Alain Escassut 
  
Kamal Boussaf 
  
Jacqueline Ojeda 
  
Complex and p-adic branched functions and growth of entire functions

Keywords: 2010 Mathematics Subject Classification: 12J25, 30D35, 30G06, 46S10 0 P-adic meromorphic functions, Nevanlinna's Theory, Values distribution, Branched values, Order and type of growth

Following a previous paper by Jacqueline Ojeda and the first author, here we examine the number of possible branched values and branched functions for certain p-adic and complex meromorphic functions where numerator and denominator have different kind of growth, either when the denominator is small comparatively to the numerator, or vice-versa, or (for p-adic functions) when the order or the type of growth of the numerator is different from this of the denominator: this implies that one is a small function comparatively to the other. Finally, if a complex meromorphic function f g admits four perfectly branched small functions, then T (r, f ) and T (r, g) are close. If a p-adic meromorphic function f g admits four branched values, then f and g have close growth. We also show that, given a p-adic meromorphic function f , there exists at most one small function w such that f -w admits finitely many zeros and an entire function admits no such a small function.

Introduction

We denote by E an algebraically closed field of characteristic 0, complete with respect to an absolute value and by K an algebraically closed field of characteristic 0, complete for an ultrametric absolute value, with residue characteristic p ≥ 0.

We denote by A(E) the E-algebra of analytic functions in E (i.e. the set of power series with an infinite radius of convergence) and by M(E) the field of meromorphic functions in E (i.e. the field of fractions of A(E)) and by E(x) the field of rational functions with coefficients in E.

Given α ∈ K and R ∈ R * + , we denote by d(α, R) the closed disk {x ∈ K : |x -α| ≤ R} and by d(α, R -) the open disk {x ∈ K : |x -α| < R} contained in K, Given α ∈ K and R > 0, we denote by A(d(α, R -)) the K-algebra of analytic functions in d(α, R -) (i.e. the set of power series with a radius of convergence ≥ R) and by M(d(α, R -)) the field of fractions of A(d(α, R -)). We then denote by A b (d(α, R -)) the K-algebra of bounded analytic functions in d(α, R -) and by M b (d(α, R -)) the field of fractions of A b (d(α, R -)). And we set

A u (d(α, R -)) = A(d(α, R -)) \ A b (d(α, R -)) and M u (d(α, R -)) = M(d(α, R -)) \ M b (d(α, R -)).
As in complex functions, a meromorphic function f ∈ M(K) is said to be transcendental if it is not a rational function. Then, transcendental functions are known to be transcendental on the field K(x) [START_REF] Escassut | p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF].

In complex functions theory, a notion closely linked to Picard's exceptional values [START_REF] Escassut | p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF], [START_REF] Escassut | Branched values and quasi-exceptional values for p-adic mermorphic functions[END_REF], [START_REF] Escassut | Applications of branched values to p-adic functional equations on analytic functions[END_REF] was introduced: the notion of "perfectly branched value" [START_REF] Charak | Value distribution theory of meromorphic functions[END_REF]. In [START_REF] Escassut | Branched values and quasi-exceptional values for p-adic mermorphic functions[END_REF] the same notion was introduced on M(K) and on M u (d(a, R -)). Let us recall these notions.

Definition: Let f ∈ M(E) (resp. f ∈ M u (d(a, R -))). A value b ∈ E will be called a quasiexceptional value for f if f -b has finitely many zeros in E (resp. (d(a, R -))) and an exceptional value for f if f -b has no zero in E (resp. (d(a, R -))) [START_REF] Boussaf | Picard values of p-adic meromorphic functions. p-adic Numbers[END_REF]. Similarly, ∞ is called a quasi-exceptional value for f if f has finitely many poles and an exceptional value for f if f has no pole.

Next, b will be called a perfectly branched value for f if all zeros of f -b are of multiple order except finitely many. And b will be called a totally branched value for f if all zeros of f -b are of multiple order, without exception. Similarly, if all poles of f are multiple except finitely many, ∞ will be called a perfectly branched value and if all poles of f are multiple without exception, ∞ will be called a totally branched value.

In C it is known that a transcendental meromorphic function admits at most two quasiexceptional values and four perfectly branched values [START_REF] Charak | Value distribution theory of meromorphic functions[END_REF]. An entire function admits at most one quasi-exceptional value and two perfectly branched values [START_REF] Charak | Value distribution theory of meromorphic functions[END_REF]. As explained by K. S. Charak in [START_REF] Charak | Value distribution theory of meromorphic functions[END_REF], these numbers of perfectly branched values, respectively four and two, are sharp. The Weierstrass function ℘ has 4 totally branched values (considering ∞ as a value) and of course, sine and cosine functions admit two totally branched values: 1 and -1.

On the field K, in [START_REF] Escassut | Branched values and quasi-exceptional values for p-adic mermorphic functions[END_REF] it is proven that a meromorphic function f ∈ M(K) or f ∈ M u (d(a, R -)) has at most 4 perfectly branched values and more precisely, a meromorphic function f ∈ M(K) has at most 3 totally branched values. An unbounded analytic function f ∈ A u (d(a, R -)) has at most 2 perfectly branched values. But it is also proven that a transcendental meromorphic function having finitely many poles f ∈ M(K) has at most one finite perfectly branched value.

In this paper, we propose to look for additional results on these problems by examining meromorphic functions in the form f g , by comparing the kind of growth of f and g, either through their Nevanlinna characteristic functions or through their order of growth or type of growth. We will also define perfectly branched small functions in order to generalize results obtained on perfectly branched values. However, in the non-Archimedean setting, such a generalization does not work, due to the absence of Yamanoi's Theorem.

Notation: Given R > 0 and f ∈ A(d(0, R -)), for r < R, we put |f |(r) = lim |x|→r,|x| =r |f (x)|. Given a ∈ K and f (x) = +∞ n=q λ n (x -a) n ∈ A(d(a, R -))
, with λ q = 0, we put ω a (f ) = q. The Nevanlinna functions for complex meromorphic functions are well known. We will shortly recall the definition of their equivalent, or so, for p-adic meromorphic functions in the whole p-adic field or inside an open disk [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF], [START_REF] Boutabaa | Urs and ursim for p-adic Meromorphic Functions inside a Disk[END_REF]. Here we will choose a presentation that avoids assuming that all functions we consider admit no zero and no pole at the origin.

Let

f ∈ A(K) (resp, f ∈ A(d(0, R -)))
. Consider any r > 0 (resp. r ∈]0, R[). We denote by Z(r, f ) the counting function of zeros of f in d(0, r) in the following way.

Let (a n ), 1 ≤ n ≤ σ(r) be the finite sequence of zeros of f such that 0 < |a n | ≤ r, and for each, let s n be its respective order.

We then set Z(r, f ) = max(ω 0 (f ), 0) log r +

σ(r) n=1 s n (log r -log |a n |).
In order to define the counting function of zeros of f without multiplicity, we put ω 0 (f ) = 0 if ω 0 (f ) ≤ 0 and ω 0 (f ) = 1 if ω 0 (f ) ≥ 1. Now, we denote by Z(r, f ) the counting function of zeros of f without multiplicity:

Z(r, f ) = ω 0 (f ) log r + σ(r) n=1 (log r -log |a n |).
In the same way, considering the finite sequence (b n ), 1 ≤ n ≤ ν(r) of poles of f such that 0 < |b n | ≤ r, with respective multiplicity order t n , we put

N (r, f ) = max(-ω 0 (f ), 0) log r + ν(r) n=1 t n (log r -log |b n |).
Next, in order to define the counting function of poles of f without multiplicity, we put ω 0 (f ) = 0 if ω 0 (f ) ≥ 0 and ω 0 (f ) = 1 if ω 0 (f ) ≤ -1 and we set

N (r, f ) = ω 0 (f ) log r + ν(r) n=1 (log r -log |b n |).

Now we can define the Nevanlinna characteristic function

T (r, f ) in ]0, +∞[ when f belongs to M(K) (resp. in ]0, R[ when f belongs to M(d(0, R -))) as: T (r, f ) = max(Z(r, f ), N (r, f )) and the function T (r, f ) is called the characteristic function of f . Given f and w ∈ M(E) (resp. f and w ∈ M(d(0, R -))), w is called a small function with respect to f if lim r→+∞ T (r, w) T (r, f ) = 0 (resp. lim r→R - T (r, w) T (r, f ) = 0). Given f ∈ M(E) (resp. f ∈ M(d(0, R -))), we denote by M f (E) (resp. M f (d(0, R -))
), the set of functions w ∈ M(E) (resp. the set of functions w ∈ M(d(0, R -))) which are small functions with respect to f . Similarly, we denote by A f (E) (resp. A f (d(0, R -))), the set of functions w ∈ A(E) (resp. the set of functions w ∈ A(d(0, R -))) which are small functions respectively to f . We can now define perfectly branched small functions. Let

f ∈ M(E) (resp. f ∈ M(d(0, R -))). A function w ∈ M f (E) (resp. f ∈ M f (d(0, R -))
) will be called a perfectly branched small function with respect to f if all zeros of f -w except finitely many are multiple. 3) In M(d(0, R -)), concerning small functions, given any

Remarks: 1) Given f ∈ A(K) (resp. f ∈ A(d(0, R -)))), we have T (r, f ) = Z(r, f ). 2) Given f ∈ M(E) or f ∈ M(d(0, R -)) and b ∈ E, it
f ∈ M u (d(0, R -)), all functions h ∈ M b (d(0, R -)) belong to M f (d(0, R -)).
Theorem 1 is easily proven with help of Nevanlinna-Yamanoi's Theorem on n small functions.

Theorem 1: Let f ∈ M(C) be transcendental. There exist at most four small functions w j ∈ M f (C), j = 1, 2, 3, 4 that are perfectly branched with respect to f . Moreover, if f ∈ A(C), then there exist at most two small functions w j ∈ M f (C), j = 1, 2 that are perfectly branched with respect to f .

Theorem 2 is a serious refinement of Theorem 1.

Theorem 2: Let f, g ∈ A(C) have no common zero and be such that lim sup

r→+∞ T (r, f ) T (r, g) > 3 (resp. lim sup r→+∞ T (r, f ) T (r, g) > 2)
Then both f g and g f have at most two (resp. three) perfectly branched small functions.

Example: Set g(z) = e z -1 and f (z) = e 4z -2 and set φ(z) = f (z) g(z)

. Let us estimate

T (r, f ), T (r, g). Set h(z) = e z . Then 2πT (r, h) = +π -π log + e re it dt = +π -π log + e r cos(t) e ir sin(t) dt = +π -π log + e r cos(t) dt = + π 2 -π 2 log e r cos(t) dt = + π 2 -π 2 r cos(t)dt = 2r
and hence T (r, h) = r π . Therefore, by classical theorems on the Nevanlinna theory, we can derive

T (r, f ) = 4r π +o(T (r, h)) and T (r, g) = r π +o(T (r, h)). Consequently, T (r, f ) = 4T (r, g)+o(T (r, h)).
Then, by Theorem 2, φ admits at most two perfectly branched small functions. Corollary 2.3: Let f ∈ A(C). Then f has at most two perfectly branched small functions.

Theorem 3: Let f, g ∈ A(K)\K[x] (resp. f, g ∈ A u (d(0, R -))) be such that lim sup r→+∞ T (r, f ) T (r, g) > 2 (resp. lim sup r→R - T (r, f ) T (r, g) > 2 
). Then both f g and g f have at most two perfectly branched values.

Corollary 3.1: Let f ∈ A(K), (resp. let f ∈ A u (d(0, R -))) and let g ∈ A f (K), (resp. g ∈ A f (d(0, R -))).
Then both f g and g f have at most two perfectly branched values.

Concerning exceptional small functions in C, the following theorem A is known and generalizes this on exceptional values for complex meromorphic functions [START_REF] Yamanoi | The second main theorem for small functions and related problems[END_REF]:

Theorem A : Let f ∈ M(C) be transcendental. There exist at most two small functions w j ∈ M f (C), j = 1, 2 such that f -w j admits finitely many zeros. Moreover, if f ∈ A(C) \ C[x], then there exists at most one function w ∈ A f (C) such that f -w has finitely many zeros.

On the field K, we have a better result with p-adic meromorphic functions:

Theorem 4: Let f ∈ M(K) \ K(x), (resp. f ∈ M u (d(0, R -)))
. There exists at most one function w ∈ M f (K), (resp. w ∈ M f (d(0, R -))) such that f -w has finitely many zeros. Moreover, if f belongs to A(K) \ K[x], (resp. to A u (d(0, R -))), then there exists no function w ∈ M f (K), (resp. w ∈ M f (d(0, R -))) such that f -w has finitely many zeros.

Theorem B is given in [START_REF] Escassut | Applications of branched values to p-adic functional equations on analytic functions[END_REF] and is an easy consequence of results of [START_REF] Escassut | Branched values and quasi-exceptional values for p-adic mermorphic functions[END_REF]:

Theorem B: Let f ∈ M(K)\K(x)
have finitely many poles. Then f admits at most one rational function h ∈ K(x) which is perfectly branched with respect to f . Theorems 1 suggests the following conjecture that we cannot prove due to the absence of a p-adic Yamanoi's theorem:

Conjecture: Let f ∈ M(K) \ K(x) (resp. let f ∈ M u (d(0, R -)))
. There exists at most four small functions w ∈ M f (K) (resp. w ∈ M f (d(0, R -))) that are perfectly branched with respect to

f . Moreover, if f ∈ A(K) \ K[x] (resp. let f ∈ A u (d(0, R -)))
then there exists at most two small functions w ∈ A f (K) (resp. w ∈ A f (d(0, R -))) that are perfectly branched with respect to f . The next theorems use the growth order and the growth type for p-adic entire functions. Indeed, in order to obtain some results on branched small functions for p-adic meromorphic functions, since we don't enjoy a Yamanoi-Nevanlinna theorem, we will use another strategy combining the order of growth and the type of growth for entire functions, thanks to the link between the type of growth and the Nevanlinna characteristic function, for an entire function.

In [START_REF] Boussaf | Growth of p-adic entire functions and applications[END_REF] the growth of p-adic meromorphic functions was examined. Here, we will use the compared growth of numerator and denominator of a p-adic meromorphic function in order to examine how many picards values it can admit.

Definitions and notation:

Similarly to the definition known on complex entire functions [START_REF] Rubel | Entire and meromorphic functions[END_REF], given f ∈ A(K), the superior limit lim sup r→+∞ log(log(|f |(r))) log(r) is called the order of growth of f or the order of f in brief and is denoted by ρ(f ). We say that f has finite order if ρ(f ) < +∞. Now, let f ∈ A(K) have an order of growth α < +∞. The superior limit lim sup r→+∞ log(|f |(r)) r α is called the type of growth of f and is denoted by σ(f ). Now, it is useful to look at relations between the growth of functions f, g ∈ A(K) and their charcteristic functions. 

ρ(f ) = ρ(g). Moreover, if ρ(f ) ∈]0, +∞[, then σ(f ) = σ(g).

The proofs

In the proof of Theorem 5, we will use the following Theorems N1 and N2, known as Nevanlinna second main Theorem that holds in complex analysis as in p-adic analysis. In the proof of Theorem 1 we will use Theorem N3. We will also need the following classical lemmas H, J, L, M , P:

Lemma H [9]: Let f ∈ M(K) (resp. f ∈ M(d(0, R -))). Then M f (K) is a subfield of M(K) (resp. M f (d(0, R -)) is a subfield of M(d(0, R -))); A f (K) is subalgebra of A(K) (resp. A f (d(0, R -)) is a subalgebra of A(d(0, R -))). Moreover, given f, g ∈ M(K) (resp. f, g ∈ M(d(0, R -))), then T (r, 1 f ) = T (r, f ) + O(1) and T (r, f g) ≤ T (r, f ) + T (r; g) + O(1). Lemma J [8]: Let f, g ∈ f ∈ A(K) (resp. f, g ∈ A(d(0, R -))). Then Z(r, f + g) ≤ max(Z(r, f ), Z(r, g)) + O(1).
Lemma L [START_REF] Escassut | p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF]: Let f, g ∈ A(K) (resp. f, g ∈ A(d(0, R -))). Then Z(r, f.g) = Z(r, f ) + Z(r, g).

Lemma M [START_REF] Escassut | p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF]: Let f ∈ A(K). Then f is a polynomial if and only if there exists q ∈ N such that T (r, f ) ≤ q log(r).

Lemma P [START_REF] Escassut | p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF]:

Let f ∈ A(d(0, R -)). Then f belongs to A b (d(0, R -))
if and only if T (r, f ) is bounded when r tends to R. Moreover, if f has finitely many zeros, then f belongs to A b (d(0, R -)).

Notation: As usual, given a function ϕ defined in ]0, +∞[ (resp. in ]0, R[) we denote by o(ϕ) any

function ψ defined in ]0, +∞[ (resp. in ]0, R[) such that lim r→+∞ ψ(r) ϕ(r) = 0 (resp. lim r→R - ψ(r) ϕ(r) = 0).
Theorem N1 [START_REF] Hayman | Picard values of meromorphic functions and their derivatives[END_REF]:

Let f ∈ M(C) and let b 1 , ..., b q ∈ C. Then (q -1)T (r, f ) ≤ q j=1 Z(r, f -b j ) + N (r, f ) + o(T (r, f )).
In the p-adic context we know a more precise Nevanlinna Theorem:

Theorem N2 [3], [4], [13] Let f ∈ M(K) (resp. f ∈ M u (d(0, R -))) and let b 1 , ..., b q ∈ K. Then (q -1)T (r, f ) ≤ q j=1 Z(r, f -b j ) + N (r, f ) -log(r) + O(1)
Theorem N3 is given in [START_REF] Yamanoi | The second main theorem for small functions and related problems[END_REF] and provides us with a Nevanlinna theorem on q small functions.

Unfortunately, it has no equivalent in p-adic analysis when q > 3.

Theorem N3: Let f ∈ M(C) and let w 1 , ..., w q ∈ M f (C). Let > 0 be fixed. Then

(q -1 -)T (r, f ) ≤ q j=1 Z(r, f -w j ) + N (r, f ) + o(T (r, f )).
Now, by Lemma L, we can easily prove the following Lemma Q:

Lemma Q: Let f ∈ M(C) (resp. f ∈ M(K), resp.f ∈ M(d(0, R -)) ) and let g ∈ M f (C) (resp. g ∈ M f (K), resp. g ∈ M f (d(0, R -))). Then T (r, f g ) = T (r, f ) + o(T (r, f )).
Lemma R is obvious:

Lemma R: Let f, g ∈ A(C) (resp. f, g ∈ A(K), resp. f, g ∈ A(d(0, R -))) have no common zero. Then Z(r, f g ) = Z(r, f ), N (r, f g ) = Z(r, g).
Remark: It is sufficient to prove that the function φ = f g has at most 2 perfectly branched values in Theorems 3, 4, 5.

Proof of Theorem 1. Suppose that f admits 5 perfectly branched small functions: w j , 1 ≤ j ≤ 5.

Let ∈]0, 1 2 [. For each j = 1, ..., 5, let s j be the number of zeros of order 1 of f -w j and let

s = 5 j=1 s j . So, we have Z(r, f -w j ) ≤ T (r, f ) 2 + s j log(r) + O(1). Consquently, by Theorem N3 we have (4 -)T (r, f ) ≤ 5 j=1 Z(r, f -w j ) + N (r, f ) + o(T (r, f )) therefore (3 -)T (r, f ) ≤ 5 j=1 Z(r, f -w j ) + o(T (r, f )) ≤ 5T (r, f ) 2 + o(T (r, f ))
That holds with < 1 2 , which leads to a contradiction. Suppose now that f ∈ A(C) and that f admits 3 perfectly branched small functions w j , j = 1, 2, 3. The same reasoning as previously leads to (2

-)T (r, f ) ≤ 3 j=1 Z(r, f -w j ) + o(T (r, f )), therefore (2 -)T (r, f ) ≤ 3T (r, f ) 2 + o(T (r, f )), a contradiction when < 1 2 .
That ends the proof of Theorem 1.

Notation: In Theorem 2, 5, 6 we put φ = f g .

Proof of Theorem 2: First we notice that T (r, f

) ≤ T (r, φ) + T (r, g) + o(T (r, f )), hence (1) 
T (r, φ) ≥ T (r, f ) -T (r, g) + o(T (r, f )).
Suppose that φ has 3 perfectly branched small functions w j , j = 1, 2, 3 and that lim sup

r→+∞ T (r, f ) T (r, g) > 3.
Applying Theorem N3 to φ, for every > 0 we have

(2 -)T (r, φ) ≤ 3 j=1 Z(r, φ -w j ) + N (r, φ) + o(T (r, φ)) ≤ 3T (r, φ) 2 + N (r, φ) + o(T (r, φ)),
Clearly, N (r, φ) = Z(r, g), hence we obtain.

(

) (2 -)T (r, φ) ≤ 3T (r, φ) 2 + Z(r, g) + o(T (r, φ)). 2 
Thanks to the hypothesis lim sup r→+∞ T (r, f ) T (r, g) > 3, we can find η > 0 and a sequence (r n ) n∈N tending to +∞ such that when n is big enough, we obtain, On the other hand, by ( 1) and (3) we have

T (r n , φ) ≥ T (r n , f ) -T (r n , g) + o(T (r n , f )) ≥ T (r n , f ) - 1 3 + η T (r n , f ) + o(T (r n , f ))
and hence,

T (r n , φ) ≥ 2 + η 3 + η T (r n , f ) + o(T (r n , f )).
But we notice that o(T (r, φ)) = o(T (r, f )). Consequently, by (4) we obtain

(2 -)T (r n , φ) ≤ 3 2 T (r n , φ) + 1 3 + η 3 + η 2 + η T (r n , φ) + o(T (r n , φ)) hence (5) (2 -)T (r n , φ) ≤ 3 2 + 1 2 + η T (r n , φ) + o(T (r n , φ)).
Now, since was chosen arbitrarily, we can choose it small enough so that 2 -> 8 + 3η 4 + 2η and then we can check that contradicts [START_REF] Boutabaa | Applications of the p-adic Nevanlinna Theory to Functional Equations[END_REF].

Suppose now that φ has 4 perfectly branched small functions w j , j = 1, 2, 3, 4 and that lim sup tending to +∞ such that when n is big enough, we obtain,

(2 + η)T (r n , g) ≤ T (r n , f ).

Consequently, by ( 6),

(3 -)T (r n , φ) ≤ 2T (r n , φ) + 1 2 + η T (r n , f ) + o(T (r n , φ)). (8) 
On the other hand, by ( 1) and ( 7) we have

T (r n , φ) ≥ T (r n , f ) -T (r n , g) + o(T (r n , f )) ≥ T (r n , f ) - 1 2 + η T (r n , f ) + o(T (r n , f ))
and hence, we can derive

T (r n , φ) ≥ 1 + η 2 + η T (r n , f ) + o(T (r n , f )).
Consequently, by [START_REF] Escassut | p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF] we obtain

(3 -)T (r n , φ) ≤ 2T (r n , φ) + 1 2 + η 2 + η 1 + η T (r n , φ) + o(T (r n , φ)) hence (9) (3 -)T (r n , φ) ≤ 2 + 1 1 + η T (r n , φ) + o(T (r n , φ)).
Now, since was arbitrary, we can choose it small enough so that 1 -> 1 1 + η and then we can check that contradicts [START_REF] Escassut | Exceptional values of p-adic analytic functions and derivatives[END_REF].

Remark: In Theorems 3, 4, 6, when f and g belong to A(K) \ K[x], we can write f and g in the form f = f .h and g = g.h where f and g have no common zero. Then in each theorem , we can check that f and g satisfy the hypotheses of the considered theorem, like do f and g. Now, if f, g ∈ A u (d(0, r -)), by Lazard's Theorem [START_REF] Lazard | Les zéros des fonctions analytiques sur un corps valué complet[END_REF], we can place ourselves in an algebraically closed spherically complete extension to obtain the same conclusion because the Nevanlinna functions are the same in such an extension. Therefore we can assume that f and g have no common zero without loss of generality.

On the other hand, by Lemma L, we have T (r, gh 1 h 2 ) = T (r, h 1 h 2 )+T (r, g) = 2T (r, f )+o(T (r, f )), a contradiction to [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF].

Suppose now that f belongs to A(K) and that there exists a function w ∈ M f (K) such that f -w has finitely many zeros. Set w = l t where l and t belong to A f (K) and have no common zeros. Thus, f -w = tf -l t and each zero of tf -l cannot be a zero of t, hence it is zero of f -w. Consequently, since f -w has finitely many zeros, tf -l also has finitely many zeros and hence is a polynomial. But since l belongs to A f (K), when r is big enough we have |f |(r) > |l|(r) and hence |tf |(r) > |l|(r) since t ∈ A f (K), therefore |tf -l|(r) = |tf |(r). And since f is transcendental, by Lemma M for every fixed q ∈ N, |f |(r) > r q when r is big enough. Similarly, |tf -l|(r) > r q when r is big enough. Consequently, by Lemma M, tf -l is not a polynomial, which proves that w does not exist.

Suppose finally that f belongs to A(d(0, R -)) and that there exists a function w ∈ M f (d(0, R -)) such that f -w has finitely many zeros. Without loss of generality, we can assume that the field K is spherically complete because both f and w have continuation to an algebraically closed spherically complete extension of K where their zeros are the same as in K. Consequently, by results of [START_REF] Lazard | Les zéros des fonctions analytiques sur un corps valué complet[END_REF], we can write w = l t where l and t have no common zeros. Now, the zeros of tf -l are those of f -w, hence tf -l has finitely many zeros and hence, is bounded in d(0, R -). Proof of Theorem 6: Similarly to Theorem 3, we can suppose that f and g have no common zeros. Without loss of generality, we can suppose that σ(f ) > σ(g). Since f and g have no common zero, we have T (r, φ) = max(T (r, f ), T (r, g)), r > 0. Put ρ(f ) = t. 

  is equivalent that b is a perfectly (resp. a totally) branched value for f and that 1 b is a prefectly (resp. a totally) branched value for 1 f .

Corollary 2 . 1 :Corollary 2 . 2 :

 2122 Similarly, set ψ(z) = e 3z -2 e z -1 . Then by Theorem 2, ψ has at most three perfectly branched small functions. Let f ∈ A(C) and let g ∈ A f (C). Then both f g and g f have at most two perfectly branched small functions. Particularly, they admit at most two perfectly branched values. Let f ∈ A(C) and let g ∈ A f (C). Then both f g and g f have at most two perfectly branched small functions. Particularly, they admit at most two perfectly branched values.

Theorem 5 : 1 : 5 . 1 :Theorem 6 :Corollary 6 . 1 :

 5151661 Let f, g ∈ A(K) be such that ρ(f ) > ρ(g). Then lim inf r→+∞ T (r, g) T (r, f ) = 0. By Corollary 3.1, we can now derive Corollary 5.Corollary Let f, g ∈ A(K) be such that ρ(f ) = ρ(g). Then both f g and g f have at most two perfectly branched values. Now, when ρ(f ) = ρ(g), we can still give some precision. Let f, g ∈ A(K) and suppose that ρ(f ) = ρ(g) ∈]0, +∞[ and σ(f ) = σ(g). Then both f g and g f have at most three perfectly branched values. Moreover, if 2σ(g) < σ(f ) or if 2σ(f ) < σ(g) then f g and g f have at most two perfectly branched values. Let f, g ∈ A(K) be such that f g admits four distinct branched values. Then

  + η)T (r n , g) ≤ T (r n , f ). n , f ) + o(T (r n , φ)).

r→+∞T 4 j=1Z

 4 (r, f ) T (r, g) > 2. Applying Theorem N3 to φ, for every > 0 we have(3 -)T (r, φ) ≤ (r, φ -w j ) + N (r, φ) + o(T (r, φ)) ≤ 2T (r, φ) + N (r, φ) + o(T (r, φ)),So, similarly as in the previous case, we obtain.(6) (3 -)T (r, φ) ≤ 2T (r, φ) + Z(r, g) + o(T (r, φ)).Now, thanks to the hypothesis lim sup r→+∞ T (r, f ) T (r, g) > 2, we can find η > 0 and a sequence (r n ) n∈N

  But since w belongs to M f (d(0, R -)), so does l and hence |tf |(r) > |l|(r) when r tends to R. Consequently, |tf -l|(r) = |tf |(r) and hence tf -l is not bounded in d(0, R -), a contradiction proving again that w does not exist.Proof of Theorem 5:Let λ = ρ(f ) -ρ(g) 2 .There exists a sequence of intervals [r n , r n ] such that log(log(|f |(r))) log r > log(log(|g|(r))) log r + λ ∀r ∈ [r n , r n ], ∀n ∈ N and lim n→+∞ r n = +∞. Therefore log(log(|f |(r))) > log(log(|g|(r))) + λ log(r) ∀r ∈ [r n , r n ], ∀n ∈ N, hence log(|f |(r)) > log(|g|(r))(r λ ) ∀r ∈ [r n , r n ], ∀n ∈ N. Consequently, putting S n = sup r∈[r n ,r n ] log(|g|(r)) log(|f |(r)) for every n ∈ N, we have lim n→+∞ S n = 0 and hence lim inf r→+∞ T (r, g) T (r, f ) = 0, which ends the proof.

  There exist λ > 0 and a sequence (r n ) n∈N in R such that lim

	n→+∞ log(|f |(r n )) (r n ) t ≥ log(|g|(r n )) r n = +∞ and mail: kamal.boussaf@math.univ-bpclermont.fr CNRS, UMR 6620, LM, F-63171 AUBIERE, FRANCE mail: alain.escassut@math.univ-bpclermont.fr Jacqueline OJEDA Departamento de Matematica Facultad de Ciencias Fsicas y Matematicas Universidad de Concepcion Concepción CHILE (r n ) FRANCE mail: jacqojeda@udec.cl

t + λ ∀n ∈ N hence log(|f |(r n )) ≥ λ(r n ) t + log(|g|(r n )) ∀n ∈ N

Proof of Theorem 3: As noticed in the above remark, without loss of generality, we can suppose that f and g have no common zeros. Consequently, we have T (r, φ) = max(T (r, f ), T (r, g)).

Now, by hypothesis, there exists λ < 1 2 and a sequence (r n ) n∈N such that lim 

Suppose that φ has 3 perfectly branched values b j , j = 1, 2, 3. Applying Theorem N2 we have

But here, for each j = 1, 2, 3, we notice that Z(r, φ -b j ) ≤ Z(r, φ -b j ) 2 + q j log(r) with q j ∈ N and by Lemma J, Z(r, φ

a contradiction to [START_REF] Boussaf | Growth of p-adic entire functions and applications[END_REF].

Proof of Theorem 4: Suppose that there exist two distinct functions g 1 , g 2 ∈ M f (K), (resp.

) such that f -g k has finitely many zeros. So, there exist

and

Consequently, putting g = g 2 -g 1 , g belongs to M f (K) (resp. to M f (d(0, R -))) and satisfies

Now, by Lemma J we have

and hence by (1), we obtain

Consequently,

(2)

when n is big enough. Suppose now that φ admits 4 perfectly branched values b j , j = 1, 2, 3, 4 and let q be the total number of zeros of order 1 of the φ -b j , j = 1, 2, 3, 4. Applying Theorem N2 to φ, we have

hence by (2),

Clearly lim n→+∞ ((q -1) log(r n ) -λ(r n ) t ) = -∞ and hence that inequality is absurd when n is big enough, which ends the proof of the first claim.

Suppose now that 2σ(g) < σ(f ) and set β = σ(f ) 2 -σ(g). So, there exists a sequence (r n ) n∈N such that lim n→+∞ r n = +∞ and Clearly, lim n→+∞ (q -1) log(r n ) -β(r n ) t = -∞, a contradiction which finishes the proof.