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Survey and additional properties

on the transcendence order over lQp in lCp.

by Alain Escassut

Abstract The paper is aimed at recalling the notion of transcendence order
over lQp and its main properties. Proofs are more detailed than in the paper

published in Journal of Number Theory. The main results: the order always is
≥ 1 and we construct a number b that is of order 1 + ε for every ε > 0. If a is of
order ≤ t and if b is transcendental over lQp but algebraic over lQp(a), then b is

of order ≤ t too. Finally, numbers of infinite order are constructed.

Introduction and results

We denote by lCp the completion of the algebraic closure of the field lQp [1],

[4]. The transcendence order of a number a in lCp was introduced in [2]. This

notion, which is specific to p-adic numbers, looks a bit like that of transcendence
type [5] but it is quite different because this concerns transcendence over lQp,

not over lQ. In 1978 the notion of transcendence order was defined and we
showed the existence of numbers with transcendence order ≤ 1 + ε. This is a
result that we will describe and here with some improvements. The existence of
numbers with transcendence order 1 was communicated to me and stated in [2]
but a mistake in the proof puts in doubt the result even though it seems likely.
The order of transcendence is stable through an algebraic extension. Finally, in
Theorem 4 we construct numbers with an infinite order of transcendence.

Definitions and notation: Given a field E, we denote by E(X) the field of

rational functions with coefficients in E. We denote by | . |p the p-adic absolute

value defined on lCp and by logp the real logarithm function of base p. We then

define Ψp(x) = logp(|x|p). We denote by ‖ . ‖ the Gauss norm defined on lCp[X]

by ‖
n∑
j=0

ajX
j‖ = max

0≤j≤n
|aj |p.

Let τ ∈]0,+∞[. Let F be a transcendental extension of lQp provided with

an absolute value | . | extending that of lQp. An element a ∈ F will be said to

have transcendence order ≤ τ or order ≤ τ in brief, if there exists a constant
Ca ∈]0,+∞[ such that every polynomial P ∈ lQp[x] satisfies logp(|P (a)|) ≥
logp(‖P‖)− Ca(deg(P ))τ .

We will denote by S(τ) the set of numbers x ∈ lCp having transcendence

order ≤ τ .
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We will say that a number x ∈ lCp is of infinite transcendence order if it

does not belong to S(τ) for all τ ∈ IR∗+
Given a ∈ lCp and r > 0 we denote by d(a, r) the disk {x ∈ lCp | |x−a| ≤ r}

and by d(a, r−) the disk {x ∈ lCp | |x − a| < r}. We will denote by U the disk

d(0, 1).

Remark: By definition, an element a ∈ lCp having transcendence order ≤ τ is

transcendental over lQp.

Theorem 1: Let τ ∈]0,+∞[. If S(τ) 6= ∅ then τ ≥ 1.

Theorem 2: There exists b ∈ lCp, transcendental over lQp, of order ≤ 1 + ε

for every ε > 0.

Remark: In [2] the existence of numbers of transcendence order 1 is stated.
Unfortunately, the proof is wrong because it is not possible to compose two lQp-

isomorphisms defined in an extension of lCp. Therefore, the question of existence

of numbers transcendental over lQp of order 1 remains open.

Theorem 3: Let x ∈ lCp belong to S(τ) (τ ≥ 1) and let y ∈ lCp be transcen-

dental over lQp but algebraic over lQp(x). Then y also belongs to S(τ).

Corollary 3.1: Let a ∈ S(τ) and let E be an algebraic extension of lQp(a) and

let h(X) ∈ E(X) \ E. Then h(a) belongs to S(τ).

Particularly, we notice that if a ∈ S(τ) then
1

a
and an belong to S(τ).

Theorem 4: There exists numbers in lCp having infinite order.

The proofs
Notation: We denote by | . |∞ the Archimedean absolute value defined on IR.

Proof of Theorem 1: Let a ∈ lCp, a 6= 0, be trenscendental over lQp and have

transcendence order ≤ τ . We can find b ∈ Ωp, (b 6= 0) such that |a − b|p < 1.

Consider the minimal polynomial Q of b over lQp. Let b2, ..., bq be the conjugates

of b over lQp and set b1 = b. Since lQp is complete, we notice that all conjugates

bj of b over lQp satisfy |bj |p = |b|p = |a|p.
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Suppose first that |a|p ≤ 1. Since |bj |p = |b|p = |a|p ≤ 1, all coefficients

of Q belong to ZZp. Obviously Q is monic, hence ‖Q‖ = 1. By hypothesis,

there exists Ca ∈]0,+∞[ such that Ψp(P (a)) ≥ logp(‖P‖) − Ca(deg(P ))τ ∀P ∈
lQp[x]. Consequently, −nΨp(Q(a)) = −Ψp((Q(a))n) ≤ Ca(ndeg(Q))τ ∀n ∈ IN∗.

Since Q(b) = 0 and since, by Q is clearly 1-Lipschitzian in the disk U , we

have −Ψp(Q(a)) > 0 and therefore, if τ < 1, the inequality −nΨp(Q(a)) ≤
Ca(n deg(Q))τ ∀n ∈ IN∗ is impossible when n tends to +∞.

Suppose now |a|p > 1. Set Q(X) =

q∑
k=0

ckX
k. Since the bj satisfy |bj |p =

|a|p, (1 ≤ j ≤ q), we have |ck|p ≤ (|a|p)q−k and particularly |c0|p =
∏q
j=1 |bj |p =

|a|p. Consequently, ‖Q‖ = (|a|p)q and therefore, considering the sequence (Qn)n∈IN,

for every n ∈ IN∗ we have,

(1) −n logp(|Q(a)|p) ≤ −nq logp(|a|p) + Ca(nq)τ .

On the other hand, Q(a) = Q(a)−Q(b) = (a− b)
q∑

k=1

ck

( k∑
j=0

ajb
k−j−1

)
and

hence |Q(a)|p ≤ |a− b|p(|a|p)q−1. Consequently, we obtain

−n logp(|a− b|p)− n(q − 1) logp(|a|p) ≤ −n logp(|Q(a)|p) and hence, by (1):

−n logp(|a− b|p)− n(q − 1) logp(|a|p) ≤ −nq logp(|a|p) + Ca(nq)τ . Finally,

n(logp(|a|p) − logp(|a − b|p)) ≤ Ca(nq)τ . Since |a|p > 1 and |a − b|p < 1, this

inequality is impossible again when n tends to +∞, which ends the proof.

Lemma A: Let P (X) ∈ lQ[x] and let a ∈ U , let t = X − a and let Q(t) =

P (X). Then ‖P‖ = ‖Q‖.

Lemma B: Let b ∈ lCp be transcendental over lQp and let q ∈ IN∗. There exists

a real constant m > 0 such that |Q(b)|p ≥ m for every polynomial Q ∈ lQp[X]

such that ‖Q‖ = 1 and deg(Q) ≤ q.

Proof: Suppose that Lemma B is wrong and let (Qn)n∈IN∗ be a sequence of

lQp[X] such that ‖Qn‖ = 1, deg(Qn) ≤ q ∀n ∈ IN∗ and such that lim
n→+∞

Qn(b) = 0.

We then can extract from the sequence (Qn) a subsequence converging to a poly-

nomial Q ∈ lQp[X] such that ‖Q‖ = 1 and Q(b) = 0, a contradiction since b is

transcendental over lQp.

Lemma C: Let a ∈ lCp be algebraic over lQp, logp(|a|) is of the form
λ

t
, with
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λ and t in IN. Take m, n ∈ IN and b ∈ lCp such that logp(|b|) is of the form
u

w
with u ∈ IN and w ∈ IN prime, prime with u and such that w > max(m,n, t).

Let f, g ∈ lQp[a] be such that |fbm|p = |gbn|p. Then m = n.

Proof: We notice that for every x ∈ lQp[a], logp(|x|) is of the form `
t with ` ∈ IN.

Consequently, logp(|f |) is of the form
h

t
and logp(|g|) is of the form

k

t
with h and

k ∈ IN∗. Consequently, logp(|fbm|) =
h

t
+
mu

w
and logp(|gbn|) =

k

t
+
nu

w
and

therefore, due to the equality |fbm|p = |gbn|p, we have (h − k)w = ut(n −m).

But since w > t, it is prime with ut, hence it must divide n − m, which is
impossible because max(m,n) < w, except if m = n.

Proof of Theorem 2: Consider first a strictly decreasing sequence (εn)n∈ such

that limn→+∞ εn = 0 and limn→+∞ εn logp(n) = +∞.

We can always divide any polynomial P ∈ lQp[x] by some λ ∈ lQp such that

|λ|p = ‖P‖ and hence we go back to the hypothesis ‖P‖ = 1. So, if we can

find some b ∈ lCp and, for every ε > 0, a constant C(ε) > 0 and show that for

every P ∈ lQ[X] such that ‖P‖ = 1, we have − logp(|P (b)|p) ≤ C(ε)(deg(P ))1+ε,

Theorem 2 will be proven.

By induction we can define a strictly increasing sequence (rn)n∈IN of lQ

and a sequence (an)n∈IN of lCp with rn =
un
vn

, irreducible and (vn)n∈IN a strictly

increasing sequence of prime numbers and a sequence (ln)n∈IN∗ satisfying further
the following properties:
i) lim

n→+∞
rn = +∞,

ii) for every n ∈ IN, nεn < rn < (n+ 1)εn ,

iii) vn >
∏n−1
j=1 vj

iv) (an)vn = pun

v) (an)ln = an−1
By construction, the sequence (|an|p)n∈IN is strictly decreasing and tends to

0 and all terms belong to U . Set b =
∞∑
n=1

an. Now, let us fix ε > 0. We will show

that b is transcendental over lQp and has a transcendence order ≤ 1 + ε.

Since the sequence (εn) tends to 0, we can find an integer t(ε) such that

εm < ε ∀m ≥ t(ε). Thus, as a first step, let us take q ≥ t(ε) and let us find a

constant C(ε) > 0, not depending on b, such that for every P ∈ lQ[X] satisfying

‖P‖ = 1 and deg(P ) = q, we have − logp(|P (b)|p) ≤ C(ε)q1+ε.
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For each n ∈ IN∗, set bn =
n∑

m=1

am. Since the sequence (|am|p)m∈IN is strictly

decreasing, we have |b − bn|p = |an+1|p and since P is obviously 1-Lipschitzian

in the disk U , we have |P (b)− P (bn)|p ≤ |an+1|p hence

(1) logp(|P (b)− P (bn)|p) ≤ logp(|an+1|p) = −rn+1.

Now, since the sequence εn logp(n) tends to +∞, we can choose n(q) such

that (n(q) + 1)εn(q)+1 > (q + 1)1+ε. Then by (1) we have

(2) logp(|P (b)−P (bn(q))|p) < logp(|an(q)+1|p) = −(rn(q)+1) < −(n(q)+1)εn(q)+1 <

−(q + 1)1+ε.

We will show the following inequality (3)

(3) − logp(|P (bn(q))|p) ≤ (q + 1)1+ε.

Thus, suppose (3) is wrong. Set hq =

n(q)∑
m=q

am. Then bn(q) = bq−1+hq. Now,

developping P at the point bq−1, we have

(4) logp(|P (bn(q))|p) = logp

(∣∣∣ q∑
m=0

P (m)(bq−1)

m!
(hq)

m
∣∣∣
p

)
< −(q + 1)1+ε

Consider now the sum

q∑
m=0

P (m)(bq−1)

m!
(hq)

m. Since the sequence |am|p is strictly

decreasing, we have |hq|p = |aq|p, hence logp(|hq|p) = −rq. On the other hand,

due to the hypothesis rq =
uq
vq

, it appears that vq is a prime integer, prime to uq

and bigger than q and than

q−1∏
j=1

vj . And thanks to the hypothesis v), each P (bm)

is a polynomial in aq−1. Consequently, we can apply Lemma C and we can see

that for each m = 0, ..., q − 1, all the
∣∣∣P (m)(bq−1)

m!
(hq)

m
∣∣∣
p

are pairwise distinct.

Consequently we have

(5)
∣∣∣ q∑
m=0

P (m)(bq−1)

m!
(hq)

m
∣∣∣
p

= max
1≤m≤q

∣∣∣P (m)(bq−1)

m!
(hq)

m
∣∣∣
p
.

Next, since − logp(|hq|p) = rq < (q + 1)ε, for each integer m = 1, ..., q, we

have logp(|(hq)m|p) = −mrq > −m(q + 1)ε ≥ −q(q + 1)ε, hence
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(6) logp(|(hq)m|p) ≥ −q(q + 1)ε > −(q + 1)1+ε ∀m ≤ q.

Consequentlly, by (4), (5) and (6), the polynomial Q(X) =

q∑
m=0

P (m)(bq−1)

m!
(X)m

has all coefficients in d(0, 1−) and hence we have ‖Q‖ < 1. But since |bq−1|p < 1,

by Lemma A, we have ‖P‖ = ‖Q‖ < 1, a contradiction to the hypothesis ‖P‖ =

1. Therefore, Relation (3) is proven for every polynomial P ∈ lQp[X] of degree

q ≥ t(ε), such that ‖P‖ = 1. Consequently, by (3) we obviously have a constant

C > 0, not depending on b, such that − logp(|P (b)|p) ≤ C(deg(P ))1+ε for every

P ∈ lQp[X] such that deg(P ) ≥ t(ε) and ‖P‖ = 1.

Particularly b is transcendental over lQp because if it were algebraic, the

degrees of polynomials P ∈ lQp[X] such that P (b) = 0 wouldn’t be bounded.

Finally, by Lemma B there exists a constant m > 0 such that |Q(b)|p ≥ m for

every polynomial Q ∈ lQp[X] of degree q ≤ t(ε) and ‖Q‖ = 1. Therefore b is

clearly of order ≤ 1 + ε.

Lemma D: Let F be an extension of lQp of transcendence degree 1 containing

Ωp and provided with an absolute value | . |F that extends the absolute value of

lQp. Let H be the residue class field of F . If H is transcendental over IFp, then

any t ∈ F transcendental over lQp has transcendence order 1 over lQp.

Proof: Suppose H is transcendental over IFp and let t ∈ F be transcendental

over lQp. Since F has a transcendence degree 1 over lQp, F is an algebraic

extension of lQp(t). Let us show that t has transcendence order 1.

Suppose first that |t|F ≤ 1. Then, by a classical result (Corollary 6.8 in [3])

the field H is algebraic over the residue class field Qt of the field lQp(t) with the

absolute value of F , since F is algebraic over lQp(t). Now by hypothesis H is

transcendental over IFp hence Qt must also be transcendental over IFp. Suppose

now that t belongs to the closure of Ωp in F with respect to the topology of F .

The natural isomorphism from lQp(t) into Ωp makes an isomorphism from Qt
into the residue class field of Ωp. But the residue class field of Ωp is algebraic

over IFp, hence so is Qt, a contradiction. So, we have proven that t does not

belong to the closure of Ωp in F . Therefore, there exists a disk d(t, r) in F (with

0 < r ≤ 1) such that d(t, r) ∩ Ωp = ∅.
Let Q(X) ∈ lQp[X] be of degree n, such that ‖Q‖ = 1 and consider its

factorization in Ωp[X]:
n∏
k=1

(akX − bk) with ak, bk ∈ Ωp and ‖akX − bk‖ =

1 ∀k = 1, ..., n.
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Let Ξ be the mapping defined on F as Ξ(z) = logp(|z|F ). Since F ⊃ Ωp, we

know that the absolute value | . |F of F induces | . |p on Ωp because the extension

of the absolute value | . |p of lQp to Ωp is unique.

If |ak|p = 1, then |akt − bk|F = |t − bk
ak
|F ≥ r and if |ak|p < 1, then

|akt− bk|F = |bk|p = 1 ≥ r. Thus, in all cases, we have |Q(t)|F ≥ rdeg(Q) hence

Ξ(Q(t)) ≥ (logp r) deg(Q). Consequently, we have proven that t has transcen-

dence order ≤ 1 whenever |t|F ≤ 1.

Suppose now that |t|F > 1. We can set Q(t) = tnG(
1

t
) with G ∈ lQp[X]

and deg(G) ≤ deg(Q). Since |t|F > 1, we have Ξ(G(
1

t
)) ≥ (logp r) deg(G) ≥

(logp r) deg(Q) and therefore Ξ(Q(t)) ≥ (logp r) deg(Q)+deg(Q) logp(|t|F ), which

finishes proving that t has transcendence order ≤ 1.

Proof of Theorem 3: Let E = lQp(x, y) and let m = [E : lQp(x)]. Let y1 = y

and y2, ..., ym be the conjugates of y in lCp.

We set (t − y1) · · · (t − ym) =
∑m
i=0 Sit

m−i in order to define the i-th sym-

metric function Si(y1, ..., ym), with respect to the extension E over lQp(x).

We know that the Si belong to lQp(x) and hence are of the form
fi(x)

G(x)

with fi(x), G(x) ∈ lQp[x] and ‖G‖ = 1. Let ti be the degree of fi and set

A = max(ti | 1 ≤ i ≤ m). Let N denote the lQp(x)-algebraic norm defined on E.

Now, take Q(X) ∈ lQp[X] with ‖Q‖ = 1 and deg(Q) = q. We can write

Q(X) = a

q∏
k=1

(X − ck) with a ∈ lQp and ck ∈ Ωp and ‖X − ck‖ = 1, k = 1, ..., q.

Set R(x) = N ((G(x))qQ(y)) = (G(x))mqN (Q(y)). We have

R(x) = (G(x))mq(a)m
∏

1≤k≤q,
1≤i≤m

(yi − ck) Hence

R(x) = (−1)mq(a)m(G(x))mq
∏

1≤k≤q

( m∑
i=0

(ck)m−iSi(y1, ..., ym)
)

= (−1)mq(a)m(G(x))(m−1)q
∏

1≤k≤q

( m∑
i=0

(ck)m−ifi(x)
)
.

We now set J = (m− 1) deg(G) +A. Then J ≥ 1 and we have
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(1) deg(R) ≤ J deg(Q).

Consider the absolute value φ on lQp[x] induced by the Gauss norm ‖ . ‖
defined on the algebra of polynomials lQp[X]. Then, φ admits an extension φ̂

to an algebraic closure of lQp(x). Particularly, φ̂ is defined on E and obviously

satisfies φ̂(x) = φ(x) = 1 since φ is induced by the Gauss norm on lQp[x]. Let

E be the residue class field of E equiped with φ̂ and let x be the residue class
of x in E . By construction, the image of ZZp[x] in E is IFp[x] and x is obviously

transcendental over IFp. Let Ξ be the mapping defined on E as Ξ(z) = logp(φ̂(z)).

Then, by definition, for all F (x) ∈ lQp[x], we have Ξ(F (x)) = logp(‖F‖).
On the other hand, by hypothesis, y is transcendental over lQp and so is

yj , j = 2, ...,m. We can apply Lemma D because the Gauss norm defined in

lQp(t) induces the p-adic value on lQp. Therefore, by Lemma D there exists a

constant B > 0 such that Ξ(P (yj))) ≥ −B deg(P ) for every polynomial P (X) ∈
lQp[X] such that ‖P‖ ≥ 1 (1 ≤ j ≤ m).

Particularly, here, we have Ξ(Q(yj)) ≥ −B deg(Q) and therefore Ξ(N (Q(y))) ≥
−mB deg(Q). Consequently, we obtain

logp(‖R‖) = Ξ((G(x))mqN (Q(y))) ≥ −mbdeg(Q) logp(‖(G(x))mq‖).

But since ‖G‖ = 1, we can derive Ξ(R(x)) ≥ −mB deg(Q) and hence

(2) logp(‖R(x)‖) ≥ −mB deg(Q).

Let us consider now the p-adic absolute value | . |p defined on lCp together

with the function Ψp that is associated. Set ` = max(0,Ψp(y1), ...,Ψp(ym)).

According to the definition of R, we have

(3) Ψp(Q(y)) = Ψp(R(x))−mΨp(G(x))(deg(Q))−
∑m
j=2 Ψp(Q(yj)).

≥ Ψp(R(x))− deg(Q)(Ψp(G(x)) + `)(deg(Q)).

Now, since x has transcendence order ≤ τ in lCp, with respect to | . |p, there

exists a constant C > 0 such that Ψp(P (x)) ≥ logp(‖P‖)−C(deg(P ))τ for every

P ∈ lQp[x], hence Ψp(R(x)) ≥ logp(‖R‖)−C(deg(R))τ and hence by (2), we can

derive Ψp(R(x)) ≥ −mB deg(Q) − C(degR)τ . Then by (1), since by Theorem

1, τ ≥ 1, we obtain Ψp(R(x)) ≥ −(mB + C)Jτ (deg(Q))τ .

Now, let D = (B+C)Jτ +m(Ψp(G(x)) + `). We can check that D does not

depend on Q. Then by (3) we have Ψp(Q(y)) ≥ −D(deg(Q))τ because τ ≥ 1

again. Since we have taken Q such that ‖Q‖ = 1, that ends the proof.

8



Proof of Theorem 4: For each n ∈ IN∗, take a primitive root un of order n

of 1, set cn = 1 +
n∑
k=1

p(k!)uk, c = lim
n→+∞

cn and let Pn be the minimal polinomial

of cn over lQp. Clearly, each un is integral over ZZp, hence cn belongs to the

integral closure of ZZp. Consequently, for every n ∈ IN∗, Pn belongs to ZZp[x] and

therefore ‖Pn‖ = 1.

Now, we have Pn(c) = Pn(cn)+(Pn(c)−Pn(cn)) = Pn(c)−Pn(cn). But since

Pn is obviously 1-Lipschitzian in U , we notice that |(ck)− (cn)k|p ≤ |c− cn|p ≤
p−(n+1)! and hence |Pn(c)− Pn(cn)|p ≤ p−(n+1)!. Consequently,

(1) Ψp(Pn(c)) ≤ −(n+ 1)!.

On the other hand, since [ lQp[un] : lQp] = n, each cn is at most of degree n!

over lQp, hence deg(Pn) ≤ n!. Consequently, by (1) we have

lim
n→+∞

(−Ψp(Pn(c))

deg(Pn)

)
= +∞,

which proves that c has infinite order.
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