p-adic differential polynomials when poles make a small function by Alain Escassut, Weiran Lü and Chung Chun Yang Notation: We denote by A(IK) the IK-algebra of entire functions in IK, by M(IK) the field of meromorphic functions in IK, i.e. the field of fractions of A(IK) and by IK(x) the field of rational functions. Throughout the paper, a is a point in IK and R is a strictly positive number and we denote by d(a, R -) the "open" disk {x ∈ IK : |x -a| < R}, by A(d(a, R -)) the IK-algebra of analytic functions in d(a, R -) i.e. the IK-algebra of power series 

b (d(a, R -)) the field of fractions of A b (d(a, R -)). Finally, we denote by A u (d(a, R -)) the set of unbounded analytic functions in d(a, R -), i.e. A(d(a, R -)) \ A b (d(a, R -)). Similarly, we set M u (d(a, R -)) = M(d(a, R -)) \ M b (d(a, R -)).
Let log be a real logarithm function of base b > 1 and we set log + (x) = max(0, log(x)). Let f ∈ M(IK) resp. f ∈ M(d(0, R -)) having no zero and no pole at 0. Let r ∈]0, +∞[ resp. r ∈]0, R[ and let γ ∈ d(0, r). If f has a zero of order n at γ, we put ω γ (h) = n. If f has a pole of order n at γ, we put ω γ (f ) = -n and finally, if f (γ) = 0, ∞, we set ω γ (f ) = 0.

We must now recall the definition of the Nevanlinna functions in p-adic [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF], [START_REF] Escassut | p-adic Value Distribution. Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF], [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF].

We denote by Z(r, f ) the counting function of zeros of f in d(0, r), counting multiplicities, i.e.

Z(r, f ) = max(ω 0 , 0) log r + ω γ (f )>0, 0<|γ|≤r ω γ (f )(log r -log |γ|).
Similarly, we denote by Z(r, f ) the counting function of zeros of f in d(0, r), ignoring multiplicities, and set

Z(r, f ) = u log r + ω γ (f )>0, 0<|γ|≤r
(log r -log |γ|) with u = 1 when ω 0 (f ) > 0 and u = 0 else.

In the same way, we set N (r, f ) = Z r,

1 f resp. N (r, f ) = Z r, 1 f to
denote the counting function of poles of f in d(0, r), counting multiplicities (resp. ignoring multiplicities).

For

f ∈ M(IK) or f ∈ M(d(0, R -)), we call Nevanlinna function of f the function T (r, f ) = max Z(r, f ), N (r, f ) . As usual, given f ∈ M(IK) (resp. f ∈ M(d(0, R -))) we denote by S f (r) any function φ from ]0, +∞[ (resp. from ]0, R[) to IR such that lim r→+∞ φ(r) T (r, f ) = 0 (resp. lim r→R φ(r) T (r, f ) = 0.
Now, we must recall the definition of a small function with respect to a meromorphic function and some pertinent properties.

Definition. Let f ∈ M(IK) resp. let f ∈ M(d(0, R -)) such that f (0) = 0, ∞. A function α ∈ M(IK) resp. α ∈ M(d(0, R -)) is called a small function with respect to f , if it satisfies lim r→+∞ T (r, α) T (r, f ) = 0 resp. lim r→R - T (r, α) T (r, f ) = 0 .
We denote by M f (IK) resp. M f (d(0, R -)) the set of small meromorphic functions with respect to f in IK resp. in d(0, R -) . Similarly, we denote by A f (IK) resp. A f (d(0, R -)) the set of small meromorphic functions w ∈ A(IK) (resp. w ∈ A(d(0, R -)))) with respect to f in IK resp. in d(0, R -) .

Theorem: Let f ∈ M(IK) (resp. let f ∈ M u (d(0, R -)) ) be such that N (r, f ) = S f (r) and let F (x) = n-1 j=0 a j f j + a n f n f (k) with a 0 a n not identically zero, n ≥ 1, a j ∈ M f (IK), j = 0, ..., n (resp. a j ∈ M f (d(0, R -)), j = 0, ..., n). Then F has infinitely many zeros in IK (resp. in d(0, R -)). Corollary: Let f ∈ M(IK) (resp. let f ∈ M u (d(0, R -)) ) be such that N (r, f ) = S f (r) and let a 0 , a 1 ∈ M f (IK) (resp. a 0 , a 1 ∈ M f (d(0, R -))
) with a 0 a 1 nonidentically zero. Then f has infinitely many zeros in IK (resp. in d(0, R -)).

Remark: In [START_REF] Ojeda | On Hayman's Conjecture over a p-adic field[END_REF], results were proven with some silmilarity: see Theorems A and B below given by Theorem 2 in [START_REF] Ojeda | On Hayman's Conjecture over a p-adic field[END_REF]. Indeed, the condition N (r, f ) = S f (r) implies that lim sup 

The proof:

Lemma 1 is classical [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF], [START_REF] Escassut | p-adic Value Distribution. Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF], [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF]:

Lemma 1 : Let f ∈ A(d(0, R -))) and suppose that f (0) = 0. Then log(|f |(r)) = log(|f (0)|) + Z(r, f ).
The following Lemma 2 is a consequence of Lemma 1.

Lemma 2:

Let f, g ∈ A(IK)) (resp. let f, g ∈ A(d(0, R -)))) be such that lim r→+∞ Z(r, f ) -Z(r, g) = +∞ (resp. lim r→R Z(r, f ) -Z(r, g) = +∞). Then |f + g|(r) = |f (r) and Z(r, f + g) = Z(r, f ) when r is big enough (resp. when r is close enough to R).

Proof: Without loss of generality, we can suppose that f (0) and g(0) different from 0 and ∞. When r is big enough (resp. is close enough to R), by Lemma 

Definition and notation:

Let a ∈ IK, R > 0. Let (a n , q n ) n∈IN be a sequence where a n ∈ ( . a, R -), lim Lemma 4 is then an easy consequence of Lemma 3:

n→+∞ |a n | = R and q n ∈ IN * . The sequence (a n , q n ) n∈IN is called a divisor of d(a, R -). Given a divisor T = (a n , q n ) n∈IN of d(a, R -), for all r ∈]0, R[, we set |T |(r) = ∞ n=0 max(|x|, |a n |) q n . Lemma 3 : Let f ∈ M(d(0, R -)). There exists b, c ∈ A(d(0, R -)) such that Z(r, b) ≤ Z(r, f ) + O(
Lemma 4 : Let f ∈ M(d(0, R -))) and let w ∈ M f (d(0, R -)). We can write w in the form b c with b, c ∈ A f (d(0, R -)).
Proof: By Lemma 3, we can write

w in the form b c with b, c ∈ A(d(0, R ) ) such that Z(r, b) ≤ Z(r, w) + O(1) ≤ T (r, w) + O(1) and Z(r, c) ≤ N (r, w) + O(1) ≤ T (r, w) + (1). Hence b, c ∈ A f (d(0, R ) ).
Proof of the Theorem: Without loss of generality, we can assume that f has no zero and no pole at 0.

Suppose first f ∈ M(IK). We can write f in the form f = g h with g, h ∈ A(IK)

having no common zero and for all j = 0, ..., n, set

a j = b j c j with b j , c j ∈ A(IK)
having no common zero. Then by hypotheses, h belongs to M f (IK) and for each j = 0, ..., n, so do both b j , c j .

Let h(x) = ∞ j=0 1 -( x α i k i ), let h(x) = ∞ j=0 (1 - x α i
) and let h = h h. By classical results [] we know that f (k) is of the form g k h(h) k with g k ∈ A(IK). Consequently we have N (r, f (k) ) ≤ (k + 1)N (r, f ) and therefore N (r, f (k) ) = S f (r).

We can write f (x) in the form

n-1 j=0 w j g j + w n g n g k h n+1 h k n j=0 c j
wereas each w j is a product of the form b j m =j, 0≤m≤n c m h n-j . Thus, we can check that

Z(r, b j m =j, 0≤m≤n c m h n-j ) = S f (r). Consequently, Z(r, F ) = Z(r, n-1 j=0 w j g j + w n g n g k ) + S f (r).
Now, since N (r, f ) = S f (r), we have T (r, f ) = Z(r, f ) = Z(r, g). Then for each j = 0, ..., n -1, we have Z(r, w n g n g k ) ≥ Z(r, w n g n ) and hence lim r→+∞ Z(r, w n g n g k ) -Z(r, g j ) = +∞. Consequently, by Lemma 2, we have Z(r, n-1 j=0 w j g j + w n g n g k ) + S f (r) = nZ(r, g) + S f (r) when r is big enough. That implies Z(r, F ) = nZ(r, g) + S f (r) = nT (r, f ) + S f (r) when r is big enough, proving that F has infinitely many zeros.

Suppose now that f belongs to M u (d(0, R -)). By Lemma 3 we can write f in the form g h with g, h ∈ A f (d(0, R -)) and by Lemma 4, for each j = 0, ..., n, we can write a j in the form b j c j with b j , c j ∈ A f (d(0, R -)). The proof then goes on like when f belongs to M(IK).

Let h(x) = ∞ j=0 1 -( x α i k i ), let h(x) = ∞ j=0 (1 - x α i ) and let h = h h. Then f (k) is of the form g k h(h) k with g k ∈ A(d(0, R -)). Consequently we have N (r, f (k) ) ≤ (k + 1)N (r, f ) and therefore N (r, f (k) ) = S f (r).
We can write f (x) in the form w j g j + w n g n g k ) + S f (r). Now, since N (r, f ) = S f (r), we have T (r, f ) = Z(r, f ) = Z(r, g). Then for each j = 0, ..., n-1, we have Z(r, w n g n g k ) ≥ Z(r, w n g n ) and hence lim r→R Z(r, w n g n g k )-Z(r, g j ) = +∞. Consequently, by Lemma 2, we have Z(r, n-1 j=0 w j g j + w n g n g k ) + S f (r) = nZ(r, g) + S f (r) when r is close enough to R. That implies Z(r, F ) = nZ(r, g) + S f (r) = nT (r, f ) + S f (r) when r is close enough to R, proving that F has infinitely many zeros.

∞

  n=0 a n (x -a) n converging in d(a, R -) and we denote by M(d(a, R -)) the field of meromorphic functions inside d(a, R -), i.e. the field of fractions of A(d(a, R -)). Moreover, we denote by A b (d(a, R -)) the IK -subalgebra of A(d(a, R -)) consisting of the bounded analytic functions in d(a, R -), i.e. which satisfy sup n∈IN |a n |R n < +∞. And we denote by M

  r→+∞ |f |(r) = +∞ (resp. lim sup r→R |f |(r) = +∞). But the hypothesis on b was more restrictive.

Theorem A :

 : Let f ∈ M(IK) \ K(x) satisfy lim inf r→∞ |f |(r) > 0 and let b ∈ IK(x) be non-identically zero and such that lim r→+∞ |b|(r) > 0. Then f f -b has infinitely many zeros. Theorem B: Let f ∈ M u (d(a, R -)) satisfy lim sup r→R |f |(r) = +∞ and let b ∈ IK(x) be non-identically zero be such that |b|(r) > 1 R . Then f f -b has infinitely many zeros.

  1 we have |f |(r) > |g|(r), hence |f + g|(r) = |f |(r) and the conclusion follows from Lemma 1 again. Lemma 3 is useful to deal with meromorphic functions inside a disk: Theorem 25.5 of [2] and Theorem 2.2.3 of [3]:

1 )

 1 and N (r, b) ≤ N (r, f ) + O(1). Proof: Let D be the divisor of zeros of f and let E be the divisor of poles of f in d(0, R -) By Theorem 25.5 of [2] or Theorem 22.3 of [3] we can write f in the form b c with b, c ∈ A(IK) such that |b|(r) ≤ |D|(r)+1 and |c|(r) ≤ |E|(r)+1. Consequently, by Lemma 1 we have Z(r, b) ≤ Z(r, f ) + O(1) and N (r, c) ≤ N (r, f ) + O(1).

n- 1 j=0

 1 w j g j + w n g n g k h n+1 h k n j=0 c jwereas each w j is a product of the form b j m =j, 0≤m≤n c m h n-j . Thus, we can check that Z(r, b j m =j, 0≤m≤n c m h n-j ) = S f (r). Consequently, Z(r, F ) = Z(r,