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p-adic Nevanlinna Theory outside of a hole

Alain Escassut and Ta Thi Hoai An

2016/ 06/ 15

Abstract

Let K be a complete ultrametric algebraically closed field of characteristic 0, take R > 0
and let D be the set {x ∈ K | |x| ≥ R}. Let M(D) be the field of meromorphic functions in
D. We contruct a Nevanlinna Theory for M(D) and show many properties similar to those
previously obtained with meromorphic functions in K or in an open disk. Functions have at
most one Picard value and at most four branched values. The functions with finitely many
poles in D have no Picard value and at most one branched value. URSCM and URSIM are
similar to those in complex analysis. Fujimoto’s way lets obtain polynomials of uniqueness for
M(D) with a degree ≥ 5. Many algebraic curves admit no parametrization by functions of
M(D). Motzkin Factors, known for analytic elements, here play an essential role.

1 Introduction

In [12], M.O. Hanyak and A.A. Kondratyuk constructed a Nevanlinna theory for meromorphic
functions in a punctured complex plane, i.e. in the set of the form C \ {a1, ..., am}, where we
understand that the meromorphic functions can admit essential singularities at a1, ..., am [12].
Here we consider the situation in a complete p-adic algebraically closed field K of characteristic
0. The construction of a p-adic Nevanlinna theory was examined by Ha Huy Khoai [11] and A.
Boutabaa [2], in the whole field and next a similar theory was made for unbounded meromorphic
functions in an “open” disk of K [3].

Here we mean to construct a Nevanlinna theory for meromorphic functions in the complement
of an open disk thanks to the use of specific properties of the Analytic Elements on infraconnected
subsets of K [14], [8] and particularly the Motzkin Factorization [15] (see also [1] and chapter 32
in [6]). We can also obtain a Nevanlinna theory on 3 small functions [13], [8], as it was done in the
classical context. Once the Nevanlinna Theory is established for such functions, we can apply it to
obtain results on uniqueness and branched values as it was done in similar problems [3], [8], [13].

Notation: We denote by K a complete ultrametric algebraically closed field of characteristic 0
(such as Cp). Given r > 0, a ∈ K we denote by d(a, r) the disk {x ∈ K | |x− a| ≤ r}, by d(a, r−)
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the disk {x ∈ K | |x− a| < r} and by C(a, r) the circle {x ∈ K | |x− a| = r}. Finally we fix R > 0
and denote by I the interval [R,+∞[. Given r′′ > r′, we put ∆(0, r′, r′′) = d(0, r′′) \ d(0, r′−).
Throughout the paper, we denote by S the disk d(0, R−) and put D = K \ S.

Given a bounded function f in D, we put ‖f‖ = supD |f(x)|. Given a subset E of K having
infinitely many points, we denote by R(E) the K-algebra of rational functions h ∈ K(x) having
no pole in E. We then denote by H(E) the K-vector space of analytic elements on E [6] i.e.
the completion of R(E) with respect to the topology of uniform convergence on E. When E is
unbounded, we denote byH0(E) the K-subvector space of the f ∈ H(E) such that lim

|x|→+∞
f(x) = 0.

By classical properties of analytic elements [6], we know that given a circle C(a,R) and an

element f of H(C(a,R)) i.e. a Laurent series f(x) =
+∞∑
−∞

cn(x− a)n converging whenever |x| = r,

then |f(x)| is equal to sup
n∈Z
|cn|rn in all classes of the circle C(a, r) except maybe in finitely many.

When a = 0, we put |f |(r) = sup
n∈Z
|cn|rn. Then |f |(r) is a multiplicative norm on H(C(0, r))

(Chapters 13 and 19, Proposition 19.1, [8]).
We denote byA(K) the K-algebra of entire functions in K and byA(D) the K-algebra of Laurent

series converging in D. Similarly, we will denote byM(K) the field of meromorphic functions in K
and byM(D) the field of fractions of A(D) that we will call field of meromorphic functions in D.

Given f ∈ M(D), for r > R, we will denote by ZR(r, f) the counting function of zeros of f
between R and r, i.e. if α1, ..., αm are the distinct zeros of f in ∆(0, R, r), with respective multi-

plicity uj , 1 ≤ j ≤ m, then ZR(r, f) =
m∑

j=1

uj(log(r)− log(|αj |)). Similarly, we denote by NR(r, f)

the counting function of poles of f between R and r, i.e. if β1, ..., βn are the distinct poles of f in

∆(0, R, r), with respective multiplicity vj , 1 ≤ j ≤ m, then NR(r, f) =
n∑

j=1

vj(log(r)− log(|βj |)).

Finally we put TR(r, f) = max
(
ZR(r, f), NR(r, f)

)
.

Next, we denote by ZR(r, f) the counting function of zeros without counting multiplicity: if
α1, ..., αm are the distinct zeros of f in ∆(0, R, r), then we put

ZR(r, f) =
m∑

j=1

log(r)− log(|αj |).

Similarly, we denote by NR(r, f) the counting function of poles without counting multiplicity:
if β1, ..., βn are the distinct poles of f in ∆(0, R, r), then we put

NR(r, f) =
n∑

j=1

log(r)− log(|βj |).

Finally, putting W = {a1, ..., aq}, we denote by ZW
R (r, f ′) the counting function of zeros of f ′

on points where f(x) /∈W .

Throughout the paper, we denote by | . |∞ the Archimedean absolute value of R. Given
two functions defined in an interval I = [b,+∞[, we will write φ(r) = ψ(r) + O(log(r)) (resp.
φ(r) ≤ ψ(r)+O(log(r))) if there exists a constant B > 0 such that |φ(r)−ψ(r)|∞ ≤ B log(r), r ∈ I
(resp. φ(r)− ψ(r) ≤ B log(r), r ∈ I).

We will write φ(r) = o(ψ(r)), r ∈ I if lim
r→+∞

φ(r)
ψ(r)

= 0.

According to classical properties of analytic elements on infraconnected sets, we can recall the
following lemmas that we will implicitely use [6], [8]:



p-adic Nevanlinna Theory outside of a hole 3

Lemma L.I.1: Let f ∈ M(D). If f has infinitely many zeros (resp. infinitely many poles) in
D, the set of zeros (resp. the set of poles) is a sequence (αn)n∈N such that lim

n→+∞
|αn| = +∞. If f

has no zero in D, then it is of the form
+∞∑
−∞

anx
n with |aq|rq > |an|rn ∀n ∈ Z, n 6= q,∀r ≥ R.

Lemma L.I.2: Let f, g ∈ A(D). If |f |(r) > |g|(r), then |f + g|(r) = |f |(r).

Definition: Let f ∈ H(D) have no zero in D, f(x) =
+∞∑
−∞

anx
n with |aq|rq > |an|rn ∀n ∈

Z, n 6= q, ∀r ≥ R. If aq = 1, f will be called a Motzkin factor associated to S and the integer q
will be called the Motzkin index of f and will be denoted by m(f, S) [1], [15].

Theorem T.I.1: Let f ∈ M(D). We can write f in a unique way, in the form fSf0 with
fS ∈ H(D) a Motzkin factor associated to S and f0 ∈M(K), having no zero and no pole in S.

Proof of Theorem T.I.1: Suppose first f ∈ A(D) and take V > R. Then as a quasi-invertible
element of H(∆(0, R, V )) [6], [8], by Theorem 31.16 in [8], f admits a factorization in the form
fSf0 where fS is a Motzkin factor and f0 belongs to H(d(0, V )) and has no zero in S. Moreover
by Lemma 31.4 in [8], fS does not depend on V . Consequently, since fS is obviously invertible in
A(D), we can factorize f ∈ A(D) in the form fSf0 where f0 belongs to A(K) and has no zero in
S.

Consider now the general case: f =
g

h
with g, h ∈ A(D). Then we can write g = gSg0, h =

hSh0, hence f =
( gS

hS

)( g0

h0

)
. Then we can check that this is the factorization announced in the

statement: fS =
gS

hS
and f0 =

g0

h0
. The uniqueness of this form is shown, for instance by Theorem

31.4 in [8].

The following Lemma LI.3 is immediate:

Lemma L.I.3: The set of Motzkin factors associated to S makes a multiplicative group. Let

f, g ∈ M(D). Then (fg)S = (fS)(gS),
( 1
f

)S

=
1
fS

, (fg)0 = (f0)(g0),
( 1
f

)0

=
1
f0

and

m(fg, S) = m(f, S) +m(g, S), m(
1
f
, S) = −m(f, S).

Definitions and notations: We will denote by M∗(D) the set of f ∈ M(D) the set of f
admitting at least infinitely many zeros in D or infinitely many poles in D. Similarly, we will
denote by A∗(D) the set of f ∈ A(D) the set of f admitting infinitely many zeros in D. Next, we
set M0(D) =M(D) \M∗(D) and A0(D) = A(D) \ A∗(D).

Remark: M0(D) is a subfield of M(D).

2 Nevanlinna Theory in M(D).

T.II.1 is similar to Corollary 22.27 in [8]:

Theorem T.II.1: Let f ∈ M(D). Then log(|f |(r)) − log(|f |(R)) = ZR(r, f) − NR(r, f) +
m(f, S)(log r − logR) (r ∈ I).
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Corollary T.II.1.1: Let f ∈ M(D). Then TR(r, f) is identically zero if and only if f is a
Motzkin factor.

Corollary T.II.1.2: Let f ∈ A(D) and let φ ∈ H0(D). Then ZR(r, f + φ) ≤ ZR(r, f) +
O(log(r)) (r ∈ I).

Corollary T.II.1.3: Let f ∈ A(D). Then ZR(r, f ′) ≤ ZR(r, f) +O(log(r)) (r ∈ I).

Corollary T.II.1.4: Let f, g ∈ A(D) satisfy log(|f |(r)) ≤ log(|g|(r)) ∀r ≥ R (r ∈ I). Then
ZR(r, f) ≤ ZR(r, g) + (m(g, S)−m(f, S))(log(r)− log(R)), (r ∈ I).

Proof of Theorem T.II.1: By Theorem T.I.1, we have f = fSf0. Since fS has no zero
and no pole in D, by Lemma L.I.1 it satisfies |fS |(r)) = rm(f,S) ∀r ∈ I, hence log(|fS |(r)) −
log(|fS |(R)) = m(f, S)(log r− logR) (r ∈ I). Next, since f0 has no zero and no pole in S, we have
log(|f0|(r))− log(|f0|(R)) = ZR(r, f0)−NR(r, f0) (r ∈ I) therefore the statement is clear.

We can now characterize the set M∗(D):

Theorem T.II.2: Let f ∈M(D). The three following statements are equivalent:

i) lim
r→+∞

TR(r, f)
log(r)

= +∞ (r ∈ I),

ii)
TR(r, f)
log(r)

is unbounded,

iii) f belongs to M∗(D).

Proof of Theorem T.II.2: Consider an increasing sequence (un)n∈N in R+ such that lim
n→+∞

un = +∞
and let (kn)n∈N be a sequence of N∗. Clearly, we have

lim
r→+∞

∑
un≤r kn(log(r)− log(un))

log(r)
= +∞.

Consequently, if a function f ∈M∗(D) has infinitely many zeros (resp. infinitely many poles in D)

then lim
n→+∞

ZR(r, f)
log(r)

= +∞ (resp. lim
n→+∞

NR(r, f)
log(r)

= +∞) hence in both cases, lim
n→+∞

TR(r, f)
log(r)

= +∞.

Conversely, if f has finitely many zeros and finitely many poles in D, then we check that

lim
n→+∞

TR(r, f)
log(r)

< +∞.

Thus the equivalence of the three statements is clear.

Operations on M(D) work almost like for meromorphic functions in the whole field [2], [8], so
we will not develop the proof.

Theorem T.II.3: Let f, g ∈ M(D). Then for r ∈ I, and for every b ∈ K, TR(r, f + b) =

TR(r, f)+O(log(r)), TR(r, f.g) ≤ TR(r, f)+TR(r, g)+O(log(r)), TR(r,
1
f

) = TR(r, f)), TR(r, f+

g) ≤ TR(r, f) + TR(r, g) +O(log(r)) and TR(r, fn) = nTR(r, f).
Let h be a Moebius function. Then TR(r, h ◦ f) = TR(r, f) + O(log(r)). Moreover, if both f
and g belong to A(D), then TR(r, f + g) ≤ max(TR(r, f), TR(r, g)) + O(log(r)) and TR(r, fg) =
TR(r, f) + TR(r, g). Particularly, if f ∈ A∗(D), then TR(r, f + b) = TR(r, f) +O(1).
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Corollary T.II.3.1: Let f, g ∈M0(D). Then TR(r,
f

g
) ≥ TR(r, f)− TR(r, g) (r ∈ I) and

TR(r,
f

g
) ≥ TR(r, g)− TR(r, f) (r ∈ I).

Theorem II.4 is easily proven thanks to properties of the Nevanlinna characteristic functions.

Theorem T.II.4: Every f ∈M∗(D) is transcendental over M0(D).

The proof of Theorem T.II.5 is uneasy in all context we can consider. Here we can follow a
similar way as in [2], [8], taking into account expressions of the form O(log(r)).

Theorem T.II.5: Let f ∈M(D) and let P (x) ∈ K[x] be of degree q. Then
TR(r, P ◦ f) = qTR(r, f) +O(log(r)) (r ∈ I).

Theorem II.6 is similar to what is known for meromorphic functions in the whole field or inside
a disk, this is why we will avoid the proof.

Theorem T.II.6: Let f ∈ M(D). Then NR(r, f (k)) = NR(r, f) + kNR(r, f) + O(1), (r ∈ I)
and ZR(r, f (k)) ≤ ZR(r, f) + kNR(r, f) +O(log(r)), (r ∈ I).

We can now examine some properties of the functions in M∗(D) and first, consider small
functions.

Definitions and notation: For each f ∈ M(D) we denote by Mf (D) the set of functions
h ∈M(D) such that TR(r, h) = o(TR(r, f)) r ∈ I. Similarly, if f ∈ A(D) we will denote by Af (D)
the set Mf (D) ∩ A(D).

The elements of Mf (D) are called small meromorphic functions with respect to f , small
functions in brief. Similarly, if f ∈ A(D) the elements of Af (D) are called small analytic functions
with respect to f , small functions in brief.

A value b ∈ K will be called a quasi-exceptional value for a function f ∈ M(D) if f − b has
finitely many zeros. In the same way, a small function w with respect to a function f ∈ M(D)
will be called a quasi-exceptional small function for f if f − w has finitely many zeros in D.

Theorem T.II.7 is a direct and immediate application of Theorem T.II.3:

Theorem T.II.7: Af (D) is a K-subalgebra of A(D), Mf (D) is a subfield of M(D).
Let f ∈ M(D) and let g ∈ Mf (D). Then TR(r, fg) = TR(r, f) + o(TR(r, f)) (r ∈ I) and

TR(r,
f

g
) = TR(r, f) + o(TR(r, f)) (r ∈ I).

Let g, h ∈ A(D) with g and h not identically zero. If gh belongs to Af (D) then so do g and h.

Theorem T.II.8: Let f ∈ M∗(D). There exists at most one function w ∈ Mf (D), such that
f − w have finitely many zeros in D. Moreover, if f has finitely many poles, then there exists no
function w ∈Mf (D), such that f − w have finitely many zeros in D.

Corollary T.II.8.1: Let f ∈M∗(D). Then f admits at most one quasi-exceptional small func-
tion. Moreover, if f belongs to A∗(D), then f has no quasi-exceptional small function.

Proof of Theorem T.II.8: Suppose that f admits two distinct quasi-exceptional small func-
tions. Without loss of generality we may assume that these functions are 0 and w ∈ Mf (D). Let
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g = f −w, let fS be the Motzkin factor of f associated to S and let gS be the Motzkin factor of g

associated to S. Then f is of the form fS P

h
with h ∈ A∗(D) and P ∈ K[x] having all its zeros in

D and g is of the form gSQ

l
with l ∈ A∗(D) and Q ∈ K[x] having all its zeros in D. Consequently,

we have hgSQ− lfSP = hlw. Now, by Theorem T.II.3, we have

TR(r, hgSQ− lfSP ) ≤ max(TR(r, hgSQ), TR(r, lfSP )) +O(log(r)),

≤ (TR(r, h), TR(r, l) +O(log(r)), (r ∈ I),

hence

(1) TR(r, hlw) ≤ max((TR(r, h), TR(r, l)) +O(log(r)), (r ∈ I).

Next, by Theorem T.II.3 and Corollary T.II.3.1 we have

(2) TR(r, wlh) ≥ TR(r, h) + TR(r, l)− TR(r, w).

Now, since f = fS P

h
, clearly TR(r, f) = TR(r, h) + O(log(r)) and similarly, TR(r, g) = TR(r, l) +

O(log(r)). But since TR(r, w) = o(TR(r, f), we can check that TR(r, g) = TR(r, f) + o(TR(r, f)).
Consequently, TR(r, l) = TR(r, h) + o(TR(r, h)). Therefore by (1) we have TR(r, hlw) ≤ (TR(r, h) +
o(TR(r, h), (r ∈ I) and by (2) we obtain TR(r, wlh) ≥ 2TR(r, h) + o(TR(r, f)) (r ∈ I), a contra-
diction. This proves that f cannot have two small functions w ∈ Mf (D) such that f − w have
finitely many zeros.

Suppose now that f ∈ A∗(D) has finitely many poles and admits a quasi-exceptional small

function w. Set g = f −w. Then g is of the form gS
(P
h

)
where P is a polynomial whose zeros lie

in D and h belongs to A(D) and it admits for zeros the poles of f and those of w. Consequently,
w belongs to Af (D). Therefore we can check that TR(r, g) = o(TR(r, f). But by Corollary T.II.3.1
we have TR(r, g) ≥ TR(r, f)− TR(r, w) = TR(r, f) + o(TR(r, f)), a contradiction.

The Nevanlinna second Main Theorem is based on the following theorem:

Theorem T.II.9: Let f ∈M(D) and let a1, ..., aq ∈ K be distinct. Then

(q − 1)TR(r, f) ≤ max
1≤k≤q

( q∑
j=1,j 6=k

ZR(r, f − aj)
)

+O(log(r)) (r ∈ I).

Corollary T.II.9.1: Let f ∈M(K) and let a1, ..., aq ∈ K be distinct. Then
(q − 1)TR(r, f) ≤

∑q
j=1 ZR(r, f − aj) +O(log(r)) (r ∈ I).

Based upon Theorem T.II.9 we can give a proof of Theorem T.II.10 and T.II.11 in an easy way,
as in classical case.

Theorem T.II.10: Let f ∈ M(D), let α1, ..., αq ∈ K, with q ≥ 2 and let W = {α1, ..., αq}.
Then

(q − 1)TR(r, f) ≤
q∑

j=1

ZR(r, f − αj) + ZR(r, f ′)− ZW
R (r, f ′) +O(log(r)) (r ∈ I).

Moreover, if f belongs to A(D) then
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qTR(r, f) ≤
q∑

j=1

ZR(r, f − αj) + ZR(r, f ′)− ZW
R (r, f ′) +O(log(r)) (r ∈ I).

Theorem T.II.11 (Second Main Theorem): Let f ∈ M(D), let α1, ..., αq ∈ K, with q ≥ 2
and let W = {α1, ..., αq}. Then

(q − 1)TR(r, f) ≤
q∑

j=1

ZR(r, f − αj) +NR(r, f)− ZW
R (r, f ′) +O(log(r)) (r ∈ I).

As in the classical case, the general Main Theorem lets us write a Nevanlinna theorem on three
small functions:

Theorem T.II.12: Let f ∈ M∗(D) and let w1, w2, w3 ∈ Mf (D) be pairwise distinct. Then
TR(r, f) ≤

∑3
j=1 ZR(r, f − wj) +

∑3
j=1 TR(r, wj) +O(log(r)) (r ∈ I).

Corollary T.II.12.1: Let f ∈ M∗(D) and let w1, w2, w3 ∈ M0(D) be pairwise distinct. Then
TR(r, f) ≤

∑3
j=1 ZR(r, f − wj) +O(log(r)) (r ∈ I).

Theorem T.II.13 is an easy consequence of Theorem T.II.12:

Theorem T.II.13: Let f ∈M∗(D) and let w1, w2 ∈Mf (D) be distinct. Then

TR(r, f) ≤ ZR(r, f − w1) + ZR(r, f − w2) +NR(r, f) + TR(r, w1) + TR(r, w2) +O(log(r)) (r ∈ I).

Corollary T.II.13.1: Let f ∈M∗(D) and let w1, w2 ∈M0(D) be distinct. Then

TR(r, f) ≤ ZR(r, f − w1) + ZR(r, f − w2) +NR(r, f) +O(log(r)) (r ∈ I).

Corollary T.II.13.2: Let f ∈ A∗(D) and let w1, w2 ∈ Af (D) be distinct. Then

TR(r, f) ≤ ZR(r, f − w1) + ZR(r, f − w2) + TR(r, w1) + TR(r, w2) +O(log(r)) (r ∈ I).

Corollary T.II.13.3: Let f ∈ A∗(D) and let w1, w2 ∈ A0(D) be distinct. Then

TR(r, f) ≤ ZR(r, f − w1) + ZR(r, f − w2) +O(log(r)) (r ∈ I).
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3 Applications.

in a similar way as in classical cases [8], in D we can prove the following theorems T.III.1 and
T.III.2:

Theorem T.III.1: Let a1, a2, a3 ∈ K (ai 6= aj ∀i 6= j) and let f, g ∈ A∗(D) satisfy f−1({ai}) =
g−1({ai}) (i = 1, 2, 3). Then f = g.

Theorem T.III.2: Let a1, a2, a3, a4, a5 ∈ K (ai 6= aj ∀i 6= j) and let f, g ∈ M∗(D) satisfy
f−1({ai}) = g−1({ai}) (i = 1, 2, 3, 4, 5). Then f = g.

We can now apply Theorem T.II.11 to obtain results concerning certain algebraic curves:

Theorem T.III.3: Let Λ be a curve of equation yq = P (x) with P ∈ K[x] having at least two
distinct zeros. If Λ admits a parametrization of the form y = g(t), x = f(t) with f, g ∈ M(D)
and if f (resp. g) belongs to M0(D), then g (resp. f) also belongs to M0(D).

Proof of Theorem T.III.3: Let a1, ..., an be n distinct zeros of P . Suppose that two functions
f, g ∈M(D) satisfy the equation g(t)q = P (f(t)). If f belongs toM0(D), then by Theorem T.II.4,
g also belongs toM0(D). Conversely, if g belongs toM0(D), then f satisfies P (f)−gq = 0, hence
by Theorem T.II.4 f belongs to M0(D).

Theorem T.III.4: Let Λ be a curve of equation yq = P (x) with P ∈ K[x] admitting n distinct
zeros of order 1. If Λ admits a parametrization of the form y = g(t), x = f(t) with f, g ∈M∗(D)

and t ∈ D, then n ≤ 2q
q − 1

. Moreover, if deg(P ) = n and if n and q are relatively prime, then

n ≤ q + 1
q − 1

.

Proof of Theorem T.III.4: Let a1, ..., an be n distinct zeros of P . Suppose that two functions
f, g ∈M∗(D) satisfy the equation g(t)q = P (f(t)). Let α ∈ D be a zero of f − aj of order s. It is
a zero of order l of g − aj , hence lq = s therefore q divides s. Consequently, for each j = 1, ..., n,

we have ZR(r, f − aj) ≤ 1
q
ZR(r, f − aj), hence, by Theorems T.II.3 and T.II.11 we have

(1) (n− 1)TR(r, f) ≤ n

q
TR(r, f) +NR(r, f) +O(log(r)).

Since f, g belong to M∗(D), that implies n ≤ 2q
q−1 .

Suppose now that deg(P ) = n and that n and q are relatively prime. Let β be a pole of f of
order l in D. Since deg(P ) = n, all zeros of P are of order 1 and β is a pole of gq of order ln. But
since n and q are relatively prime, q must divide l. Consequently, by (1) now we have

(n− 1)TR(r, f) ≤ n

q
TR(r, f) +

1
q
TR(r, f) +O(log(r))

hence (n−1)TR(r, f) ≤ (
n+ 1
q

)TR(r, f)+O(log(r)). And since f, g belong toM∗(D), that implies

n ≤ q+1
q−1 .

By Theorems T.III.3 and T.III.4, we can get these corollaries:
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Corollary T.III.4.1: Let Λ be a curve of equation yq = P (x) with q ≥ 2, P ∈ K[x] admitting
n distinct zeros of order 1. If Λ admits a parametrization of the form y = g(t), x = f(t) with

f, g ∈M(D) and t ∈ D and if n >
2q
q − 1

then the two both functions f and g belong to M0(D).

Corollary T.III.4.2: Let Λ be a curve of equation yq = P (x) with q ≥ 2 relatively prime to n
and P ∈ K[x] of degree n admitting n distinct zeros. If Λ admits a parametrization of the form

y = g(t), x = f(t) with f, g ∈M(D) and if n >
q + 1
q − 1

, then the two both functions f and g belong

to M0(D).

Example: Let Λ be a curve of equation y2 = P (x) with deg(P ) = 5, P admitting five distinct
zeros. If two functions f, g ∈ M(D) satisfy g(t)2 = P (f(t)), then the two both functions belong
to M0(D).

We can now consider the problem of branched rational functions.

Definition: Let f ∈ M∗(D) and let w ∈ K(x). Then w is called a perfectly branched function,
with respect to f if all zeros of f − w are multiple except maybe finitely many. Particularly, the
definition applies to constants [4] .

Theorem T.III.5: Let f ∈∗ (D). Then f admits at most 4 perfectly branched values.

Proof of Theorem T.III.5: Suppose f has q perfectly branched values bj with j = 1, ..., q.

For each j, let sj be the number of simple zeros of f − bj and let s =
q∑

j=1

sj . Applying Theorem

T.II.11, we have

(1) (q − 1)TR(r, f) ≤
q∑

j=1

ZR(r, f − bj) +NR(r, f) +O(log r).

But since f − bj has sj simple zeros, we have

ZR(r, f − bj) ≤ ZR(r, f − bj) + sj log r
2

+O(1) ≤ TR(r, f) + sj log r
2

+O(1) ∀j = 1, ..., q

hence, by (1), we have

(2) (q − 1)TR(r, f) ≤ qTR(r, f)
2

+ TR(r, f) +O(log(r)).

By (2) clearly we have q ≤ 4 in all cases, which shows the statement of Theorem T.III.5 whenever
f ∈M(D).

Theorem T.III.6: Let f ∈ M∗(D) have finitely many poles in D. Then f admits at most one
perfectly branched function in M0(D).

Corollary T.III.6.1: Let f ∈ A(D) have infinitely many zeros in D. Then f admits at most
one perfectly branched function in M0(D).

In the proof of Theorem T.III.6, we will use the following lemma:
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Lemma L.III.1. Let Θ(x) =
+∞∑
−∞

anx
n ∈ A(D), with a0 = 1, have no zero in D. Take S > 4R

and set D′ = K \ d(0, S−) Then there exists a function
√

Θ(x) defined in D′ and belonging to
A(D′).

Proof: Since Θ belongs to A(D) and has no zero in D, while a0 = 1, we have |an|Rn < 1 ∀n ∈ Z
and lim

n→+∞,n→−∞
|an|Rn = 0. Then, it is well known that there exists a unique function ` ∈

A(d(1, (R
4 )−)) with value in d(1, 1−) such that (`(u))2 = u ∀u ∈ d(1, (R

4 )−) (see for instance

Theorem 31.23 in [8]). Here, we put u =
+∞∑
−∞

anx
n and the function ` belongs to A(D′) whenever

S > 4R.

Proof of Theorem T.III.6: Suppose that f admits two perfectly branched functions w1, w2 ∈
M0(D). If we consider the function g = f − w1, we can see that g has two perfectly branched
functions 0 and w1−w2 that both belong toM0(D). So, without loss of generality, we may assume
that f admits two perfectly branched functions 0 and w(x) 6= 0 which belong to M0(D).

Suppose first that f has infinitely many zeros of order ≥ 3. Then ZR(r, f) − 2ZR(r, f) is a
function ζ(r) such that

(1) lim
r→+∞

ζ(r)
log r

= +∞.

and then

ZR(r, f) ≤ TR(r, f)− ζ(r)
2

.

On the other hand, by Corollary T.II.13.1, we have

TR(r, f) ≤ ZR(r, f) + ZR(r, f − w) +NR(r, f) +O(log(r)).

Consequently by (1), we can derive

(2) TR(r, f) ≤ 2ZR(r, f − w) + 2NR(r, f)− ζ(r) +O(log(r)).

Now, let q be the number of simple zeros of f − w in D and let s be the number of distinct poles

of f in D. Since Z(r, f − w) ≤ T (r, f)
2

+ q log(r), by (2) we can derive

TR(r, f) ≤ TR(r, f) + 2(q + s) log(r)− ζ(r) +O(log(r))

hence 0 ≤ −ζ(r) + O(log(r)). But by (1) we have a contradiction proving that f cannot admit 0
and w as branched functions lying in M0(D).

Symmetrically if f − w has infinitely many zeros of order ≥ 3, we can obviously conclude in
the same way.

Therefore, we are now led to assume that all zeros of both f and f − w are of order 2 except
finitely many. Since f has infinitely many zeros in D and since w ∈ M0(D), there exists V > 4R
satisfying the following properties:
i) all poles of w in D lie in ∆(0, R, V )
ii) |f |(r) > |w|(r) ∀r > V ,
iii) all zeros of f and of f − w in K \∆(0, R, V ) are of order 2 exactly.
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Let S′ = d(0, V −) and let D′ = K \ S′. Then f obviously belongs to M(D′). Therefore, by
Theorem T.I.1, f admits in M(D′) a Motzkin factor of the form xsθ with s = m(f, S′) and then
we can write f in the form xsθg2 and g ∈ A(K), having no zero in S′. Similarly, f − w admits a
Motzkin factor of the form xtτ with t = m(f − w, S′) and we can then write f − w in the form
xtτh2 and h ∈ A(K), having no zero in S′.

Since |f |(r) > |w|(r) ∀r ≥ V , we can check that f and f − w have the same number of zeros
on each circle C(0, r) (r ≥ V ) and f |(r) = |f − w|(r) ∀r ≥ V . Consequently, s = t. We have the
equality

(2) g2 − τ

θ
h2 =

w

xsθ
.

Now,
τ

θ
is a Motzkin factor of index zero, hence by Lemma L.III.1, it admits a square root

Ξ ∈ H(K \ S′) of the form
0∑
−∞

anx
n with |an|V n < |a0| ∀n < 0. Then by (2) we have

(3) (g − Ξh)(g + Ξh) =
w

xsθ
.

We will check that this equality is impossible. Indeed, both functions g − Ξh and g + Ξh belong
to A(D′). Suppose ZV (r, g − Ξh) = O(log(r)). Then g + Ξh = (g − Ξh) + 2Ξh satisfies
ZV (r, g − Ξh) + ZV (r,Ξh) = ZV (r,Ξh) +O(log(r)) and consequently,

lim
r→+∞

[ZV (r, (g − Ξh)(g + Ξh))
log(r)

]
= +∞

because

lim
r→+∞

[ZV (r,Ξh)
log(r)

]
= +∞.

But on the other hand, by construction, ZV (r,
w

xsθ
) is of the form O(log(r)), which shows that (3)

is impossible. That ends the proof of Theorem T.III.6.

Notation Given f ∈ M(D) and a ∈ D, we denote by ωa(f) the order of f at a i.e. if f admits
a as a zero of order q, we put ωa(f) = q, if f admits a as a pole of order q, we put ωa(f) = −q
and if a is neither a zero nor a pole of f , we put ωa(f) = 0.

Let h ∈ M(K) \ K (resp. h ∈ E(x) \ E) and let Λ(h) be the set of zeros c of h′ such that
h(c) 6= h(d) for every zero d of h′ other than c. If Λ(h) is finite, we denote by Υ(h) its cardinal
and if Λ(h) is not finite, we put Υ(h) = +∞.

Theorem T.III.7: Let P ∈ K[x], let f, g ∈ A∗(D) \K satisfy P ◦ f = P ◦ g. If Υ(P ) ≥ 3, then
f = g.

Theorem T.III.8: Let P ∈ K[x] K, let f, g ∈ M∗(D) \ K satisfying further P ◦ f = P ◦ g. If
Υ(P ) ≥ 4, then f = g.

Examples: 1) Let P (x) =
x4

4
+
x3

3
− x2. Then P ′(x) = x(x− 1)(x+ 2). Then

P (0) = 0, P (1) =
1
4

+
1
3
− 1, P (2) =

8
3

.
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Thus the three zeros aj of P ′ satisfy P (ai) 6= P (aj) ∀i 6= j. Consequently, Υ(P ) = 3 and hence
P is a polynomial of uniqueness for A∗(D).

2) Let P (x) =
x5

5
− 5x3

3
+ 4x. Then P ′(x) = (x− 1)(x+ 1)(x− 2)(x+ 2). P (1) =

1
5
− 5

3
+ 4,

P (−1) = −P (−1), P (2) =
32
5
− 24

3
+ 8 = −P (−2).

Thus the four zeros aj of P ′ satisfy P (ai) 6= P (aj) ∀i 6= j. Consequently, Υ(P ) = 4 and hence
P is a polynomial of uniqueness for M∗(D).

The hypothesis Υ(P ) ≥ 4 however is not necessary to prove that a polynomial is a polynomial
of uniqueness for M∗(D), as shows the following Theorem T.III.9. The proof is similar to that of
Theorem 41.9 in [8] and first came from [9].

In the proof of Theorems T.III.7 and T.III.8 we will need the following lemma which is similar
to Lemma 10 in [7] (see also Lemma 53.1 in [8]):

Lemma L.III.2: Let P (x) ∈ K[x] \ K and let f, g ∈ M(D) satisfy P ◦ f = P ◦ g. Let W =
{c1, ..., cl} be the set of zeros of P ′.

For each j = 1, ..., k (k ≤ l) let qj = ωcj
(P ′). We assume that P (cj) 6= P (cn) ∀j = 1, ..., k, ∀n ≤

l. Then f, g satisfy

NR(r, f) +
k∑

j=1

ZR(r, f − cj) ≤ ZR(r,
1
f
− 1
g

) +
k∑

j=1

1
qj
ZR(r, g′ | f(x) = cj , g(x) /∈W ).

Furthermore, if f, g ∈ A(D), then

k∑
j=1

ZR(r, f − cj) ≤ ZR(r, f − g) +
k∑

j=1

1
qj
ZR(r, g′ | f(x) = cj , g(x) /∈W ).

The following lemma is immdiate:

Lemma L.III.3: Let P ∈ K[x] and let f, g ∈ A∗(D) satisfy P ◦ f = P ◦ g. Then TR(r, f) =
TR(r, g) +O(log(r)) r > R).

Proofs of Theorems T.III.7 and T.III.8: Suppose that f and g are not identical. Let W be
the set of zeros of P ′ and let c1, ..., ck lie in W . Clearly by applying Theorem T.II.11 we obtain
respectively in Theorems T.III.7 and T.III.8

(1) (k − 1)TR(r, f) ≤
k∑

j=1

ZR(r, f − cj) +NR(r, f)− ZW
R (r, f ′) +O(log(r)), (r > R),

(2) (k − 1)TR(r, g) ≤
k∑

j=1

ZR(r, g − cj) +NR(r, g)− ZW
R (r, g′) +O(log(r)), (r > R).
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Now, let φ =
1
f
− 1
g

and for each j = 1, ..., k, let qj = ωcj (P ′). By (1) and (2) and by Lemma

L.III.2 we obtain

(k − 1)TR(r, f) ≤ ZR(r, φ) +
k∑

j=1

1
qj
ZR(r, g′ | f(x) = cj , g(x) /∈W )

(3) −ZR(r, f ′ | f(x) /∈W +O(log(r))

and similarly:

(k − 1)TR(r, g) ≤ ZR(r, φ) +
k∑

j=1

1
qj
ZR(r, f ′ | g(x) = cj , f(x) /∈W )

(4) −ZR(r, g′ | g(x) /∈W +O(log(r)).

By adding in each case the two inequalities by (3) and (4) in Theorems T.III.7 and T.III.8, we
obtain:

(k − 1)(TR(r, f) + TR(r, g)) ≤ 2ZR(r, φ)+

+
k∑

j=1

1
qj

[ZR(r, f ′ | g(x) = cj , f(x) /∈ S + ZR(r, g′ | f(x) = cj , g(x) /∈W )]

(5) −ZR(r, f ′ | f(x) /∈W )− ZR(r, g′ | g(x) /∈W )] +O(log(r)).

Now, in each inequality (5), we notice that in the left side member we have the term:

k∑
j=1

1
qj

[ZR(r, f ′ | g(x) = cj , f(x) /∈ S)]− ZR(r, f ′ | f(x) /∈W )

which is clearly inferior or equal to zero and similarly

k∑
j=1

1
qj

[ZR(r, g′ | f(x) = cj , g(x) /∈ S)]− ZR(r, g′ | g(x) /∈W ) ≤ 0.

Consequently, by Lemma L.III.2, in Theorems T.III.8 we obtain

(k − 1)(TR(r, f) + TR(r, g)) ≤ 2ZR(r, φ) +O(log(r))

and hence

(6) (k − 1)(TR(r, f) + TR(r, g)) ≤ 2ZR(r, f − g) +O(log(r)).

Now, by Theorem T.II.3 we have ZR(r, φ) ≤ TR(r, f) + TR(r, g) + O(log(r)) therefore k ≤ 3 and
hence, if Υ(P ) ≥ 4, we have f = g.



p-adic Nevanlinna Theory outside of a hole 14

Now assume the hypotheses of Theorem T.III.7. By Lemma L.III.2 we can replace ZR(r, φ) by
ZR(r, f − g). Next, by Lemma L.III.3, TR(r, f) = TR(r, g) +O(log(r)), hence, by Theorem T.II.3,
we can derive TR(r, f − g) ≤ TR(r, f) +O(log(r)) = TR(r, g) +O(log(r)). Consequently in place of
(6), in Theorem T.III.7 we obtain

(k − 1)(TR(r, f) + TR(r, g)) ≤ 2ZR(r, f − g) +O(log(r)) ≤ TR(r, f) + TR(r, g) +O(log(r)).

Thus we can conclude that k ≤ 2 in Theorem T.III.7 and hence, if Υ(P ) ≥ 3, we have f = g.

Theorem T.III.9: Let

Q(x) =
(

(n+ 2)(n+ 1)xn+3 − 2(n+ 3)(n+ 1)xn+2 + (n+ 3)(n+ 2)xn+1
)
.

Then Q is a polynomial of uniqueness for M∗(D) for every n ≥ 3.

The proof of Theorem T.III.9 is similar to this proposed for meromorphic functions in K or in
C (see for instance [7], [8], [9]). It uses the following basic lemma L.III.4 (stated in [9]):

Lemma L.III.4: Let E be an algebraically closed field of characteristic 0 and let

P (x) = (n− 1)2(xn − 1)− n(n− 2)(xn−1 − 1)2 ∈ E[x].

Then P admits 1 as a zero of order 4 and all other zeros uj (1 ≤ j ≤ 2n− 6) are simple.

Notation: Following Theorem T.III.9, given n ∈ N and let c ∈ K) we denote by Pn,c the
polynomial introduced in [10] and also used in [3] and [8]:

Pn,c(x) = (n− 1)(n− 2)xn − 2n(n− 2)xn−1 + n(n− 1)xn−2 + c

and by L(n, c) be the set of zeros of Pn,c in K.
In order to state Theorem III.11, we need recall the notation E used with URSCM. Given a

subset B of K and f ∈M(D) we denote by E(f,B) the set in K×N∗:⋃
a∈B

{(z, q) ∈ K×N∗| z a zero of order q of f(x)− a}.

And given a subset B of P1(K) containing {∞} and f ∈ M(D), we denote by E(f,B) the
subset of K×N∗: E(f, S ∩K) ∪ {(z, q) z a pole of order q of f}.

Theorem T.III.10: Let f, g ∈M∗(D) be two different non-constant functions satisfying f−1(L(n, c)) =
g−1(L(n, c)). Then n ≤ 16. Moreover, if f, g ∈ A∗(D), then n ≤ 9.

Corollary T.III.10.1: Let n ≥ 17. Then L(n, c) is an ursim for M∗(D). Let n ≥ 10. Then
L(n, c) is an ursim for A∗(D).

Theorem T.III.11: Let f, g ∈M∗(D) be two distinct non-constant functions satisfying E(f, L(n, c)) =
E(g, L(n, c)). Then n ≤ 10. Moreover, if f, g ∈ A∗(D) then n ≤ 6.

Corollary T.III.11.1: For every n ≥ 11, L(n, c) is an urscm for M∗(D) and for every n ≥ 7,
L(n, c) is an urscm for A∗(D).

Proof of Theorems T.III.10 and T.III.11: The proof of Theorems T.III.10 and T.III.11 are
very close to the proofs of Theorems 1.6 and 1.11 in [3] and in [9] (see also Theorems 54.10 and
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54.16 in [8]), just by replacing O(1) by O(log(r)) and also look like the proofs given in [9], thanks
to Theorem T.II.11. The proofs use the following two lemmas L.III.5 and L.III.6.

Lemma L.III.5: Let F, G ∈ M(D) have the same poles, ignoring multiplicitiy, and let H =
F ′′

F ′
− G′′

G′
. Every pole of H has multiplicity order 1. Let α be a pole of F and G. If α has same

multiplicity for F and G, then H has no pole at α. Moreover, if α has a multiplicity order 1 for
both F and G, then α is a zero of H.

Lemma L.III.6: Let f, g ∈M(D)) be two different non-constant functions satisfying
f ′′

f ′
=
g′′

g′
.

Then f and g are linked by a relation of the form f = ag + b.
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