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p-adic differential polynomials when poles make a small function

by Alain Escassut, Weiran Lü and Chung Chun Yang

Notation: We denote by A(IK) the IK-algebra of entire functions in IK, byM(IK)
the field of meromorphic functions in IK, i.e. the field of fractions of A(IK) and
by IK(x) the field of rational functions. Throughout the paper, a is a point in IK
and R is a strictly positive number and we denote by d(a,R−) the “open” disk
{x ∈ IK : |x − a| < R}, by A(d(a,R−)) the IK-algebra of analytic functions in

d(a,R−) i.e. the IK-algebra of power series
∞∑
n=0

an(x − a)n converging in d(a,R−)

and we denote by M(d(a,R−)) the field of meromorphic functions inside d(a,R−),
i.e. the field of fractions ofA(d(a,R−)). Moreover, we denote byAb(d(a,R−)) the IK
- subalgebra of A(d(a,R−)) consisting of the bounded analytic functions in d(a,R−),
i.e. which satisfy sup

n∈IN
|an|Rn < +∞. And we denote by Mb(d(a,R−)) the field of

fractions of Ab(d(a,R−)). Finally, we denote by Au(d(a,R−)) the set of unbounded
analytic functions in d(a,R−), i.e. A(d(a,R−)) \ Ab(d(a,R−)). Similarly, we set
Mu(d(a,R−)) =M(d(a,R−)) \Mb(d(a,R−)).

Let log be a real logarithm function of base b > 1 and we set log+(x) =
max(0, log(x)). Let f ∈ M(IK)

(
resp. f ∈ M(d(0, R−))

)
having no zero and no

pole at 0. Let r ∈]0,+∞[
(
resp. r ∈]0, R[

)
and let γ ∈ d(0, r). If f has a zero of

order n at γ, we put ωγ(h) = n. If f has a pole of order n at γ, we put ωγ(f) = −n
and finally, if f(γ) 6= 0,∞, we set ωγ(f) = 0.

We must now recall the definition of the Nevanlinna functions in p-adic [1], [3],
[4].

We denote by Z(r, f) the counting function of zeros of f in d(0, r), counting
multiplicities, i.e.

Z(r, f) = max(ω0, 0) log r +
∑

ωγ(f)>0, 0<|γ|≤r

ωγ(f)(log r − log |γ|).

Similarly, we denote by Z(r, f) the counting function of zeros of f in d(0, r),
ignoring multiplicities, and set

Z(r, f) = u log r +
∑

ωγ(f)>0, 0<|γ|≤r

(log r − log |γ|)

with u = 1 when ω0(f) > 0 and u = 0 else.
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In the same way, we set N(r, f) = Z
(
r,

1
f

) (
resp. N(r, f) = Z

(
r,

1
f

))
to

denote the counting function of poles of f in d(0, r), counting multiplicities (resp.
ignoring multiplicities).

For f ∈ M(IK) or f ∈ M(d(0, R−)), we call Nevanlinna function of f the
function T (r, f) = max

{
Z(r, f), N(r, f)

}
.

As usual, given f ∈ M(IK) (resp. f ∈ M(d(0, R−))) we denote by Sf (r) any

function φ from ]0,+∞[ (resp. from ]0, R[) to IR such that lim
r→+∞

φ(r)
T (r, f)

= 0 (resp.

lim
r→R

φ(r)
T (r, f)

= 0.

Now, we must recall the definition of a small function with respect to a mero-
morphic function and some pertinent properties.

Definition. Let f ∈M(IK)
(
resp. let f ∈M(d(0, R−))

)
such that f(0) 6= 0,∞. A

function α ∈M(IK)
(
resp. α ∈M(d(0, R−))

)
is called a small function with respect

to f , if it satisfies lim
r→+∞

T (r, α)
T (r, f)

= 0
(

resp. lim
r→R−

T (r, α)
T (r, f)

= 0
)

.

We denote by Mf (IK)
(
resp. Mf (d(0, R−))

)
the set of small meromorphic

functions with respect to f in IK
(
resp. in d(0, R−)

)
. Similarly, we denote by

Af (IK)
(
resp. Af (d(0, R−))

)
the set of small meromorphic functions w ∈ A(IK)

(resp. w ∈ A(d(0, R−)))) with respect to f in IK
(
resp. in d(0, R−)

)
.

Theorem: Let f ∈M(IK) (resp. let f ∈Mu(d(0, R−)) ) be such that N(r, f) =
Sf (r) and let F (x) =

∑n−1
j=0 ajf

j + anf
nf (k) with a0an not identically zero, n ≥ 1,

aj ∈ Mf (IK), j = 0, ..., n (resp. aj ∈ Mf (d(0, R−)), j = 0, ..., n). Then F has
infinitely many zeros in IK (resp. in d(0, R−)).

Corollary: Let f ∈M(IK) (resp. let f ∈Mu(d(0, R−)) ) be such that N(r, f) =
Sf (r) and let a0, a1 ∈ Mf (IK) (resp. a0, a1 ∈ Mf (d(0, R−))) with a0a1 non-
identically zero. Then f has infinitely many zeros in IK (resp. in d(0, R−)).

Remark: In [5], results were proven with some silmilarity: see Theorems A and
B below given by Theorem 2 in [5]. Indeed, the condition N(r, f) = Sf (r) implies
that lim sup

r→+∞
|f |(r) = +∞ (resp. lim sup

r→R
|f |(r) = +∞). But the hypothesis on b was

more restrictive.
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Theorem A: Let f ∈ M(IK) \ K(x) satisfy lim inf
r→∞

|f |(r) > 0 and let b ∈ IK(x)

be non-identically zero and such that lim
r→+∞

|b|(r) > 0. Then ff ′ − b has infinitely
many zeros.

Theorem B: Let f ∈Mu(d(a,R−)) satisfy lim sup
r→R

|f |(r) = +∞ and let b ∈ IK(x)

be non-identically zero be such that |b|(r) > 1
R

. Then ff ′ − b has infinitely many
zeros.

The proof:

Lemma 1 is classical [1], [3], [4]:

Lemma 1 : Let f ∈ A(d(0, R−))) and suppose that f(0) 6= 0. Then log(|f |(r)) =
log(|f(0)|) + Z(r, f).

The following Lemma 2 is a consequence of Lemma 1.

Lemma 2: Let f, g ∈ A(IK)) (resp. let f, g ∈ A(d(0, R−)))) be such that
limr→+∞ Z(r, f) − Z(r, g) = +∞ (resp. limr→R Z(r, f) − Z(r, g) = +∞). Then
|f + g|(r) = |f(r) and Z(r, f + g) = Z(r, f) when r is big enough (resp. when r is
close enough to R).

Proof: Without loss of generality, we can suppose that f(0) and g(0) different
from 0 and ∞. When r is big enough (resp. is close enough to R), by Lemma 1
we have |f |(r) > |g|(r), hence |f + g|(r) = |f |(r) and the conclusion follows from
Lemma 1 again.

Lemma 3 is useful to deal with meromorphic functions inside a disk: Theorem
25.5 of [2] and Theorem 2.2.3 of [3]:

Definition and notation: Let a ∈ IK, R > 0. Let (an, qn)n∈IN be a sequence
where an ∈ (.a,R

−), lim
n→+∞

|an| = R and qn ∈ IN∗. The sequence (an, qn)n∈IN is

called a divisor of d(a,R−). Given a divisor T = (an, qn)n∈IN of d(a,R−), for all

r ∈]0, R[, we set |T |(r) =
∞∏
n=0

(
max(|x|, |an|)

)qn .

Lemma 3 : Let f ∈ M(d(0, R−)). There exists b, c ∈ A(d(0, R−)) such that
Z(r, b) ≤ Z(r, f) +O(1) and N(r, b) ≤ N(r, f) +O(1).

Proof: Let D be the divisor of zeros of f and let E be the divisor of poles of f in

d(0, R−) By Theorem 25.5 of [2] or Theorem 22.3 of [3] we can write f in the form
b

c
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with b, c ∈ A(IK) such that |b|(r) ≤ |D|(r)+1 and |c|(r) ≤ |E|(r)+1. Consequently,
by Lemma 1 we have Z(r, b) ≤ Z(r, f) +O(1) and N(r, c) ≤ N(r, f) +O(1).

Lemma 4 is then an easy consequence of Lemma 3:

Lemma 4 : Let f ∈ M(d(0, R−))) and let w ∈ Mf (d(0, R−)). We can write w

in the form
b

c
with b, c ∈ Af (d(0, R−)).

Proof: By Lemma 3, we can write w in the form
b

c
with b, c ∈ A(d(0, R)) such

that Z(r, b) ≤ Z(r, w) + O(1) ≤ T (r, w) + O(1) and Z(r, c) ≤ N(r, w) + O(1) ≤
T (r, w) + (1). Hence b, c ∈ Af (d(0, R)).

Proof of the Theorem: Without loss of generality, we can assume that f has no
zero and no pole at 0.

Suppose first f ∈M(IK). We can write f in the form f =
g

h
with g, h ∈ A(IK)

having no common zero and for all j = 0, ..., n, set aj =
bj
cj

with bj , cj ∈ A(IK)

having no common zero. Then by hypotheses, h belongs to Mf (IK) and for each
j = 0, ..., n, so do both bj , cj .

Let h(x) =
∞∏
j=0

(
1− (

x

αi

)ki), let h(x) =
∞∏
j=0

(1− x

αi
) and let h = hh̃. By classical

results [] we know that f (k) is of the form
gk

h(h)k
with gk ∈ A(IK). Consequently we

have N(r, f (k)) ≤ (k + 1)N(r, f) and therefore N(r, f (k)) = Sf (r).

We can write f(x) in the form

∑n−1
j=0 wjg

j + wng
ngk(

h
)n+1(

h
)k∏n

j=0 cj
wereas each wj is a prod-

uct of the form bj
∏
m6=j, 0≤m≤n cmh

n−j . Thus, we can check that

Z(r, bj
∏
m6=j, 0≤m≤n cmh

n−j) = Sf (r). Consequently,

Z(r, F ) = Z(r,
n−1∑
j=0

wjg
j + wng

ngk) + Sf (r).

Now, since N(r, f) = Sf (r), we have T (r, f) = Z(r, f) = Z(r, g). Then for each
j = 0, ..., n− 1, we have Z(r, wngngk) ≥ Z(r, wngn) and hence
limr→+∞ Z(r, wngngk) − Z(r, gj) = +∞. Consequently, by Lemma 2, we have

Z(r,
n−1∑
j=0

wjg
j + wng

ngk) + Sf (r) = nZ(r, g) + Sf (r) when r is big enough. That
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implies Z(r, F ) = nZ(r, g)+Sf (r) = nT (r, f)+Sf (r) when r is big enough, proving
that F has infinitely many zeros.

Suppose now that f belongs to Mu(d(0, R−)). By Lemma 3 we can write f in

the form
g

h
with g, h ∈ Af (d(0, R−)) and by Lemma 4, for each j = 0, ..., n, we can

write aj in the form
bj
cj

with bj , cj ∈ Af (d(0, R−)). The proof then goes on like

when f belongs to M(IK).

Let h(x) =
∞∏
j=0

(
1− (

x

αi

)ki), let h(x) =
∞∏
j=0

(1− x

αi
) and let h = hh̃. Then f (k)

is of the form
gk

h(h)k
with gk ∈ A(d(0, R−)). Consequently we have N(r, f (k)) ≤

(k + 1)N(r, f) and therefore N(r, f (k)) = Sf (r).

We can write f(x) in the form

∑n−1
j=0 wjg

j + wng
ngk(

h
)n+1(

h
)k∏n

j=0 cj
wereas each wj is a prod-

uct of the form bj
∏
m6=j, 0≤m≤n cmh

n−j . Thus, we can check that

Z(r, bj
∏
m6=j, 0≤m≤n cmh

n−j) = Sf (r). Consequently,

Z(r, F ) = Z(r,
n−1∑
j=0

wjg
j + wng

ngk) + Sf (r).

Now, since N(r, f) = Sf (r), we have T (r, f) = Z(r, f) = Z(r, g). Then for each
j = 0, ..., n−1, we have Z(r, wngngk) ≥ Z(r, wngn) and hence limr→R Z(r, wngngk)−

Z(r, gj) = +∞. Consequently, by Lemma 2, we have Z(r,
n−1∑
j=0

wjg
j + wng

ngk) + Sf (r) =

nZ(r, g) + Sf (r) when r is close enough to R. That implies Z(r, F ) = nZ(r, g) +
Sf (r) = nT (r, f) +Sf (r) when r is close enough to R, proving that F has infinitely
many zeros.
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