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Order, type and cotype of growth
for p-adic entire functions

A survey with additional properties

Kamal Boussaf, Abdelbaki Boutabaa

and Alain Escassut

Abstract. Let IK be a complete ultrametric algebraically closed field and let A( IK) be the
IK-algebra of entires functions on IK. For an f ∈ A( IK), similarly to complex analysis,

one can define the order of growth as ρ(f) = lim sup
r→+∞

log(log(|f |(r))
log r

. When ρ(f) 6= 0,+∞,

one can define the type of growth as σ(f) = lim sup
r→+∞

log(|f |(r))
rρ(f)

. But here, we can also

define the cotype of growth as ψ(f) = lim sup
r→+∞

q(f, r)
rρ(f)

where q(f, r) is the number of zeros

of f in the disk of center 0 and radius r. Many properties described here were first given in
the Houston Journal, but new inequalities linking the order, type and cotype are given in
this paper: we show that ρ(f)σ(f) ≤ ψ(f) ≤ eρ(f)σ(f). Moreover, if ψ or σ are veritable
limits, then ρ(f)σ(f) = ψ(f) and this relation is conjectured in the general case. Several
other properties are examined concerning ρ, σ, ψ for f and f ′. Particularly, we show that

if an entire function f has finite order, then
f ′

f2
takes every value infinitely many times.

Keywords: p-adic entire functions, growth of entire functions, order, type and cotype of
growth.
2010 Mathematics Subject Classification: 12J25; 30D35; 30G06; 46S10.

1. Order and cotype of growth

We denote by IK an algebraically closed field of characteristic 0, complete with respect
to an ultrametric absolute value | . |. Analytic functions inside a disk or in the whole field
IK were introduced and studied in many books. Given α ∈ IK and R ∈ IR∗+, we denote

by d(α,R) the disk {x ∈ IK | |x− α| ≤ R}, by d(α,R−) the disk {x ∈ IK | |x− α| < R},
by C(α, r) the circle {x ∈ IK | |x−α| = r}, by A( IK) the IK-algebra of analytic functions
in IK (i.e. the set of power series with an infinite radius of convergence) and by M( IK)
the field of meromorphic functions in IK (i.e. the field of fractions of A( IK)). Given
f ∈M( IK), we will denote by q(f, r) the number of zeros of f in d(0, r), taking multiplicity
into account and by u(f, r) the number of distinct multiple poles of f in d(0, r). Throughout
the paper, log denotes the Neperian logarithm.

Here we mean to introduce and study the notion of order of growth and type of growth
for functions of order t. We will also introduce a new notion of cotype of growth in relation
with the distribution of zeros in disks which plays a major role in processes that are quite
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different from those in complex analysis. This has an application to the question whether
an entire function can be devided by its derivative inside the algebra of entire functions.

Let us shortly recall classical results [5], [6], [8]:

Notation: Given f ∈ A( IK) and r > 0, we denote by |f |(r) the number
sup{|f(x)| | |x| = r}.

Theorem A | . |(r) is a multiplicative norm on A( IK). Suppose f(0) 6= 0 and let
a1, ..., am be the various zeros of f in d(0, r) with |an| ≤ |an+1|, 1 ≤ n ≤ m− 1, each zero
an having a multiplicity order wn. Then

log(|f |(r)) = log(|f(0)|) +
m∑
n=1

wn(log(r)− log(|an|)).

Theorem B: Let f ∈ A( IK) be non-identically zero and let r′, r′′ ∈]0,+∞[ with r′ < r′′.
Then (r′′

r′

)q(f,r′′)
≥ |f |(r

′′)
|f |(r′)

≥
(r′′
r′

)q(f,r′)
.

Theorem C: Let f ∈ A( IK). Then

|f ′|(r) ≤ |f |(r)
r
∀r > 0.

Theorem D: Let f, g ∈ A( IK). Then |f ◦ g|(r) = |f |(|g|(r)) ∀r > 0.

Here, we must recall a theorem proven in [3], (Main Theorem) and in [7] (Theorem
33.12), to characterize meromorphic functions admitting a primitive:

Theorem E: Let f ∈ M( IK). Then f admits primitives if and only if all its residues
are null.

The question whether the derivative of a meromorphic function in IK can admit a
Picard value has been thoroughly examined. By [1] we have the following theorem:

Theorem F: Let f ∈ M( IK) be such that there exists c and s ∈]0,+∞[ satisfying
u(f, r) ≤ crs ∀r ≥ 1. Then for every b ∈ IK, f ′ − b has infinitely many zeros.

Definition and notation: Similarly to the definition known on complex entire functions
[9], given f ∈ A( IK), the superior limit

lim sup
r→+∞

( log(log(|f |(r)))
log(r)

)
2



is called the order of growth of f or the order of f in brief and is denoted by ρ(f). We
say that f has finite order if ρ(f) < +∞.

Theorem 1: Let f, g ∈ A( IK). Then:
if c(|f |(r))α ≥ |g|(r) with α and c > 0, when r is big enough, then ρ(f) ≥ ρ(g),
ρ(f + g) ≤ max(ρ(f), ρ(g)),
ρ(fg) = max(ρ(f), ρ(g)).

Proof: Similarly to the complex context we can easily verify that

ρ(f + g) ≤ max(ρ(f), ρ(g)), ρ(fg) ≤ max(ρ(f), ρ(g))

and if c(|f |(r))α ≥ |g|(r) with α and c > 0 when r is big enough, then ρ(f) ≥ ρ(g). Let us
now show that ρ(fg) ≥ max(ρ(f), ρ(g)). Since limr→+∞ |g|(r) = +∞, of course we have
log(|f.g|(r)) ≥ log(|f |(r)) when r is big enough, hence

log(log(|f.g|(r)))
log(r)

≥ log(log(|f |(r)))
log(r)

and therefore ρ(f.g) ≥ ρ(f) and similarly, ρ(f.g) ≥ ρ(g).

Corollary 1.1: Let f, g ∈ A( IK). Then ρ(fn) = ρ(f) ∀n ∈ IN∗. If ρ(f) > ρ(g), then
ρ(f + g) = ρ(f).

Remark: ρ is an ultrametric extended semi-norm.

Notation: Given t ∈ [0,+∞[, we denote by A( IK, t) the set of f ∈ A( IK) such that
ρ(f) ≤ t and we set

A0( IK) =
⋃

t∈[0,+∞[

A( IK, t).

Corollary 1.2. For any t ≥ 0, A( IK, t) is a IK-subalgebra of A( IK). If s ≤ t, then
A( IK, s) ⊂ A( IK, t) and A0( IK) is also a IK-subalgebra of A( IK).

Theorem 2: Let f ∈ A( IK) and let P ∈ IK[x]. Then ρ(P ◦ f) = ρ(f) and
ρ(f ◦ P ) = deg(P )ρ(f).

Proof: Let n = deg(P ). For r big enough, we have

log(log(|f |(r))) ≤ log(log(|P ◦f |(r))) ≤ log((n+1) log(|f |(r))) = log(n+1)+log(log(|f |(r)))

Consequently,

lim sup
r→+∞

(
log(log(|f |(r)))

log(r)

)
≤ lim sup

r→+∞

(
log(log(|P ◦ f |(r)))

log(r)

)
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≤ lim sup
r→+∞

(
log(n+ 1) + log(log(|f |(r)))

log(r)

)
and therefore ρ(P ◦ f) = ρ(f).

Next, for r big enough, we have

log(log(|f |(r)))
log(r)

≤ log(log(|f ◦ P |(r)))
log(r)

=
( log(log(|f ◦ P |(r)))

log(|P |(r))

)( log(|P |(r))
log(r)

)
Now,

lim sup
r→+∞

( log(log(|f ◦ P |(r)))
log(|P |(r))

)
= lim sup

r→+∞

( log(log(|f |(r)))
log(r)

)
because the function h defined in [0,+∞[ as h(r) = |P |(r) is obviously an increasing
continuous bijection from [0,+∞[ onto [|P (0)|,+∞[. On the other hand, it is obviously

seen that lim sup
r→+∞

( log(|P |(r))
log(r)

)
= n. Consequently,

lim sup
r→+∞

( log(log(|f ◦ P |(r)))
log(|P |(r))

)
= n lim sup

r→+∞

( log(log(|f |(r)))
log(r)

)
and hence ρ(f ◦ P ) = nρ(f).

Theorem 3: Let f, g ∈ A( IK) be transcendental. If ρ(f) 6= 0, then ρ(f ◦ g) = +∞. If
ρ(f) = 0, then ρ(f ◦ g) ≥ ρ(g).

Proof: Let us fix an integer n ∈ IN. Let f(x) =
∑∞
j=0 anx

n and g(x) =
∑∞
j=0 bnx

n.
Since g is transcendental, for every n ∈ IN, there exists rn such that q(g, rn) ≥ n. Then
|g|(r) ≥ |bn|rn ∀r ≥ rn and hence, by Theorem 2, we have

(1) ρ(f ◦ g) ≥ nρ(f).

Relation (1) is true for every n ∈ IN. Suppose first that ρ(f) 6= 0. Then by (1) we have
ρ(f ◦ g) = +∞.

Now, suppose ρ(f) = 0. Let k ∈ IN be such that ak 6= 0. Let s0 be such that
q(f, s0) ≥ k. Then |f |(r) ≥ |ak|rk ∀r ≥ s0, hence |f ◦ g|(r) ≥ |ak|(|g|(r))k ∀r ≥ s0, hence
by Theorems 1 and 2 we have ρ(f ◦ g) ≥ ρ(g).

Theorem 4: Let f ∈ A( IK) be not identically zero. If there exists s ≥ 0 such that

lim sup
r→+∞

(q(f, r)
rs

)
< +∞

then ρ(f) is the lowest bound of the set of s ∈ [0,+∞[ such that

lim sup
r→+∞

(q(f, r)
rs

)
= 0.
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Moreover, if lim sup
r→+∞

(q(f, r)
rt

)
is a number b ∈]0,+∞[, then ρ(f) = t.

If there exists no s such that lim sup
r→+∞

(q(f, r)
rs

)
< +∞, then ρ(f) = +∞.

Proof: The proof holds in two statements. First we will prove that given f ∈ A( IK)

nonconstant and such that for some t ≥ 0, lim sup
r→+∞

q(f, r)
rt

is finite, then ρ(f) ≤ t.

Set lim sup
r→+∞

(q(f, r)
rt

)
= b ∈ [0,+∞[. Let us fix ε > 0. We can find R > 1 such that

|f |(R) > e2 and
q(f, r)
rt

≤ b + ε ∀r ≥ R and hence, by Theorem B, we have
|f |(r)
|f |(R)

≤( r
R

)q(f,r) ≤ ( r
R

)rt(b+ε)). Therefore, since R > 1, we have

log(|f |(r)) ≤ log(|f |(R)) + rt(b+ ε)(log(r)).

Now, when u > 2, v > 2, we check that log(u + v) ≤ log(u) + log(v). Applying that
inequality with u = log(|f |(R)) and v = rt(b+ ε)(log(r)) when rt(b+ ε)(log(r)) > 2, that
yields

log(log(|f |(r))) ≤ log(log(|f |(R))) + t log(r) + log(b+ ε) + log(log(r)).

Consequently,

log(log(|f |(r)))
log(r)

≤ log(log(|f |(R))) + t log(r) + log(b+ ε) + log(log(r))
log(r)

and hence we can check that

lim sup
r→+∞

log(log(|f |(r)))
log(r)

≤ t

which proves the first claim.

Second, we will prove that given f ∈ A( IK) not identically zero and such that for

some t ≥ 0, we have lim sup
r→+∞

q(f, r)
rt

> 0, then ρ(f) ≥ t.

By hypotheses, there exists a sequence (rn)n∈ IN such that limn→+∞ rn = +∞ and

such that lim
n→+∞

q(f, rn)
rtn

> 0. Thus there exists b > 0 such that lim
n→+∞

q(f, rn)
rtn

≥ b. We

can assume that |f |(r0) ≥ 1, hence by Theorem A, |f |(rn) ≥ 1 ∀n. Let λ ∈]1,+∞[. By
Theorem B we have

|f |(λrn)
|f |(rn)

≥ (λ)q(f,rn) ≥
(
λ
)[b(rn)t]

hence
log(|f |(λrn) ≥ log(|f |(rn)) + b(rn)t log(λ).
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Since |f |(rn) ≥ 1, we have log(log(|f |(λrn))) ≥ log(b log(λ)) + t log(rn) therefore

log(log(|f |(λrn))
log(rn)

≥ t+
log(b log(λ))

log(rn)
∀n ∈ IN

and hence

lim sup
r→+∞

log(log(|f |(r)))
log(r)

≥ t

which ends the proof the scond claim.

Example: Suppose that for each r > 0, we have q(f, r) ∈ [rt log r, rt log r + 1]. Then

of course, for every s > t, we have lim sup
r→+∞

q(f, r)
rs

= 0 and lim sup
r→+∞

q(f, r)
rt

= +∞, so there

exists no t > 0 such that
q(f, r)
rt

have non-zero superior limit b < +∞.

Definition and notation: Let t ∈ [0,+∞[ and let f ∈ A( IK) of order t. We set

ψ(f) = lim sup
r→+∞

q(f, r)
rt

and call ψ(f) the cotype of f .

Theorem 5: Let f, g ∈ A0( IK). Then ψ(fg) ≤ ψ(f) + ψ(g). Moreover, if ρ(f) = ρ(g)
then max(ψ(f), ψ(g)) ≤ ψ(fg).

Proof: Set ρ(f) = s, ρ(g) = t. Without loss of generality we can assume s ≥ t. By
Theorem 1, we have ρ(f.g) = ρ(f) = s. Now, for each r > 0, we have q(f.g, r) =
q(f, r) + q(g, r) hence

ψ(fg) = lim sup
r→+∞

q(f, r) + q(g, r)
rs

≤ lim sup
r→+∞

q(f, r)
rs

+ lim sup
r→+∞

q(g, r)
rt

hence ψ(fg) ≤ ψ(f) + ψ(g).

Now, suppose s = t. Then

ψ(fg) = lim sup
r→+∞

q(f, r) + q(g, r)
rs

≥ lim sup
r→+∞

max(q(f, r), q(g, r))
rs

= max(ψ(f), ψ(g)),

which ends the proof.

Thanks to Theorem F we can derive the following Theorem 6:

Theorem 6: Let f ∈ A0( IK). Then for every b ∈ IK,
f ′

f2
− b has infinitely many zeros.

Proof Let t = ρ(f) and take c > ψ(f). Since f ∈ A0( IK), by Theorem 4 we have

q(f, r) ≤ crt when r is big enough, hence by Theorem F the derivative of
1
f

takes every

value b infinitely many times.
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Now we can derive the following Corollary 6.1 that gives the solution for a function
of finite order, of the following general problem: given an entire function f , is it posible
that all zeros of f ′ be zeros of f , but finitely many?

Corollary 6.1: Let f ∈ A0( IK). Then f ′ admits infinitely many zeros that are not zeros
of f .

Theorem 7 is similar to a well known statement in complex analysis and its proof also
is similar when ρ(f) < +∞ [9] but is different when ρ(f) = +∞.

Theorem 7 Let f(x) =
+∞∑
n=0

anx
n ∈ A( IK). Then ρ(f) = lim sup

n→+∞

( n log(n)
− log |an|

)
.

Proof: If ρ(f) < +∞, the proof is identical to the one made in the complex context,
replacing M(f, r) by the multiplicative norm |f |(r). Let t = ρ(f) and suppose first that
t < +∞. Let α = lim supn→+∞

n log(n)
− log |an| . Take s > t. For all n ∈ IN, we have |an|rn ≤

|f |(r) and therefore |an|rn ≤ e(r
s) and hence |an| ≤ r−ne(r

s) i.e.

(1) log |an| ≤ rs − n log(r)

when r is big enough.

Now, choose r =
(n
s

) 1
s

. So, we have log |an| ≤
n

s
− n

s
log(

n

s
), i.e.

− log(|an|) ≥ −
n

s
+
n

s
log(

n

s
).

Consequently, when n is big enough we have

n log n
(− log |an|)

≤ n log n
n
s log(ns )− n

s

≤ s+O(1)

Therefore we have α ≤ s and since this is true for each s > t, that shows that α ≤ t.
Now, take β > α so that

n log n
(− log |an|)

< β for n big enough. Then, when n is big

enough, we have n log(n) ≤ β(− log |an|) hence n
n
β ≤ 1

|an|
and hence |an| ≤

1
n
n
β

. Conse-

quently, |an|rn ≤
rn

n
n
β

. Now, for r big enough, |f |(r) = sup
n∈ IN

|an|rn ≤ sup
n∈ IN

rn

n
n
β

.

Putting ϕ(n) = n
β and R = r

β , we have

|f |(r
1
β ) ≤ sup

n∈ IN

rϕ(n)

nϕ(n)
≤ sup

x>0

Rx

xx

Now we check that the maximum on [0,+∞[ of the function g(x) =
Rx

xx
is reached when

x =
R

e
and hence is e

R
e = e

r
βe . Therefore, we have |f |(r

1
β ) ≤ e

r
βe . Putting now u = r

1
β ,

we can derive |f |(u) ≤ e
uβ

βe , hence

log(log(|f |(u))) ≤ β log(u)− log(eβ).
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Consequently,

lim sup
r→+∞

log(log(|f |(r)))
log(r)

≤ β.

So we have t ≤ β and since this is true for all β > α, we have proven that t ≤ α, which
ends the proof when t < +∞.

Suppose now that t = +∞ and suppose that lim sup
n→+∞

n log n
(− log |an|)

< +∞. Let us take

s ∈ IN such that

(2)
n log n

(− log |an|)
< s ∀n ∈ IN.

By Theorem 4, we have lim sup
r→+∞

q(f, r)
s

= +∞. So, we can take a sequence (rm)m∈ IN such

that

(3) lim
m→+∞

q(f, rm)
(rm)s

= +∞.

For simplicity, set um = q(f, rm), m ∈ IN. By (2), for m big enough we have

um log(um) < s(− log(|aum |) = s log
( 1
|aum |

)
hence

1
(um)um

> |aum |s,

therefore

|aum |s(rm)sum <
(rm)sum

(um)um

i.e.

(|f |(rm))s <
( (rm)s

um

)um
But by Theorem A, we have lim

r→+∞
|f |(rm) = +∞, hence (rm)s > um when m is big enough

and therefore lim sup
m→+∞

q(f, rm)
(rm)s

≤ 1, a contradiction to (3). Consequently, (2) is impossible

and therefore

lim sup
n→+∞

( n log(n)
− log |an|

)
= +∞ = ρ(f).

Remark: Of course, polynomials have a growth order equal to 0. On IK as on lC we
can easily construct transcendental entire functions of order 0 or of order ∞.
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Example 1: Let (an)n∈ IN be a sequence in IK such that
− log |an| ∈ [n(log n)2, n(log n)2 + 1]. Then clearly,

lim
n→+∞

log |an|
n

= −∞

hence the function
∞∑
n=0

anx
n has a radius of convergence equal to +∞. On the other hand,

lim
n→+∞

n log n
− log |an|

= 0

hence ρ(f) = 0.

Example 2: Let (an)n∈ IN be a sequence in IK such that
− log |an| ∈ [n

√
log n, n

√
log n+ 1]. Then

lim
n→+∞

log |an|
n

= −∞

again and hence the function
∞∑
n=0

anx
n has a radius of convergence equal to +∞. On the

other hand, lim
n→+∞

( n log n
− log |an|

)
= +∞, hence ρ(f) = +∞.

Thanks to Theorem F, we can now prove Theorem 8:

Theorem 8: Let f =
g

h
∈ M( IK) with g ∈ A( IK) and h ∈ A0( IK) and ψ(h) < +∞.

Then for every b ∈ IK, f ′ − b has infinitely many zeros.

Proof: Set t = ρ(h). There exists ` > ψ(h) such that q(r, h) ≤ `rt ∀r > 1. Consequently,
taking s > t big enough, we have u(f, r) < rs ∀r > 1 and hence f satisfies the hypotheses
of Theorem F. Therefore, for every b ∈ IK, f ′ − b has infinitely may zeros.

Then by Theorem E, we can now derive Corollary 8.1:

Corollary 8.1: Let f =
g

h
∈ M( IK) have all its residues null, with g ∈ A( IK) and

h ∈ A0( IK) and ψ(h) < +∞. Then for every b ∈ IK, f − b has infinitely many zeros.

Remark: Consider a function f of the form
∞∑
n=1

1
(x− an)2

with |an| = nt. Clearly f

belongs to M( IK), all residues are null, hence f admits primitives. Next, primitives
satisfy the hypothesis of Theorem F. Consequently, f takes every value infinitely many

times. Therefore, f cannot be of the form
P

h
with P ∈ IK[x] and h ∈ A( IK).
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2. Type of growth

Definition and notation: In complex analysis, the type of growth is defined for an

entire function of order t < +∞ as σ(f) = lim sup
r→+∞

log(Mf (r))
rt

.

Of course the same notion may be defined for f ∈ A( IK). Given f ∈ A0( IK) of order

t < +∞, we set σ(f) = lim sup
r→+∞

log(|f |(r))
rt

and σ(f) is called the type of growth of f .

Moreover, here we will also use the notation σ̃(f) = lim inf
r→+∞

log(|f |r))
rt

.

Theorem 9: Let f(x) =
∞∑
n=0

anx
n ∈ A0( IK) such that ρ(f) ∈]0,+∞[. Then

σ(f)ρ(f)e = lim sup
n→+∞

(
n n

√
|an|ρ(f)

)
.

Proof: The proof is identical to this of the same statement in lC [9], Proposition 11.5.

Notation: Let f ∈ A( IK), let (an)n∈ IN be the sequence of zeros of f with |an| ≤
|an+1|, n ∈ IN and for each n ∈ IN, let wn be the multiplicity order of an. For every
r > 0, let k(r) be the integer such that |an| ≤ r ∀n ≤ k(r) and |an| > r ∀n > k(r). . We

set ψ(f, r) =
q(f, r)
rt

and σ(f, r) =
k(r)∑
n=0

wn(log(r)− log(cn))
rt

.

Theorem 10: Let f ∈ A0( IK). Then

ρ(f) = inf{s ∈]0,+∞[ | lim
r→+∞

log(|f |(r))
rs

= 0}.

Proof: Indeed, let M = inf{s ∈]0,+∞[ | limr→+∞
log(|f |(r))

rs = 0}. First we will prove
that ρ(f) ≤ M Let s be such that limr→+∞

log(|f |(r))
rs = 0. Let us fix ε > 0. For r

big enough, we have
log(|f |(r))

rs
≤ ε, hence log(|f |(r)) ≤ εrs, therefore log(log(|f |(r))) ≤

log ε+ s log(r), hence
log(log(|f |(r)))

log(r)
≤ s+

ε

log(r)
. This is true for every ε > 0, therefore

lim sup
r→+∞

log(log(|f |(r)))
log(r)

≤ s i.e. ρ(f) ≤ s and hence, ρ(f) ≤M .

On the other hand, we notice that

M = sup{s ∈]0,+∞[ | lim sup
r→+∞

log(|f |(r))
rs

> 0}.
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Now, suppose that for some s > 0, we have lim sup
r→+∞

log(|f |(r))
rs

= b > 0. Let us fix

ε ∈]0, b[. There exists a sequence (rn)n∈ IN such that, when n is big enough, we have

b− ε ≤ log(|f |(rn))
(rn)s

≤ b+ ε, hence

s log(rn) + log(b− ε) < log(log(|f |(rn))) < s log(rn) + log(b− ε) therefore

s+
log(b− ε)
log(rn)

<
log(log(|f |(rn)

log(rn)
< s+

log(b+ ε)
log(rn)

Consequently, lim
n→+∞

log(log(|f |(rn))
log(rn)

= s and therefore ρ(f) ≥ s, hence ρ(f) ≥ M . Fi-

nally, ρ(f) = M .

Theorem 11: Let f, g ∈ A0( IK). Then σ(fg) ≤ σ(f) + σ(g). If ρ(f) ≥ ρ(g), then
σ(f) ≤ σ(fg). If ρ(f) = ρ(g), then max(σ(f), σ(g)) ≤ σ(fg).

If ρ(f) = ρ(g) and σ(f) > σ(g) then ρ(f + g) = ρ(f) and σ(f + g) = σ(f). If
ρ(f + g) = ρ(f) ≥ ρ(g) then σ(f + g) ≤ max(σ(f), σ(g)).

Proof: Let s = ρ(f), t = ρ(g) and suppose s ≥ t. When r is big enough, we have
max(log(|f |(r)), log(|g|(r)) ≤ log(|f.g|(r)) = log(|f |(r)) + log(|g|(r)) and by Theorem 1,
we have ρ(fg) = s. Therefore

σ(fg) = lim sup
r→+∞

( log(|f.g|(r))
rs

)
≤ lim sup

r→+∞

( log(|f |(r))
rs

)
+ lim sup

r→+∞

( log(|g|(r))
rs

)
≤ lim sup

r→+∞

( log(|f |(r))
rs

)
+ lim sup

r→+∞

( log(|g|(r))
rt

)
= σ(f) + σ(g).

On the other hand,

σ(f) = lim sup
r→+∞

log(|f |(r))
rs

≤ lim sup
r→+∞

log(|fg|(r))
rs

.

But ρ(fg) = s, hence σ(f) ≤ σ(fg). Particularly, if ρ(f) = ρ(g), then max(σ(f), σ(g)) ≤
σ(fg).

Now, suppose s > t. Then by Corollary 1.1, ρ(f + g) = ρ(f) = s. Consequently,

σ(f + g) = lim sup
r→+∞

( log |f + g|(r)
rs

)
≤ lim sup

r→+∞

(max(log |f |(r), log |g|(r))
rs

)
= max

(
lim sup
r→+∞

( log |f |(r)
rs

)
, lim sup
r→+∞

( log |g|(r)
rs

))
≤ max

(
lim sup
r→+∞

( log |f |(r)
rs

)
, lim sup
r→+∞

( log |g|(r)
rt

))
= max

(
σ(f), σ(g)

)
.
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Now, suppose ρ(f) = ρ(g) = s. Then

max
(

lim sup
r→+∞

(
log(|f |(r))

rs
), lim sup

r→+∞
(
log(|g|(r))

rs
)
)
≤ lim sup

r→+∞

( log(|f.g|(r))
rs

)
because the two both |f |(r) and |g|(r) tend to +∞ with r. Consequently, σ(fg) ≥
max(σ(f), σ(g)).

Now, suppose again that ρ(f) = ρ(g) and suppose σ(f) > σ(g). Let s = ρ(f), b =
σ(f). Then b > 0. Let (rn)n∈ IN be a sequence such that limn→+∞ rn = +∞ and

lim
n→+∞

log(|f |(rn))
(rn)s

= b. Since σ(g) < σ(f), we notice that when n is big enough we have

|g|(rn) < |f |(rn). Consequently, when n is big enough, we have |f + g|(rn) = |f |(rn) and
hence

(1) lim
n→+∞

log(|f + g|(rn))
(rn)s

= b.

By definition of σ we have σ(f + g) ≥ lim
n→+∞

log(|f + g|(rn))
(rn)ρ(f+g)

. By Theorem 1, we have

ρ(f + g) ≤ s, hence

σ(f + g) ≥ lim
n→+∞

log(|f + g|(rn))
(rn)ρ(f+g)

≥ lim
n→+∞

log(|f + g|(rn))
(rn)s

= lim
n→+∞

log(|f |(rn))
(rn)s

= σ(f)

therefore by (1), σ(f+g) ≥ σ(f). Suppose that σ(f+g) > σ(f). Putting h = f+g, we have
f = h− g with σ(g) < σ(h), hence σ(h− g) ≥ σ(h) i.e. σ(f) > σ(f + g), a contradiction.

Consequently, σ(f + g) = σ(f). Now we have, lim sup
r→+∞

log(|f + g|(r))
rs

= b > 0. But then,

lim sup
r→+∞

log(|f + g|(r))
rm

= 0 ∀m > s. Therefore, by Theorem 10, ρ(f + g) = ρ(f).

Finally, suppose now that ρ(f + g) = ρ(f) ≥ ρ(g). Let s = ρ(f) and t = ρ(g). Then,

σ(f + g) = lim sup
r→+∞

log(|f + g|(r))
rs

≤ max
(

lim sup
r→+∞

log(|f |(r))
rs

, lim sup
r→+∞

log(|g|(r))
rs

)
= max(σ(f), σ(g)).

Corollary 11.1: Let f, g ∈ A( IK) be such that ρ(f) 6= ρ(g). Then σ(f + g) ≤
max(σ(f), σ(g)).

Proof: Indeed, suppose for instance ρ(f) > ρ(g). Then ρ(f + g) = ρ(f) hence, by the
last assertion of Theorem 11, σ(f + g) ≤ max(σ(f), σ(g)).

12



In the proof of Theorem 12, we will use the following trivial lemma:

Lemma L : Let g, h be the real functions defined in ]0,+∞[ as g(x) =
etx − 1
x

and

h(x) =
1− e−tx

x
with t > 0. Then:

i) inf{|g(x)| |x > 0} = t.
ii) sup{|h(x)| |x > 0} = t.

Theorem 12: Let f ∈ A0( IK) be not identically zero. Then

ρ(f)σ(f) ≤ ψ(f) ≤ ρ(f)
(
eσ(f)− σ̃(f)

)
.

Moreover, if ψ(f) = lim
r→+∞

q(f, r)
rρ(f)

or if σ(f) = lim
r→+∞

log(|f |(r))
rρ(f)

, then ψ(f) = ρ(f)σ(f).

Proof: Without loss of generality we can assume that f(0) 6= 0. Let t = ρ(f) and set
` = log(|f(0|). Let (an)n∈ IN be the sequence of zeros of f with |an| ≤ |an+1|, n ∈ IN and
for each n ∈ IN, let wn be the multiplicity order of an. For every r > 0, let k(r) be the
integer such that |an| ≤ r ∀n ≤ k(r) and |an| > r ∀n > k(r). Then by Theorem A, we

have log(|f |(r)) = `+
k(r)∑
n=0

wn(log(r)− log(|an|)) hence

σ(f) = lim sup
r→+∞

(`+
∑k(r)
n=0 wn(log(r)− log(|an|))

rt

)
.

Given r > 0, set cn = |an| and let us keep the notations above. Then

(1) σ(f) = lim sup
r→+∞

σ(f, r), ψ(f) = lim sup
r→+∞

ψ(f, r).

We will first show the inequality ρ(f)σ(f) ≤ ψ(f). By the definition of σ(f, r) we can
derive

σ(f, r) ≤
k(re−α)∑
n=0

wn
(

log(r)− log(re−α)
)

rt

+
k(re−α)∑
n=0

wn
(

log(re−α)− log(cn)
)

rt
+ α

∑
k(re−α)<n≤k(r)

wn
rt

hence

σ(f, r) ≤ α
k(re−α)∑
n=0

wn
rt

+
k(re−α)∑
n=0

wn
(

log(re−α)− log(cn)
)

rt

+α
∑

k(re−α)<n≤k(r)

wn
rt

13



therefore

σ(f, r) ≤ α
k(re−α)∑
n=0

wn
rt

+
k(re−α)∑
n=0

wn
(

log(re−α)− log(cn)
)

rt

+α
∑

k(re−α)<n≤k(r)

wn
rt

hence

σ(f, r) ≤ α
k(re−α)∑
n=0

wn
rt

+ e−tα
k(re−α)∑
n=0

wn(log(re−α)− log(cn))
(re−α)t

+α
∑

0≤n≤k(r)

wn
rt
− α

∑
0≤n≤k(re−α)

wn
rt
,

hence

σ(f, r) ≤ e−tα
k(re−α)∑
n=0

wn(log(re−α)− log(cn))
(re−α)t

+ α
∑

0≤n≤k(r)

wn
rt
.

Thus we have
σ(f, r) ≤ e−tασ(f, re−α) + αψ(f, r).

We check that we can pass to superior limits on both sides, so we obtain σ(f) ≤ e−tασ(f)+

αψ(f) therefore σ(f)
(1− e−tα)

α
≤ ψ(f). That holds for every α > 0, hence by Lemma L

ii), we can derive

(2) ψ(f) ≥ ρ(f)σ(f).

We will now show the inequality

ψ(f) ≤ ρ(f)(eσ(f)− σ̃(f)).

Let us fix α > 0. We can write

σ(f, r) =
k(re−α)∑
n=0

wn(log(r)− log(re−α))
rt

+
k(re−α)∑
j=0

wj(log(re−α)− log(cn))
rt

+
∑

k(re−α)<j≤k(r)

wj(log(r)− log(cj))
rt
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hence

σ(f, r) ≥ α
k(re−α)∑
n=0

wn
rt

+
k(re−α)∑
j=0

wj(log(re−α)− log(cn))
rt

hence

σ(f, r) ≥ αe−tα
k(re−α)∑
n=0

wn
(re−tα)

+ e−tα
k(re−α)∑
j=0

wn(log(re−α)− log(cn))
(re−α)t

and hence
σ(f, r) ≥ αψ(f, re−α) + e−tασ(f, re−α).

Therefore, we can derive

αe−tαψ(f) ≤ lim sup
r→+∞

(
σ(f, r)− e−tασ(f, re−α))

)
and therefore

αe−tαψ(f) ≤ σ(f)− e−tασ̃(f)).

That holds for every α > 0 and hence, when tα = 1, we obtain ψ(f) ≤ ρ(f)
(
eσ(f)− σ̃(f)

)
which is the left hand inequality of the general conclusion.

Now, suppose that σ(f) = lim
r→+∞

log(|f |(r))
rt

. Then we have

lim sup
r→+∞

ψ(f, r) ≤ σ(f)
(etα − 1

α

)
and hence ψ(f) ≤ σ(f)

(etα − 1
α

)
. That holds for every

α > 0 and then, by Lemma L i) we obtain ψ(f) ≤ tσ(f), i.e. ψ(f) ≤ ρ(f)σ(f), hence by
(2) we have, ψ(f) = ρ(f)σ(f).

Now, suppose that

ψ(f) = lim
r→+∞

k(r)∑
n=0

wn
rt

= lim
r→+∞

ψ(f, r).

We can obviously find a sequence (rn)n∈ IN in ]0,+∞[ of limit +∞ such that σ(f) =
limn→+∞ σ(f, rne−α). Then, by (1) we have

σ(f, rn) ≥ αe−tαψ(f,
rn
eα

) + e−tασ(f,
rn
eα

)

hence
lim sup
n→+∞

σ(f, rn) ≥ αe−tαψ(f) + e−tασ(f)

and hence
σ(f) ≥ αe−tαψ(f) + e−tασ(f)
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therefore, ψ(f) ≤
(etα − 1

α

)
σ(f). Finally, by Lemma L i) we have, ψ(f) ≤ ρ(f)σ(f) and

hence by (2), ψ(f) = ρ(f)σ(f).

Remarks: 1) When neither σ nor ψ are obtained as veritable limits when r tends to
+∞, the method does not let us prove that ψ = ρσ, the natural conjecture.

2) Concerning the upper bound ψ(f) ≤ ρ(f)(eσ(f) − σ̃(f)) it is possible to improve

this a bit by defining the number u0 > 0 such that eu0(u0− 1) = − σ̃(f)
σ(f)

and then we have

ψ(f) ≤ ρ(f)(eu0σ(f)− σ̃(f))
u0

.

Corollary 12.1: Let f ∈ A( IK) be not identically zero and have finite growth order.
Then σ(f) is finite if and only if so is ψ(f).

By Theorems 9 and 12 we can also notice this corollary:

Corollary 12.2: Let f(x) =
∞∑
n=0

anx
n ∈ A0( IK) be not identically zero. Then

lim sup
n→+∞

(
n n

√
|an|ρ(f)

)
≤ eψ(f) ≤ e lim sup

n→+∞

(
n n

√
|an|ρ(f)

)
.

Moreover, if ψ(f) = lim
r→+∞

q(f, r)
rρ(f)

or if σ(f) = lim
r→+∞

log(|f |(r))
rρ(f)

, then

eψ(f) = lim sup
n→+∞

(
n n

√
|an|ρ(f)

)
.

Theorem 12 suggests the following conjecture:

Conjecture 1: Let f ∈ A0( IK) be such that either σ(f) < +∞ or ψ(f) < +∞. Then
ψ(f) = ρ(f)σ(f).

Now, by Theorem 8, we can also state Corollary 12.3:

Corollary 12.3: Let f =
g

h
∈ M( IK), with g, h ∈ A( IK) not identically zero and be

such that h has finite order of growth and and finite type of growth. Then f ′ takes every
value b ∈ IK infinitely many times.

3. Order and type of the derivative

Theorem 13: Let f ∈ A( IK) be not identically zero. Then ρ(f) = ρ(f ′).
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Proof: By Theorem 6 we have ρ(f ′) = lim sup
n→+∞

( n log(n)
− log(|(n+ 1)an+1|)

)
. But since

1
n
≤

|n| ≤ 1, we have

lim sup
n→+∞

( n log(n)
− log(|(n+ 1)an+1|

)
= lim sup

n→+∞

( n log(n)
− log(|an+1|)

)

= lim sup
n→+∞

( (n+ 1) log(n+ 1)
− log(|an+1|)

)
= ρ(f).

Corollary 13.1: The derivation on A( IK) restricted to the algebra A( IK, t) (resp. to
A0( IK)) provides that algebra with a derivation.

In complex analysis, it is known that if an entire function f has order t < +∞, then
f and f ′ have same type. We will check that it is the same here.

Theorem 14: Let f ∈ A( IK) be not identically zero, of order t ∈]0,+∞[. Then σ(f) =
σ(f ′).

Proof: By Theorem 8 we have, eρ(f ′)σ(f ′)

= lim sup
n→+∞

(
n
(
|n+ 1||an+1|

) t
n
)

= lim sup
n→+∞

((
(n+ 1)

(
|n+ 1||an+1|

) t
n
) n
n+1 ( n

n+ 1
))

= lim sup
n→+∞

(
(n+ 1)

(
|n+ 1||an+1|

) t
n+1
)

= eρ(f)σ(f).

But since ρ(f) = ρ(f ′) and since ρ(f) 6= 0, we can see that σ(f ′) = σ(f).

By Theorems 12, 13, 14 we can now derive

Corollary 14.1: Let f ∈ A0( IK) be not identically zero. Then
ρ(f)σ(f) ≤ ψ(f ′) ≤ eρ(f)σ(f) and |ψ(f ′)− ψ(f)|∞ ≤ (e− 1)ρ(f)σ(f).

Corollary 14.2: Let f ∈ A0( IK) be not identically zero. Then ψ(f ′) is finite if and
only if so is ψ(f).

Corollary 14.3: Let f ∈ A0( IK) be not identically zero. Then in each one of the
following hypotheses, we have ψ(f ′) = ψ(f) = ρ(f)σ(f):

i) ψ(f) = lim
r→+∞

ψ(f, r) and ψ(f ′) = lim
r→+∞

ψ(f ′, r),

ii) σ(f) = lim
r→+∞

σ(f, r) and σ(f ′) = lim
r→+∞

σ(f ′, r),

iii) ψ(f) = lim
r→+∞

ψ(f, r) and σ(f ′) = lim
r→+∞

σ(f ′, r),

iv) σ(f) = lim
r→+∞

σ(f, r) and ψ(f ′) = lim
r→+∞

ψ(f ′, r).

By Corollary 12.3, we have the following corollary:
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Corollary 14.4: Let f =
g

h
∈ M( IK) be not identically zero, with g, h ∈ A( IK) and

suppose that f has all residues null and that h has finite order of growth and finite type of
growth. Then f takes every value b ∈ IK infinitely many times.

Conjecture 1 suggests and implies the following Conjecture 2:

Conjecture 2: ψ(f) = ψ(f ′) ∀f ∈ A0( IK).

Theorem 15: Let f, g ∈ A( IK) be transcendental and of same order t ∈ [0,+∞[. Then
for every ε > 0, we have

lim sup
r→+∞

(rεq(g, r)
q(f, r)

)
= +∞.

Proof: Suppose first t = 0. The proof then is almost trivial. Indeed, for all ε > 0, we

have lim
r→+∞

q(f, r)
rε

= 0 hence lim
r→+∞

rε

q(f, r)
= +∞, therefore lim

r→+∞

rεq(g, r)
q(f, r)

= +∞.

Now suppose t > 0. By Theorem 4, we have lim sup
r→+∞

q(f, r)
rt

is a finite number ` and

hence there exists λ > 0 such that

(1) q(f, r) ≤ λrt ∀r > 1.

Now, let us fix s ∈]0, t[. By hypothesis, ρ(g) = ρ(f) and hence by Theorem 4, we have

lim sup
r→+∞

q(g, r)
rs

= +∞ so, there exists an increasing sequence (rn)n∈ IN of IR+ such that

lim
n→+∞

rn = +∞ and
q(g, rn)
(rn)s

≥ n. Therefore, by (1), we have

λ(rn)tq(g, rn)
(rn)sq(f, rn)

>
q(g, rn)
(rn)s

> n

and hence

λ lim
n→+∞

( (rn)t−sq(g, rn)
q(f, rn)

)
= +∞.

Consequently,

(2) lim sup
r→+∞

( (r)t−sq(g, r)
q(f, r)

)
= +∞.

Now, since that holds for all s ∈]0, t[, the statement derived from (2).

Remark: Comparing the number of zeros of f ′ to this of f inside a disk is very uneasy.
Now, we can give some precisions. By Theorem 15 we can derive Corollary 15.1.
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Corollary 15.1: Let f ∈ A0( IK) be not affine. Then for every ε > 0, we have

lim sup
r→+∞

(rεq(f ′, r)
q(f, r)

)
= +∞

and

lim sup
r→+∞

(rεq(f, r)
q(f ′, r)

)
= +∞.

We can now give a partial solution to a problem that arose when studying the zeros
of derivatives of meromorphic functions: given f ∈ A( IK), is it possible that f ′ divides f
in the algebra A( IK)?

Theorem 16: Let f ∈ A( IK) \ IK[x]. Suppose that for some number s > 0 we have
lim sup
r→+∞

|q(f, r)|rs > 0 (where |q(f, r)| is the ultrametric absolute value of q(f, r) defined on

IK). Then f ′ has infinitely many zeros that are not zeros of f .

Proof: Suppose that f ′ only has finitely many zeros that are not zeros of f . Then there
exist h ∈ A( IK) and P ∈ IK[x] such that Pf = f ′h. Without loss of generality, we can
assume that P is monic. Every zero of f of order u ≥ 2 is a zero of f ′ of order u− 1 and
hence is a zero of h. And every zero of f of order 1 is zero of h of order 1 too. Consequently,
h is not a polynomial.

Set f(x) =
∞∑
n=0

anx
n, f ′(x) =

∞∑
n=0

cnx
n h(x) =

∞∑
n=0

bnx
n and let s = deg(P ). Then

cn = (n + 1)an+1 ∀n ∈ IN. On the other hand, by Theorem A, given any r > 0 we
have |f |(r) = |aq(f,r)|rq(f,r), |f ′|(r) = |cq(f ′,r)|rq(f

′,r) = |(q(f ′, r) + 1)aq(f ′,r)+1)|rq(f
′,r) and

|h|(r) = |bq(h,r)|rq(h,r). Since h has infinitely many zeros, there exists r0 > 0 such that
q(h, r) ≥ s + 2 ∀r ≥ r0, assuming that all zeros of P belong to d(0, s). Then since the
norm | . |(r) is multiplicative, we have s+ q(f, r) = q(f ′, r) + q(h, r), hence

(1) q(f ′, r) < q(f, r)− 1 ∀r ≥ r0.

Then, by (1) we have |cn|rn < cq(f ′,r)r
q(f ′,r) ∀n > q(f ′, r),∀r ≥ r0 and particularly,

|cq(f,r)−1|rq(f,r)−1 < |f ′|(r) = |cq(f ′,r)|rq(f
′,r) i.e.

(2) |(q(f, r))aq(f,r)|r(q(f,r)−1) < |f ′|(r) = |(q(f ′, r) + 1)aq(f ′,r)+1|rq(f
′,r)

On the other hand, since Pf = f ′h, we have |P |(r)|f |(r) = |f ′|(r)|h|(r), hence since P is
monic,

(3) rs|aq(f,r)|rq(f,r) = |(q(f ′, r) + 1)a(q(f ′,r)+1)|rq(f
′,r)|bq(h,r)|rq(h,r) ∀r > r0.

By (2) we can derive

rs−1|q(f, r)aq(f,r)|rq(f,r) < rs|(q(f ′, r) + 1)aq(f ′,r)+1|rq(f
′,r)
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and by (3) we have( |q(f, r)|
r

)
|(q(f ′, r) + 1)aq(f ′,r)+1|rq(f

′,r)|bq(h,r)|rq(h,r) < rs|(q(f ′, r) + 1)aq(f ′,r)+1|rq(f
′,r)

therefore we obtain |bq(h,r)|rq(h,r)−1|q(f, r)| < rs. Consequently,

(4) |h|(r) < rs+1

|q(f, r)|

Since h is transcendental, we have lim
r→+∞

|h|(r)
rm

= +∞ ∀m > 0. Now, suppose that for

some integer m we have lim sup
r→+∞

|q(f, r)|rm > 0, hence there exists a constant c and an

increasing sequence (rn)n∈ IN∗ such that r1 > r0, limn→+∞ rn = +∞ and |q(f, rn)|(rn)m >
c ∀n. Then |h|(rn) < c(rn)s+1+m ∀n, a contradiction to (4). This finishes proving that P
and h do not not exist.

Remark: It is possible to deduce the proof of Theorem 16 by using Lemma 1.4 in [3].

Corollary 16.1 is a very partial answer to the p-adic Hayman conjecture when n = 1,
which is not solved yet.

Corollary 16.1 Let f ∈M( IK) be such that

lim sup
r→+∞

|q( 1
f
, r)|rs > 0

for some s > 0. Then ff ′ has at least one zero.

Proof: Indeed, suppose that ff ′ has no zero. Then f is of the form
1
h

with h ∈ A( IK)

and f ′ = − h
′

h2
has no zero, hence every zero of h′ is a zero of h, a contradiction to Theorem

16 since lim supr→+∞ |q(h, r)|rs > 0.

Remarks: Concerning complex entire functions, we check that the exponential is of order
1 but is divided by its derivative in the algebra of complex entire functions.

It is also possible to derive Corollary 16.2 from Theorem 1 of [1]. Indeed, let g =
1
f

.

By Theorem 4, lim sup
r→+∞

q(f, r)
rt

is a finite number. Consequently, there exists c > 0 such

that q(f, r) ≤ crt ∀r > 1 and therefore the number of poles of g in d(0, r) is upper bounded
by crt whenever r > 1. Consequently, we can apply Theorem 8 and hence the meromorphic
function g′ has infinitely many zeros. Now, suppose that f ′ divides f in A( IK). Then

every zero of f ′ is a zero of f with an order superior, hence
f ′

f2
has no zero, a contradiction.

20



If the residue characteristic of IK is p 6= 0, we can easily construct an example of
entire function f of infinite order such that f ′ does not divide f in A( IK). Let f(x) =
∞∏
n=0

(
1− x

αn

)pn with |αn| = n + 1. We check that q(f, n + 1) =
n∑
k=0

pk is prime to p for

every n ∈ IN. Consequently, Theorem 16 shows that f is not divided by f ′ in A( IK). On
the other hand, fixing t > 0, we have

q(f, n+ 1)
(n+ 1)t

≥ pn

(n+ 1)t

hence

lim sup
r→+∞

q(f, r)
rt

= +∞ ∀t > 0

therefore, f is not of finite order.

Theorem 16 suggests the following conjecture:

Conjecture 3 Given f ∈ A( IK), other than (x− a)m, a ∈ IK, m ∈ IN, there exists no
h ∈ A( IK) such that f = f ′h.
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Laboratoire de Mathématiques, CNRS UMR 6620
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