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Order, type and cotype of growth for p-adic entire functions A survey with additional properties Kamal Boussaf, Abdelbaki Boutabaa and Alain Escassut

Abstract. Let IK be a complete ultrametric algebraically closed field and let A( IK) be the IK-algebra of entires functions on IK. For an f ∈ A( IK), similarly to complex analysis, one can define the order of growth as ρ(f ) = lim sup . But here, we can also define the cotype of growth as ψ(f ) = lim sup r→+∞ q(f, r) r ρ(f ) where q(f, r) is the number of zeros of f in the disk of center 0 and radius r. Many properties described here were first given in the Houston Journal, but new inequalities linking the order, type and cotype are given in this paper: we show that ρ(f )σ(f ) ≤ ψ(f ) ≤ eρ(f )σ(f ). Moreover, if ψ or σ are veritable limits, then ρ(f )σ(f ) = ψ(f ) and this relation is conjectured in the general case. Several other properties are examined concerning ρ, σ, ψ for f and f . Particularly, we show that if an entire function f has finite order, then f f 2 takes every value infinitely many times.

Order and cotype of growth

We denote by IK an algebraically closed field of characteristic 0, complete with respect to an ultrametric absolute value | . |. Analytic functions inside a disk or in the whole field IK were introduced and studied in many books. Given α ∈ IK and R ∈ IR * + , we denote by d(α, R) the disk {x ∈ IK | |x -α| ≤ R}, by d(α, R -) the disk {x ∈ IK | |x -α| < R}, by C(α, r) the circle {x ∈ IK | |x -α| = r}, by A( IK) the IK-algebra of analytic functions in IK (i.e. the set of power series with an infinite radius of convergence) and by M( IK) the field of meromorphic functions in IK (i.e. the field of fractions of A( IK)). Given f ∈ M( IK), we will denote by q(f, r) the number of zeros of f in d(0, r), taking multiplicity into account and by u(f, r) the number of distinct multiple poles of f in d(0, r). Throughout the paper, log denotes the Neperian logarithm.

Here we mean to introduce and study the notion of order of growth and type of growth for functions of order t. We will also introduce a new notion of cotype of growth in relation with the distribution of zeros in disks which plays a major role in processes that are quite 1 different from those in complex analysis. This has an application to the question whether an entire function can be devided by its derivative inside the algebra of entire functions.

Let us shortly recall classical results [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], [START_REF] Escassut | p-adic Value Distribution[END_REF], [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF]: Theorem B: Let f ∈ A( IK) be non-identically zero and let r , r ∈]0, +∞[ with r < r . Then r r

Notation: Given f ∈ A( IK)
q(f,r ) ≥ |f |(r ) |f |(r ) ≥ r r q(f,r )
.

Theorem C: Let f ∈ A( IK). Then |f |(r) ≤ |f |(r) r ∀r > 0. Theorem D: Let f, g ∈ A( IK). Then |f • g|(r) = |f |(|g|(r)) ∀r > 0.
Here, we must recall a theorem proven in [START_REF] Boussaf | Primitives of p-adic meromorphic functions[END_REF], (Main Theorem) and in [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF] (Theorem 33.12), to characterize meromorphic functions admitting a primitive:

Theorem E: Let f ∈ M( IK).
Then f admits primitives if and only if all its residues are null.

The question whether the derivative of a meromorphic function in IK can admit a Picard value has been thoroughly examined. By [START_REF] Bezivin | Zeros of the derivative of a p-adic meromorphic function[END_REF] we have the following theorem:

Theorem F: Let f ∈ M( IK) be such that there exists c and s ∈]0, +∞[ satisfying u(f, r) ≤ cr s ∀r ≥ 1. Then for every b ∈ IK, f -b has infinitely many zeros.

Definition and notation:

Similarly to the definition known on complex entire functions [START_REF] Rubel | Entire and meromorphic functions[END_REF], given f ∈ A( IK), the superior limit lim sup

r→+∞ log(log(|f |(r))) log(r)
is called the order of growth of f or the order of f in brief and is denoted by ρ(f ). We say that f has finite order if ρ(f ) < +∞.

Theorem 1: Let f, g ∈ A( IK). Then: if c(|f |(r)) α ≥ |g|(r) with α and c > 0, when r is big enough, then ρ(f ) ≥ ρ(g), ρ(f + g) ≤ max(ρ(f ), ρ(g)), ρ(f g) = max(ρ(f ), ρ(g)).
Proof: Similarly to the complex context we can easily verify that

ρ(f + g) ≤ max(ρ(f ), ρ(g)), ρ(f g) ≤ max(ρ(f ), ρ(g)) and if c(|f |(r)) α ≥ |g|(r) with α and c > 0 when r is big enough, then ρ(f ) ≥ ρ(g). Let us now show that ρ(f g) ≥ max(ρ(f ), ρ(g)). Since lim r→+∞ |g|(r) = +∞, of course we have log(|f.g|(r)) ≥ log(|f |(r)) when r is big enough, hence log(log(|f.g|(r))) log(r) ≥ log(log(|f |(r))) log(r)
and therefore ρ(f.g) ≥ ρ(f ) and similarly, ρ(f.g) ≥ ρ(g).

Corollary 1.1: Let f, g ∈ A( IK). Then ρ(f n ) = ρ(f ) ∀n ∈ IN * . If ρ(f ) > ρ(g), then ρ(f + g) = ρ(f ).
Remark: ρ is an ultrametric extended semi-norm.

Notation: Given t ∈ [0, +∞[, we denote by A( IK, t) the set of f ∈ A( IK) such that ρ(f ) ≤ t and we set

A 0 ( IK) = t∈[0,+∞[ A( IK, t). Corollary 1.2. For any t ≥ 0, A( IK, t) is a IK-subalgebra of A( IK). If s ≤ t, then A( IK, s) ⊂ A( IK, t) and A 0 ( IK) is also a IK-subalgebra of A( IK). Theorem 2: Let f ∈ A( IK) and let P ∈ IK[x]. Then ρ(P • f ) = ρ(f ) and ρ(f • P ) = deg(P )ρ(f ).
Proof: Let n = deg(P ). For r big enough, we have

log(log(|f |(r))) ≤ log(log(|P •f |(r))) ≤ log((n+1) log(|f |(r))) = log(n+1)+log(log(|f |(r)))
Consequently and hence ρ(f

• P ) = nρ(f ). Theorem 3: Let f, g ∈ A( IK) be transcendental. If ρ(f ) = 0, then ρ(f • g) = +∞. If ρ(f ) = 0, then ρ(f • g) ≥ ρ(g).
Proof: Let us fix an integer n ∈ IN. Let f (x) = ∞ j=0 a n x n and g(x) = ∞ j=0 b n x n . Since g is transcendental, for every n ∈ IN, there exists r n such that q(g, r n ) ≥ n. Then |g|(r) ≥ |b n |r n ∀r ≥ r n and hence, by Theorem 2, we have [START_REF] Bezivin | Zeros of the derivative of a p-adic meromorphic function[END_REF] ρ(f • g) ≥ nρ(f ).

Relation (1) is true for every n ∈ IN. Suppose first that ρ(f ) = 0. Then by [START_REF] Bezivin | Zeros of the derivative of a p-adic meromorphic function[END_REF] we have

ρ(f • g) = +∞. Now, suppose ρ(f ) = 0. Let k ∈ IN be such that a k = 0. Let s 0 be such that q(f, s 0 ) ≥ k. Then |f |(r) ≥ |a k |r k ∀r ≥ s 0 , hence |f • g|(r) ≥ |a k |(|g|(r)) k ∀r ≥ s 0 , hence by Theorems 1 and 2 we have ρ(f • g) ≥ ρ(g).
Theorem 4: Let f ∈ A( IK) be not identically zero. If there exists s ≥ 0 such that

lim sup r→+∞ q(f, r) r s < +∞ then ρ(f ) is the lowest bound of the set of s ∈ [0, +∞[ such that lim sup r→+∞ q(f, r) r s = 0. Moreover, if lim sup r→+∞ q(f, r) r t is a number b ∈]0, +∞[, then ρ(f ) = t.
If there exists no s such that lim sup r→+∞ q(f, r) r s < +∞, then ρ(f ) = +∞.

Proof: The proof holds in two statements. First we will prove that given f ∈ A( IK) nonconstant and such that for some t ≥ 0, lim sup r→+∞ q(f, r) r t is finite, then ρ(f ) ≤ t.

Set lim sup r→+∞ q(f, r) r t = b ∈ [0, +∞[. Let us fix > 0. We can find R > 1 such that |f |(R) > e 2 and q(f, r) r t ≤ b + ∀r ≥ R and hence, by Theorem B, we have

|f |(r) |f |(R) ≤ r R q(f,r) ≤ r R r t (b+ )) . Therefore, since R > 1, we have log(|f |(r)) ≤ log(|f |(R)) + r t (b + )(log(r)). Now, when u > 2, v > 2, we check that log(u + v) ≤ log(u) + log(v). Applying that inequality with u = log(|f |(R)) and v = r t (b + )(log(r)) when r t (b + )(log(r)) > 2, that yields log(log(|f |(r))) ≤ log(log(|f |(R))) + t log(r) + log(b + ) + log(log(r)). Consequently, log(log(|f |(r))) log(r) ≤ log(log(|f |(R))) + t log(r) + log(b + ) + log(log(r)) log(r)
and hence we can check that lim sup

r→+∞ log(log(|f |(r))) log(r) ≤ t
which proves the first claim.

Second, we will prove that given f ∈ A( IK) not identically zero and such that for some t ≥ 0, we have lim sup r→+∞ q(f, r) r t > 0, then ρ(f ) ≥ t. By hypotheses, there exists a sequence (r n ) n∈ IN such that lim n→+∞ r n = +∞ and such that lim

n→+∞ q(f, r n ) r t n > 0. Thus there exists b > 0 such that lim n→+∞ q(f, r n ) r t n ≥ b. We can assume that |f |(r 0 ) ≥ 1, hence by Theorem A, |f |(r n ) ≥ 1 ∀n. Let λ ∈]1, +∞[. By Theorem B we have |f |(λr n ) |f |(r n ) ≥ (λ) q(f,r n ) ≥ λ [b(r n ) t ] hence log(|f |(λr n ) ≥ log(|f |(r n )) + b(r n ) t log(λ). Since |f |(r n ) ≥ 1, we have log(log(|f |(λr n ))) ≥ log(b log(λ)) + t log(r n ) therefore log(log(|f |(λr n )) log(r n ) ≥ t + log(b log(λ)) log(r n ) ∀n ∈ IN and hence lim sup r→+∞ log(log(|f |(r))) log(r) ≥ t
which ends the proof the scond claim.

Example:

Suppose that for each r > 0, we have q(f, r) ∈ [r t log r, r t log r + 1]. Then of course, for every s > t, we have lim sup r→+∞ q(f, r) r s = 0 and lim sup r→+∞ q(f, r) r t = +∞, so there exists no t > 0 such that q(f, r) r t have non-zero superior limit b < +∞.

Definition and notation:

Let t ∈ [0, +∞[ and let f ∈ A( IK) of order t. We set

ψ(f ) = lim sup r→+∞ q(f, r) r t and call ψ(f ) the cotype of f . Theorem 5: Let f, g ∈ A 0 ( IK). Then ψ(f g) ≤ ψ(f ) + ψ(g). Moreover, if ρ(f ) = ρ(g) then max(ψ(f ), ψ(g)) ≤ ψ(f g). Proof: Set ρ(f ) = s, ρ(g) = t.
Without loss of generality we can assume s ≥ t. By Theorem 1, we have ρ(f.g) = ρ(f ) = s. Now, for each r > 0, we have q(f.g, r) = q(f, r) + q(g, r) hence

ψ(f g) = lim sup r→+∞ q(f, r) + q(g, r) r s ≤ lim sup r→+∞ q(f, r) r s + lim sup r→+∞ q(g, r) r t hence ψ(f g) ≤ ψ(f ) + ψ(g). Now, suppose s = t. Then ψ(f g) = lim sup r→+∞ q(f, r) + q(g, r) r s ≥ lim sup r→+∞ max(q(f, r), q(g, r)) r s = max(ψ(f ), ψ(g)),
which ends the proof.

Thanks to Theorem F we can derive the following Theorem 6:

Theorem 6: Let f ∈ A 0 ( IK). Then for every b ∈ IK, f f 2 -b has infinitely many zeros.
Proof Let t = ρ(f ) and take c > ψ(f ). Since f ∈ A 0 ( IK), by Theorem 4 we have q(f, r) ≤ cr t when r is big enough, hence by Theorem F the derivative of 1 f takes every value b infinitely many times. Now we can derive the following Corollary 6.1 that gives the solution for a function of finite order, of the following general problem: given an entire function f , is it posible that all zeros of f be zeros of f , but finitely many? Corollary 6.1: Let f ∈ A 0 ( IK). Then f admits infinitely many zeros that are not zeros of f . Theorem 7 is similar to a well known statement in complex analysis and its proof also is similar when ρ(f ) < +∞ [START_REF] Rubel | Entire and meromorphic functions[END_REF] but is different when ρ(f ) = +∞. 

Theorem 7 Let f (x) = +∞ n=0 a n x n ∈ A( IK). Then ρ(f ) = lim sup n→+∞ n log(n) -log |a n | . Proof: If ρ(f ) < +∞,
|a n |r n ≤ sup n∈ IN r n n n β . Putting ϕ(n) = n β and R = r β , we have |f |(r 1 
β ) ≤ sup n∈ IN r ϕ(n) n ϕ(n) ≤ sup x>0 R x x x
Now we check that the maximum on [0, +∞[ of the function g So we have t ≤ β and since this is true for all β > α, we have proven that t ≤ α, which ends the proof when t < +∞.

(x) = R x x x is reached when x = R e
Suppose now that t = +∞ and suppose that lim sup

n→+∞ n log n (-log |a n |) < +∞. Let us take s ∈ IN such that (2) n log n (-log |a n |) < s ∀n ∈ IN.
By Theorem 4, we have lim sup

r→+∞ q(f, r) s = +∞. So, we can take a sequence (r m ) m∈ IN such that (3) lim m→+∞ q(f, r m ) (r m ) s = +∞.
For simplicity, set u m = q(f, r m ), m ∈ IN. By [START_REF] Bezivin | Some new and old results on zeros of the derivative of a p-adic meromorphic function[END_REF], for m big enough we have

u m log(u m ) < s(-log(|a u m |) = s log 1 |a u m | hence 1 (u m ) u m > |a u m | s , therefore |a u m | s (r m ) su m < (r m ) su m (u m ) u m i.e. (|f |(r m )) s < (r m ) s u m u m
But by Theorem A, we have lim Remark: Of course, polynomials have a growth order equal to 0. On IK as on l C we can easily construct transcendental entire functions of order 0 or of order ∞. Proof: Set t = ρ(h). There exists > ψ(h) such that q(r, h) ≤ r t ∀r > 1. Consequently, taking s > t big enough, we have u(f, r) < r s ∀r > 1 and hence f satisfies the hypotheses of Theorem F. Therefore, for every b ∈ IK, f -b has infinitely may zeros.

Then by Theorem E, we can now derive Corollary 8.1:

Corollary 8.1: Let f = g h ∈ M( IK)
have all its residues null, with g ∈ A( IK) and h ∈ A 0 ( IK) and ψ(h) < +∞. Then for every b ∈ IK, f -b has infinitely many zeros.

Remark: Consider a function f of the form

∞ n=1 1 (x -a n ) 2 with |a n | = n t .
Clearly f belongs to M( IK), all residues are null, hence f admits primitives. Next, primitives satisfy the hypothesis of Theorem F. Consequently, f takes every value infinitely many times. Therefore, f cannot be of the form P h with P ∈ IK[x] and h ∈ A( IK).

Type of growth Definition and notation:

In complex analysis, the type of growth is defined for an entire function of order t < +∞ as σ(f

) = lim sup r→+∞ log(M f (r)) r t .
Of course the same notion may be defined for f ∈ A( IK). Given f ∈ A 0 ( IK) of order t < +∞, we set σ(f ) = lim sup r→+∞ log(|f |(r)) r t and σ(f ) is called the type of growth of f .

Moreover, here we will also use the notation σ(f

) = lim inf r→+∞ log(|f |r)) r t . Theorem 9: Let f (x) = ∞ n=0 a n x n ∈ A 0 ( IK) such that ρ(f ) ∈]0, +∞[. Then σ(f )ρ(f )e = lim sup n→+∞ n n |a n | ρ(f ) .
Proof: The proof is identical to this of the same statement in l C [START_REF] Rubel | Entire and meromorphic functions[END_REF], Proposition 11.5. On the other hand, (1) lim

Notation: Let f ∈ A( IK), let (a n ) n∈ IN be
-≤ log(|f |(r n )) (r n ) s ≤ b + , hence s log(r n ) + log(b -) < log(log(|f |(r n ))) < s log(r n ) + log(b -) therefore s + log(b -) log(r n ) < log(log(|f |(r n ) log(r n ) < s + log(b + ) log(r n ) Consequently, lim n→+∞ log(log(|f |(r n )) log(r n ) = s and therefore ρ(f ) ≥ s, hence ρ(f ) ≥ M . Fi- nally, ρ(f ) = M . Theorem 11: Let f, g ∈ A 0 ( IK). Then σ(f g) ≤ σ(f ) + σ(g). If ρ(f ) ≥ ρ(g), then σ(f ) ≤ σ(f g). If ρ(f ) = ρ(g), then max(σ(f ), σ(g)) ≤ σ(f g). If ρ(f ) = ρ(g) and σ(f ) > σ(g) then ρ(f + g) = ρ(f ) and σ(f + g) = σ(f ). If ρ(f + g) = ρ(f ) ≥ ρ(g) then σ(f + g) ≤ max(σ(f ), σ(g)). Proof: Let s = ρ(f ), t = ρ(g)
σ(f ) = lim sup r→+∞ log(|f |(r)) r s ≤ lim sup r→+∞ log(|f g|(r)) r s . But ρ(f g) = s, hence σ(f ) ≤ σ(f g). Particularly, if ρ(f ) = ρ(g), then max(σ(f ), σ(g)) ≤ σ(f g).
n→+∞ log(|f + g|(r n )) (r n ) s = b.
By definition of σ we have σ(f

+ g) ≥ lim n→+∞ log(|f + g|(r n )) (r n ) ρ(f +g) . By Theorem 1, we have ρ(f + g) ≤ s, hence σ(f + g) ≥ lim n→+∞ log(|f + g|(r n )) (r n ) ρ(f +g) ≥ lim n→+∞ log(|f + g|(r n )) (r n ) s = lim n→+∞ log(|f |(r n )) (r n ) s = σ(f )
therefore by [START_REF] Bezivin | Zeros of the derivative of a p-adic meromorphic function[END_REF], σ(f +g) ≥ σ(f ). Suppose that σ(f +g) > σ(f ). Putting h = f +g, we have f = h -g with σ(g) < σ(h), hence σ(h -g) ≥ σ(h) i.e. σ(f ) > σ(f + g), a contradiction.

Consequently, σ(f + g) = σ(f ). Now we have, lim sup Finally, suppose now that ρ(f + g) = ρ(f ) ≥ ρ(g). Let s = ρ(f ) and t = ρ(g). Then,

σ(f + g) = lim sup r→+∞ log(|f + g|(r)) r s ≤ max lim sup r→+∞ log(|f |(r)) r s , lim sup r→+∞ log(|g|(r)) r s = max(σ(f ), σ(g)).
Corollary 11.1: Let f, g ∈ A( IK) be such that ρ(f ) = ρ(g). Then σ(f + g) ≤ max(σ(f ), σ(g)).

Proof: Indeed, suppose for instance ρ(f ) > ρ(g). Then ρ(f + g) = ρ(f ) hence, by the last assertion of Theorem 11, σ(f + g) ≤ max(σ(f ), σ(g)).

In the proof of Theorem 12, we will use the following trivial lemma:

Lemma L : Let g, h be the real functions defined in ]0, +∞[ as g(x) = e tx -1 x and

h(x) = 1 -e -tx x with t > 0. Then: i) inf{|g(x)| |x > 0} = t. ii) sup{|h(x)| |x > 0} = t.
Theorem 12: Let f ∈ A 0 ( IK) be not identically zero. Then

ρ(f )σ(f ) ≤ ψ(f ) ≤ ρ(f ) eσ(f ) -σ(f ) . Moreover, if ψ(f ) = lim r→+∞ q(f, r) r ρ(f ) or if σ(f ) = lim r→+∞ log(|f |(r)) r ρ(f ) , then ψ(f ) = ρ(f )σ(f ).
Proof: Without loss of generality we can assume that f (0) = 0. Let t = ρ(f ) and set = log(|f (0|). Let (a n ) n∈ IN be the sequence of zeros of f with |a n | ≤ |a n+1 |, n ∈ IN and for each n ∈ IN, let w n be the multiplicity order of a n . For every r > 0, let k(r) be the integer such that |a n | ≤ r ∀n ≤ k(r) and |a n | > r ∀n > k(r). Then by Theorem A, we

have log(|f |(r)) = + k(r) n=0 w n (log(r) -log(|a n |)) hence σ(f ) = lim sup r→+∞ + k(r) n=0 w n (log(r) -log(|a n |)) r t .
Given r > 0, set c n = |a n | and let us keep the notations above. Then We will first show the inequality ρ(f )σ(f ) ≤ ψ(f ). By the definition of σ(f, r) we can derive

σ(f, r) ≤ k(re -α ) n=0 w n log(r) -log(re -α ) r t + k(re -α ) n=0 w n log(re -α ) -log(c n ) r t + α k(re -α )<n≤k(r) w n r t hence σ(f, r) ≤ α k(re -α ) n=0 w n r t + k(re -α ) n=0 w n log(re -α ) -log(c n ) r t +α k(re -α )<n≤k(r) w n r t therefore σ(f, r) ≤ α k(re -α ) n=0 w n r t + k(re -α ) n=0 w n log(re -α ) -log(c n ) r t +α k(re -α )<n≤k(r) w n r t hence σ(f, r) ≤ α k(re -α ) n=0 w n r t + e -tα k(re -α ) n=0 w n (log(re -α ) -log(c n )) (re -α ) t +α 0≤n≤k(r) w n r t -α 0≤n≤k(re -α ) w n r t , hence σ(f, r) ≤ e -tα k(re -α ) n=0 w n (log(re -α ) -log(c n )) (re -α ) t + α 0≤n≤k(r)
w n r t .

Thus we have σ(f, r) ≤ e -tα σ(f, re -α ) + αψ(f, r).

We check that we can pass to superior limits on both sides, so we obtain σ(f

) ≤ e -tα σ(f )+ αψ(f ) therefore σ(f ) (1 -e -tα ) α ≤ ψ(f ).
That holds for every α > 0, hence by Lemma L ii), we can derive

(2) ψ(f ) ≥ ρ(f )σ(f ).
We will now show the inequality

ψ(f ) ≤ ρ(f )(eσ(f ) -σ(f )).
Let us fix α > 0. We can write

σ(f, r) = k(re -α ) n=0 w n (log(r) -log(re -α )) r t + k(re -α ) j=0 w j (log(re -α ) -log(c n )) r t + k(re -α )<j≤k(r) w j (log(r) -log(c j )) r t hence σ(f, r) ≥ α k(re -α ) n=0 w n r t + k(re -α ) j=0 w j (log(re -α ) -log(c n )) r t hence σ(f, r) ≥ αe -tα k(re -α ) n=0 w n (re -tα ) + e -tα k(re -α ) j=0 w n (log(re -α ) -log(c n )) (re -α ) t
and hence σ(f, r) ≥ αψ(f, re -α ) + e -tα σ(f, re -α ).

Therefore, we can derive

αe -tα ψ(f ) ≤ lim sup r→+∞ σ(f, r) -e -tα σ(f, re -α ))
and therefore αe -tα ψ(f

) ≤ σ(f ) -e -tα σ(f )).
That holds for every α > 0 and hence, when tα = 1, we obtain ψ(f We can obviously find a sequence (r n ) n∈ IN in ]0, +∞[ of limit +∞ such that σ(f ) = lim n→+∞ σ(f, r n e -α ). Then, by [START_REF] Bezivin | Zeros of the derivative of a p-adic meromorphic function[END_REF] we have

) ≤ ρ(f ) eσ(f ) -σ(f )
σ(f, r n ) ≥ αe -tα ψ(f, r n e α ) + e -tα σ(f, r n e α ) hence lim sup n→+∞ σ(f, r n ) ≥ αe -tα ψ(f ) + e -tα σ(f )
and hence σ(f ) ≥ αe -tα ψ(f ) + e -tα σ(f ) therefore, ψ(f ) ≤ e tα -1 α σ(f ). Finally, by Lemma L i) we have, ψ(f ) ≤ ρ(f )σ(f ) and hence by [START_REF] Bezivin | Some new and old results on zeros of the derivative of a p-adic meromorphic function[END_REF], ψ(f ) = ρ(f )σ(f ).

Remarks: 1) When neither σ nor ψ are obtained as veritable limits when r tends to +∞, the method does not let us prove that ψ = ρσ, the natural conjecture.

2) Concerning the upper bound ψ(f ) ≤ ρ(f )(eσ(f ) -σ(f )) it is possible to improve this a bit by defining the number u 0 > 0 such that e u 0 (u 0 -1) = -σ(f ) σ(f ) and then we have

ψ(f ) ≤ ρ(f )(e u 0 σ(f ) -σ(f )) u 0 .
Corollary 12.1: Let f ∈ A( IK) be not identically zero and have finite growth order. Then σ(f ) is finite if and only if so is ψ(f ).

By Theorems 9 and 12 we can also notice this corollary:

Corollary 12.2: Let f (x) = ∞ n=0
a n x n ∈ A 0 ( IK) be not identically zero. Then

lim sup n→+∞ n n |a n | ρ(f ) ≤ eψ(f ) ≤ e lim sup n→+∞ n n |a n | ρ(f ) . Moreover, if ψ(f ) = lim r→+∞ q(f, r) r ρ(f ) or if σ(f ) = lim r→+∞ log(|f |(r)) r ρ(f ) , then eψ(f ) = lim sup n→+∞ n n |a n | ρ(f ) .
Theorem 12 suggests the following conjecture:

Conjecture 1: Let f ∈ A 0 ( IK) be such that either σ(f ) < +∞ or ψ(f ) < +∞. Then ψ(f ) = ρ(f )σ(f ).
Now, by Theorem 8, we can also state Corollary 12.3:

Corollary 12.3: Let f = g h ∈ M( IK)
, with g, h ∈ A( IK) not identically zero and be such that h has finite order of growth and and finite type of growth. Then f takes every value b ∈ IK infinitely many times.

Order and type of the derivative

Theorem 13: Let f ∈ A( IK) be not identically zero. Then ρ(f ) = ρ(f ). Corollary 13.1: The derivation on A( IK) restricted to the algebra A( IK, t) (resp. to A 0 ( IK)) provides that algebra with a derivation.

In complex analysis, it is known that if an entire function f has order t < +∞, then f and f have same type. We will check that is the same here.

Theorem 14: Let f ∈ A( IK) be not identically zero, of order t ∈]0, +∞[. Then σ(f ) = σ(f ).

Proof: By Theorem 8 we have, eρ(f

)σ(f ) = lim sup n→+∞ n |n + 1||a n+1 | t n = lim sup n→+∞ (n + 1) |n + 1||a n+1 | t n n n+1 n n + 1 = lim sup n→+∞ (n + 1) |n + 1||a n+1 | t n+1 = eρ(f )σ(f ).
But since ρ(f ) = ρ(f ) and since ρ(f ) = 0, we can see that σ(f ) = σ(f ).

By Theorems 12, 13, 14 we can now derive Corollary 14.1: Let f ∈ A 0 ( IK) be not identically zero. Then

ρ(f )σ(f ) ≤ ψ(f ) ≤ eρ(f )σ(f ) and |ψ(f ) -ψ(f )| ∞ ≤ (e -1)ρ(f )σ(f ).

Corollary 14.2:

Let f ∈ A 0 ( IK) be not identically zero. Then ψ(f ) is finite if and only if so is ψ(f ).

Corollary 14.3:

Let f ∈ A 0 ( IK) be not identically zero. Then in each one of the following hypotheses, we have ψ

(f ) = ψ(f ) = ρ(f )σ(f ): i) ψ(f ) = lim r→+∞ ψ(f, r) and ψ(f ) = lim r→+∞ ψ(f , r), ii) σ(f ) = lim r→+∞ σ(f, r) and σ(f ) = lim r→+∞ σ(f , r), iii) ψ(f ) = lim r→+∞ ψ(f, r) and σ(f ) = lim r→+∞ σ(f , r), iv) σ(f ) = lim r→+∞ σ(f, r) and ψ(f ) = lim r→+∞ ψ(f , r).
By Corollary 12.3, we have the following corollary:

Corollary 14.4: Let f = g h ∈ M( IK) be not identically zero, with g, h ∈ A( IK) and suppose that f has all residues null and that h has finite order of growth and finite type of growth. Then f takes every value b ∈ IK infinitely many times.

Conjecture 1 suggests and implies the following Conjecture 2:

Conjecture 2: ψ(f ) = ψ(f ) ∀f ∈ A 0 ( IK).
Theorem 15: Let f, g ∈ A( IK) be transcendental and of same order t ∈ [0, +∞[. Then for every > 0, we have lim sup r→+∞ r q(g, r) q(f, r) = +∞.

Proof: Suppose first t = 0. The proof then is almost trivial. Indeed, for all > 0, we have lim r→+∞ q(f, r) r = 0 hence lim r→+∞ r q(f, r) = +∞, therefore lim r→+∞ r q(g, r) q(f, r) = +∞. Now suppose t > 0. By Theorem 4, we have lim sup r→+∞ q(f, r) r t is a finite number and hence there exists λ > 0 such that [START_REF] Bezivin | Zeros of the derivative of a p-adic meromorphic function[END_REF] q(f, r) ≤ λr t ∀r > 1.

Now, let us fix s ∈]0, t[. By hypothesis, ρ(g) = ρ(f ) and hence by Theorem 4, we have lim sup r→+∞ q(g, r) r s = +∞ so, there exists an increasing sequence (r n ) n∈ IN of IR + such that lim n→+∞ r n = +∞ and q(g, r n ) (r n ) s ≥ n. Therefore, by (1), we have

λ(r n ) t q(g, r n ) (r n ) s q(f, r n ) > q(g, r n ) (r n ) s > n and hence λ lim n→+∞ (r n ) t-s q(g, r n ) q(f, r n ) = +∞.
Consequently,

(2) lim sup r→+∞ (r) t-s q(g, r) q(f, r) = +∞. Now, since that holds for all s ∈]0, t[, the statement derived from (2).

Remark: Comparing the number of zeros of f to this of f inside a disk is very uneasy. Now, we can give some precisions. By Theorem 15 we can derive Corollary 15.1.

and by (3) we have |q(f, r)| r |(q(f , r) + 1)a q(f ,r)+1 |r q(f ,r) |b q(h,r) |r q(h,r) < r s |(q(f , r) + 1)a q(f ,r)+1 |r q(f ,r)

therefore we obtain |b q(h,r) |r q(h,r)-1 |q(f, r)| < r s . Consequently, Proof: Indeed, suppose that f f has no zero. Then f is of the form 1 h with h ∈ A( IK) and f = -h h 2 has no zero, hence every zero of h is a zero of h, a contradiction to Theorem 16 since lim sup r→+∞ |q(h, r)|r s > 0.

Remarks: Concerning complex entire functions, we check that the exponential is of order 1 but is divided by its derivative in the algebra of complex entire functions.

It is also possible to derive Corollary 16.2 from Theorem 1 of [START_REF] Bezivin | Zeros of the derivative of a p-adic meromorphic function[END_REF]. Indeed, let g = 1 f . By Theorem 4, lim sup r→+∞ q(f, r) r t is a finite number. Consequently, there exists c > 0 such that q(f, r) ≤ cr t ∀r > 1 and therefore the number of poles of g in d(0, r) is upper bounded by cr t whenever r > 1. Consequently, we can apply Theorem 8 and hence the meromorphic function g has infinitely many zeros. Now, suppose that f divides f in A( IK). Then every zero of f is a zero of f with an order superior, hence f f 2 has no zero, a contradiction.
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If the residue characteristic of IK is p = 0, we can easily construct an example of entire function f of infinite order such that f does not divide f in A( IK). Let f

(x) = ∞ n=0 1 - x α n p n
with |α n | = n + 1. We check that q(f, n + 1) = n k=0 p k is prime to p for every n ∈ IN. Consequently, Theorem 16 shows that f is not divided by f in A( IK). On the other hand, fixing t > 0, we have q(f, n + 1) (n + 1) t ≥ p n (n + 1) t hence lim sup r→+∞ q(f, r) r t = +∞ ∀t > 0 therefore, f is not of finite order.

Theorem 16 suggests the following conjecture:

Conjecture 3 Given f ∈ A( IK), other than (x -a) m , a ∈ IK, m ∈ IN, there exists no h ∈ A( IK) such that f = f h.

  r→+∞ log(log(|f |(r)) log r . When ρ(f ) = 0, +∞, one can define the type of growth as σ(f ) = lim sup r→+∞ log(|f |(r)) r ρ(f )

  and r > 0, we denote by |f |(r) the number sup{|f (x)| | |x| = r}. Theorem A | . |(r) is a multiplicative norm on A( IK). Suppose f (0) = 0 and let a 1 , ..., a m be the various zeros of f in d(0, r) with |a n | ≤ |a n+1 |, 1 ≤ n ≤ m -1, each zero a n having a multiplicity order w n . Then log(|f |(r)) = log(|f (0)|) + m n=1 w n (log(r) -log(|a n |)).

1 β

 1 and hence is e R e = e r βe . Therefore, we have |f |(r ) ≤ e r βe . Putting now u = r 1 β , we can derive |f |(u) ≤ e u β βe , hence log(log(|f |(u))) ≤ β log(u) -log(eβ). Consequently, lim sup r→+∞ log(log(|f |(r))) log(r) ≤ β.

  r→+∞ |f |(r m ) = +∞, hence (r m ) s > u m when m is big enough and therefore lim sup m→+∞ q(f, r m ) (r m ) s ≤ 1, a contradiction to (3). Consequently, (2) is impossible and therefore lim sup n→+∞ n log(n) -log |a n | = +∞ = ρ(f ).

Example 1 :Example 2 :Theorem 8 :

 128 Let (a n ) n∈ IN be a sequence in IK such that -log |a n | ∈ [n(log n) 2 , n(log n) 2 + 1]. Then clearly, lim n→+∞ log |a n | n = -∞ hence the function ∞ n=0a n x n has a radius of convergence equal to +∞. On the other hand,lim n→+∞ n log n -log |a n | = 0 hence ρ(f ) = 0. Let (a n ) n∈ IN be a sequence in IK such that -log |a n | ∈ [n √ log n, n √ log n + 1]. Then lim n→+∞ log |a n | n = -∞again and hence the function ∞ n=0 a n x n has a radius of convergence equal to +∞. On the other hand, lim n→+∞ n log n -log |a n | = +∞, hence ρ(f ) = +∞. Thanks to Theorem F, we can now prove Theorem 8: Let f = g h ∈ M( IK) with g ∈ A( IK) and h ∈ A 0 ( IK) and ψ(h) < +∞.Then for every b ∈ IK, f -b has infinitely many zeros.

  the sequence of zeros of f with |a n | ≤ |a n+1 |, n ∈ IN and for each n ∈ IN, let w n be the multiplicity order of a n . For every r > 0, let k(r) be the integer such that|a n | ≤ r ∀n ≤ k(r) and |a n | > r ∀n > k(r). . We set ψ(f, r) = q(f, r) r t and σ(f, r) = k(r) n=0 w n (log(r) -log(c n )) r t .Theorem 10: Let f ∈ A 0 ( IK). Thenρ(f ) = inf{s ∈]0, +∞[ | lim r→+∞ log(|f |(r)) r s = 0}. Proof: Indeed, let M = inf{s ∈]0, +∞[ | lim r→+∞ log(|f |(r)) r s = 0}.First we will prove that ρ(f ) ≤ M Let s be such that lim r→+∞ log(|f |(r)) r s = 0. Let us fix > 0. For r big enough, we have log(|f |(r)) r s ≤ , hence log(|f |(r)) ≤ r s , therefore log(log(|f |(r))) ≤ log + s log(r), hence log(log(|f |(r))) log(r) ≤ s + log(r) . This is true for every > 0, therefore lim sup r→+∞ log(log(|f |(r))) log(r) ≤ s i.e. ρ(f ) ≤ s and hence, ρ(f ) ≤ M . On the other hand, we notice that M = sup{s ∈]0, +∞[ | lim sup r→+∞ log(|f |(r)) r s > 0}. Now, suppose that for some s > 0, we have lim sup r→+∞ log(|f |(r)) r s = b > 0. Let us fix ∈]0, b[. There exists a sequence (r n ) n∈ IN such that, when n is big enough, we have b

  and suppose s ≥ t. When r is big enough, we have max(log(|f |(r)), log(|g|(r)) ≤ log(|f.g|(r)) = log(|f |(r)) + log(|g|(r)) and by Theorem 1, we have ρ(f g) = s. Therefore σ(f g) = lim sup r→+∞ log(|f.g|(r)) f ) + σ(g).

Now, suppose≤

  s > t. Then by Corollary 1.1, ρ(f + g) = ρ(f ) = s. Consequently, σ(f + g) = lim sup r→+∞ log |f + g|(r) r s ≤ lim sup r→+∞ max(log |f |(r), log |g|(r)) max lim sup r→+∞ log |f |(r) r s , lim sup r→+∞ log |g|(r) r t = max σ(f ), σ(g) . Now, suppose ρ(f ) = ρ(g) = s. .g|(r)) r s because the two both |f |(r) and |g|(r) tend to +∞ with r. Consequently, σ(f g) ≥ max(σ(f ), σ(g)). Now, suppose again that ρ(f ) = ρ(g) and suppose σ(f ) > σ(g). Let s = ρ(f ), b = σ(f ). Then b > 0. Let (r n ) n∈ IN be a sequence such that lim n→+∞ r n = +∞ and lim n→+∞ log(|f |(r n )) (r n ) s = b. Since σ(g) < σ(f ), we notice that when n is big enough we have |g|(r n ) < |f |(r n ). Consequently, when n is big enough, we have |f + g|(r n ) = |f |(r n ) and hence

  r→+∞ log(|f + g|(r)) r s = b > 0. But then, lim sup r→+∞ log(|f + g|(r)) r m = 0 ∀m > s. Therefore, by Theorem 10, ρ(f + g) = ρ(f ).

( 1 )

 1 σ(f ) = lim sup r→+∞ σ(f, r), ψ(f ) = lim sup r→+∞ ψ(f, r).

  which is the left hand inequality of the general conclusion. Now, suppose that σ(f ) = lim r→+∞ log(|f |(r)) r t . Then we have lim sup r→+∞ ψ(f, r) ≤ σ(f ) e tα -1 α and hence ψ(f ) ≤ σ(f ) e tα -1 α . That holds for every α > 0 and then, by Lemma L i) we obtain ψ(f ) ≤ tσ(f ), i.e. ψ(f ) ≤ ρ(f )σ(f ), hence by (2) we have, ψ(f ) = ρ(f )σ(f ).

Proof:

  By Theorem 6 we have ρ(f ) = lim sup n→+∞ n log(n) -log(|(n + 1)a n+1 |) -log(|(n + 1)a n+1 | = lim sup n→+∞ n log(n) -log(|a n+1 |) = lim sup n→+∞ (n + 1) log(n + 1) -log(|a n+1 |) = ρ(f ).

( 4 )

 4 |h|(r) < r s+1 |q(f, r)| Since h is transcendental, we have lim r→+∞ |h|(r) r m = +∞ ∀m > 0. Now, suppose that for some integer m we have lim sup r→+∞ |q(f, r)|r m > 0, hence there exists a constant c and anincreasing sequence (r n ) n∈ IN * such that r 1 > r 0 , lim n→+∞ r n = +∞ and |q(f, r n )|(r n ) m > c ∀n. Then |h|(r n ) < c(r n ) s+1+m∀n, a contradiction to (4). This finishes proving that P and h do not not exist.Remark: It is possible to deduce the proof of Theorem 16 by using Lemma 1.4 in[START_REF] Boussaf | Primitives of p-adic meromorphic functions[END_REF].Corollary 16.1 is a very partial answer to the p-adic Hayman conjecture when n = 1, which is not solved yet.Corollary 16.1 Let f ∈ M( IK) be such that |r s > 0 for some s > 0. Then f f has at least one zero.

  the proof is identical to the one made in the complex context, replacing M (f, r) by the multiplicative norm |f |(r). Let t = ρ(f ) and suppose first that For all n ∈ IN, we have |a n |r n ≤ |f |(r) and therefore |a n |r n ≤ e (r s ) and hence |a n | ≤ r -n e (r s ) i.e.

	(1) -log(|a n |) ≥ -Consequently, when n is big enough we have log |a n s n s + n s log( n ). s	-	n s	log(	n s	), i.e.
		n log n (-log |a n |)	≤	n log n s log( n n s ) -n			
	quently, |a n |r n ≤	r n n		n β ≤	1 |a n |	and hence |a n | ≤	1 n β n	. Conse-

t < +∞. Let α = lim sup n→+∞ n log(n) -log |a n | . Take s > t. n | ≤ r s -n log(r) when r is big enough. Now, choose r = n s 1 s . So, we have log |a n | ≤ s ≤ s + O(1)

Therefore we have α ≤ s and since this is true for each s > t, that shows that α ≤ t. Now, take β > α so that n log n (-log |a n |) < β for n big enough. Then, when n is big enough, we have n log(n) ≤ β(-log |a n |) hence n n β . Now, for r big enough, |f |(r) = sup n∈ IN

Corollary 15.1: Let f ∈ A 0 ( IK) be not affine. Then for every > 0, we have lim sup r→+∞ r q(f , r) q(f, r) = +∞ and lim sup r→+∞ r q(f, r) q(f , r) = +∞.

We can now give a partial solution to a problem that arose when studying the zeros of derivatives of meromorphic functions: given f ∈ A( IK), is it possible that f divides f in the algebra A( IK)?

. Suppose that for some number s > 0 we have lim sup r→+∞ |q(f, r)|r s > 0 (where |q(f, r)| is the ultrametric absolute value of q(f, r) defined on IK). Then f has infinitely many zeros that are not zeros of f . Proof: Suppose that f only has finitely many zeros that are not zeros of f . Then there exist h ∈ A( IK) and P ∈ IK[x] such that P f = f h. Without loss of generality, we can assume that P is monic. Every zero of f of order u ≥ 2 is a zero of f of order u -1 and hence is a zero of h. And every zero of f of order 1 is zero of h of order 1 too. Consequently, h is not a polynomial.

b n x n and let s = deg(P ). Then c n = (n + 1)a n+1 ∀n ∈ IN. On the other hand, by Theorem A, given any r > 0 we have |f |(r) = |a q(f,r) |r q(f,r) , |f |(r) = |c q(f ,r) |r q(f ,r) = |(q(f , r) + 1)a q(f ,r)+1) |r q(f ,r) and |h|(r) = |b q(h,r) |r q(h,r) . Since h has infinitely many zeros, there exists r 0 > 0 such that q(h, r) ≥ s + 2 ∀r ≥ r 0 , assuming that all zeros of P belong to d(0, s). Then since the norm | . |(r) is multiplicative, we have s + q(f, r) = q(f , r) + q(h, r), hence [START_REF] Bezivin | Zeros of the derivative of a p-adic meromorphic function[END_REF] q(f , r) < q(f, r) -1 ∀r ≥ r 0 .

Then, by [START_REF] Bezivin | Zeros of the derivative of a p-adic meromorphic function[END_REF] we have |c n |r n < c q(f ,r) r q(f ,r) ∀n > q(f , r), ∀r ≥ r 0 and particularly, |c q(f,r)-1 |r q(f,r)-1 < |f |(r) = |c q(f ,r) |r q(f ,r) i.e.

(2) |(q(f, r))a q(f,r) |r (q(f,r)-1) < |f |(r) = |(q(f , r) + 1)a q(f ,r)+1 |r q(f ,r)

On the other hand, since

r s |a q(f,r) |r q(f,r) = |(q(f , r) + 1)a (q(f ,r)+1) |r q(f ,r) |b q(h,r) |r q(h,r) ∀r > r 0 .

By (2) we can derive r s-1 |q(f, r)a q(f,r) |r q(f,r) < r s |(q(f , r) + 1)a q(f ,r)+1 |r q(f ,r)