z(r, f − ai) ≥ (u5 − 3)T (r, f) + Sf (r) + Sg(r)

and for each m ≥ 6,

um∑
i=3

Z(r, g − ai) ≥ (um − 2)T (r, g) + Sf (r)) + Sg(r)

i.e.
u5∑
i=3

Z(r, f − ai) ≥ s5T (r, f) + Sf (r) + Sg(r)

and
um∑
i=3

Z(r, g − ai) ≥ smT (r, g) + Sf (r) + Sg(r).

Now, Relation (13) now gets

(n+ k + 1)(T (r, f) + T (r, g)) ≤ 5(T (r, f) + T (r, g)) + (5− k2)(Z(r, f − a2) + Z(r, g − a2))

+
l∑
i=3

(4− ki)
(
(Z(r, f − ai) + Z(r, g − ai))

)
+ k(T (r, f) + T (r, g)) + Sf (r) + Sg(r)

therefore n + k ≤ 9 + 4(l − 2) −
∑∞
j=5 sj = 2l + 1 −

∑∞
m=5 sm a contradiction to the hypothesis

n+ k ≥ 2l + 5 of Theorem 6. Consequently, the hypothesis A 6= 1 does not hold when B = 0.
Henceforth we suppose B 6= 0.

Case 2: B 6= 0.
Consider first the situation when E = K, i.e. in Theorems 2 and in Theorems 4 and 5. By (17)

we have Immediately,

Z(r, F ) + Z(r,G) +N(r, F ) +N(r,G) ≤ Z(r, f) +
l∑
i=2

Z(r, f − ai) + Z(r, f ′)

+Z(r, g) +
l∑
i=2

Z(r, g − ai) + Z(r, g′) +N(r, f) +N(r, g) + 4T (r, α) +O(1)

≤ (l+1)
[
T (r, f)+T (r, g)

]
+T (r, f ′)+T (r, g′)+4T (r, α)+O(1) ≤ (l+3)(T (r, f)+T (r, g))+4T (r, α)−2 log r

hence by Lemma 4,

(30) Z(r, F ) + Z(r,G) +N(r, F ) +N(r,G) ≤ (l + 3)(T (r, f) + 4T (r, α)− 2 log r +O(1))

Moreover, by (16), T (r, F ) = T (r,G) +O(1) and by Lemma 4, we have

T (r, f) ≤ 1
n+ k

(T (r, F ) + T (r, α)) +O(1)
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and T (r, g) ≤ 1
n+ k

(T (r,G) + T (r, α)) +O(1). Consequently,

T (r, f) + T (r, g) ≤ 2
[ 1
n+ k

(T (r, F ) + T (r, α))
]

+O(1).

(31) Z(r, F ) +Z(r,G) +N(r, F ) +N(r,G) ≤ 2l + 6
n+ k

T (r, F ) + (
2l + 6
n+ k

+ 4)T (r, α)− 2 log r+O(1).

Now, by Hypotheses, in Theorems 2, 3, 5 by (19) we have n + k ≥ 2l + 7. Consequently, tby
Relation (31) we obtain

(32) Z(r, F ) + Z(r,G) +N(r, F ) +N(r,G) ≤ 2l + 6
2l + 7

T (r, F ) + (
2l + 6
2l + 7

+ 4)T (r, α) +O(1).

and similary

(33) Z(r, F ) + Z(r,G) +N(r, F ) +N(r,G) ≤ 2l + 6
2l + 7

T (r,G) + (
2l + 6
2l + 7

+ 4)T (r, α) +O(1).

hence

lim sup
r→+∞

(
Z(r, F ) + Z(r,G) +N(r, F ) +N(r,G)

max(T (r, F ), T (r,G))

)
< 1

Therefore, by Lemma 9, in Theorems 2, 3, 5 we have either F = G, or FG = 1.
Suppose FG = 1. Then f ′P ′(f)g′P ′(g) = α2. But in Theorems 2, 3, 5 we have assumed that

n 6= k + 1 and if l = 2, then n 6= 2k, 2k + 1, 3k + 1 and if l = 3 then n 6= k, 3k2 − k, 3k3 − k.
Consequently, we have a contradiction to Theorem Y. Thus, the hypothesis FG = 1 is impossible
and therefore we have F = G.

Consider now the situation when E = C, i.e. in Theorems 3 and 6. The proof is very similar
to that in the case when E = K. We have

Z(r, F ) ≤ Z(r, f) +
l∑
i=2

Z(r, f − ai) + Z(r, f ′) + Sf (r)

and
N(r, F ) ≤ N(r, f) + Sf (r)

and similarly for G, so we can derive

Z(r, F ) + Z(r,G) +N(r, F ) +N(r,G) ≤ Z(r, f) +
l∑
i=2

Z(r, f − ai) + Z(r, f ′) + Z(r, g)

+
l∑
i=2

Z(r, g − ai) + Z(r, g′) +N(r, f) +N(r, g) + Sf (r) + Sg(r)

(34) ≤ (l + 2)
[
T (r, f) + T (r, g)

]
+ Sf (r) + Sg(r).

Moreover, by (16), T (r, F ) = T (r,G) +O(1) and, by Lemma 4, we have
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T (r, f) ≤ 1
n+ k

T (r, F ) + Sf (r)

and T (r, g) ≤ 1
n+ k

T (r,G) + Sg(r). Consequently,

T (r, f) + T (r, g) ≤ 2
n+ k

T (r, F ) + Sf (r) + Sg(r).

Thus, (34) implies

Z(r, F ) + Z(r,G) +N(r, F ) +N(r,G) ≤ 2l + 6
n+ k

T (r, F ) + Sf (r) + Sg(r).

Now, as in Theorems 2, 3, 5, we can check that n+ k ≥ 2l+ 7 in theorem 3. Consequently, the
previous inequality implies

Z(r, F ) + Z(r,G) +N(r, F ) +N(r,G) ≤ 2l + 6
2l + 7

T (r, F ) + Sf (r) + Sg(r)

and similarly,

Z(r, F ) + Z(r,G) +N(r, F ) +N(r,G) ≤ 2l + 6
2l + 7

T (r,G) + Sf (r) + Sg(r)

hence by Lemma 9 again, we have F = G or FG = 1. Then, by Theorem Y as in Theorems 2, 3,
5, the hypotheses of Theorem 3 prevent the case FG = 1 and therefore F = G.

Consider now the situation in Theorem 6. Relation (34) implies

(35) Z(r, F ) + Z(r,G) ≤ (l + 2)
[
T (r, f) + T (r, g)

]
+ Sf (r) + Sg(r).

Moreover, by (16), T (r, F ) = T (r,G) +O(1) and, by Lemma 4, we have

T (r, f) ≤ 1
n+ k

T (r, F ) + Sf (r) and T (r, g) ≤ 1
n+ k

T (r,G) + Sg(r). Consequently,

T (r, f) + T (r, g) ≤ 2
n+ k

T (r, F ) + Sf (r) + Sg(r).

Thus, (220) implies

Z(r, F ) + Z(r,G) ≤ Z(r, f) +
l∑
i=2

Z(r, f − ai) + Z(r, f ′) + Z(r, g)

+
l∑
i=2

Z(r, g − ai) + Z(r, g′) + Sf (r) + Sg(r)

≤ 4
[
T (r, f) + T (r, g)

]
+ Sf (r) + Sg(r).

Therefore
Z(r, F ) + Z(r,G) ≤ 2l + 4

n+ k
T (r, F ) + Sf (r) + Sg(r)
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hence by (20) we have

Z(r, F ) + Z(r,G) ≤ 2l + 4
2l + 5

T (r, F ) + Sf (r) + Sg(r).

In the same way, this proves that ether F = G of FG = 1. But by Theorem Y, FG = 1 is
impossible. Hence F = G.

Thus, in Theorems 2, 3, 4, 5, 6 we have proven that F = G i.e. f ′P ′(f) = g′P ′(g). Conse-
quently, P (f)− P (g) is a constant C. Then, by Lemma 8 and Proposition P1, in Theorems 2, 3,
5 we have P (f) = P (g) and by Lemma 8 and Proposition P2, we have P (f) = P (g) in Theorems
3 and 6. Finally, in each theorem, P is a polynomial of uniqueness for the family of functions wer
consider. Consequently, f = g.
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