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Survey and additional properties on the transcendence order over l Q p in l C p

The paper is aimed at recalling the notion of transcendence order over l Q p and its main properties. Proofs are more detailed than in the paper published in Journal of Number Theory. The main results: the order always is ≥ 1 and we construct a number b that is of order 1 + for every > 0. If a is of order ≤ t and if b is transcendental over l Q p but algebraic over l Q p (a), then b is of order ≤ t too. Finally, numbers of infinite order are constructed.

Introduction and results

We denote by l C p the completion of the algebraic closure of the field l Q p [START_REF] Amice | Les nombres p-adiques[END_REF], [START_REF] Krasner | Nombre des extensions d'un degré donn'e d'un corps padique. Les tendances géométriques en algèbre et théorie des nombres[END_REF]. The transcendence order of a number a in l C p was introduced in [START_REF] Escassut | Transcendence order over l Q p in l C p[END_REF]. This notion, which is specific to p-adic numbers, looks a bit like that of transcendence type [START_REF] Waldschmidt | Nombres transcendants[END_REF] but it is quite different because this concerns transcendence over l Q p , not over l Q. In 1978 the notion of transcendence order was defined and we showed the existence of numbers with transcendence order ≤ 1 + . This is a result that we will describe and here with some improvements. The existence of numbers with transcendence order 1 was communicated to me and stated in [START_REF] Escassut | Transcendence order over l Q p in l C p[END_REF] but a mistake in the proof puts in doubt the result even though it seems likely. The order of transcendence is stable through an algebraic extension. Finally, in Theorem 4 we construct numbers with an infinite order of transcendence.

Definitions and notation: Given a field E, we denote by E(X) the field of rational functions with coefficients in E. We denote by | . | p the p-adic absolute value defined on l C p and by log p the real logarithm function of base p. We then define Ψ p (x) = log p (|x| p ). We denote by . the Gauss norm defined on l C p [X] by n j=0 a j X j = max 0≤j≤n |a j | p .

Let τ ∈]0, +∞[. Let F be a transcendental extension of l Q p provided with an absolute value | . | extending that of l Q p . An element a ∈ F will be said to have transcendence order ≤ τ or order ≤ τ in brief, if there exists a constant

C a ∈]0, +∞[ such that every polynomial P ∈ l Q p [x] satisfies log p (|P (a)|) ≥ log p ( P ) -C a (deg(P )) τ .
We will denote by S(τ ) the set of numbers x ∈ l C p having transcendence order ≤ τ . Remark: By definition, an element a ∈ l C p having transcendence order ≤ τ is transcendental over l Q p .

Theorem 1: Let τ ∈]0, +∞[. If S(τ ) = ∅ then τ ≥ 1.

Theorem 2:

There exists b ∈ l C p , transcendental over l Q p , of order ≤ 1 + for every > 0.

Remark: In [START_REF] Escassut | Transcendence order over l Q p in l C p[END_REF] the existence of numbers of transcendence order 1 is stated. Unfortunately, the proof is wrong because it is not possible to compose two l Q pisomorphisms defined in an extension of l C p . Therefore, the question of existence of numbers transcendental over l Q p of order 1 remains open.

Theorem 3: Let x ∈ l C p belong to S(τ ) (τ ≥ 1) and let y ∈ l C p be transcendental over l Q p but algebraic over l Q p (x). Then y also belongs to S(τ ).

Corollary 3.1: Let a ∈ S(τ ) and let E be an algebraic extension of l Q p (a) and let h(X) ∈ E(X) \ E. Then h(a) belongs to S(τ ).

Particularly, we notice that if a ∈ S(τ ) then 1 a and a n belong to S(τ ). Suppose first that |a| p ≤ 1. Since

|b j | p = |b| p = |a| p ≤ 1, all coefficients of Q belong to Z Z p . Obviously Q is monic, hence Q = 1. By hypothesis, there exists C a ∈]0, +∞[ such that Ψ p (P (a)) ≥ log p ( P ) -C a (deg(P )) τ ∀P ∈ l Q p [x]. Consequently, -nΨ p (Q(a)) = -Ψ p ((Q(a)) n ) ≤ C a (n deg(Q)) τ ∀n ∈ IN * .
Since Q(b) = 0 and since, by Q is clearly 1-Lipschitzian in the disk U , we have -Ψ p (Q(a)) > 0 and therefore, if τ < 1, the inequality

-nΨ p (Q(a)) ≤ C a (n deg(Q)) τ ∀n ∈ IN * is impossible when n tends to +∞. Suppose now |a| p > 1. Set Q(X) = q k=0 c k X k . Since the b j satisfy |b j | p = |a| p , (1 ≤ j ≤ q), we have |c k | p ≤ (|a| p ) q-k and particularly |c 0 | p = q j=1 |b j | p = |a| p . Consequently, Q = (|a| p ) q and therefore, considering the sequence (Q n ) n∈IN , for every n ∈ IN * we have, (1) -n log p (|Q(a)| p ) ≤ -nq log p (|a| p ) + C a (nq) τ . On the other hand, Q(a) = Q(a) -Q(b) = (a -b) q k=1 c k k j=0 a j b k-j-1 and hence |Q(a)| p ≤ |a -b| p (|a| p ) q-1 . Consequently, we obtain -n log p (|a -b| p ) -n(q -1) log p (|a| p ) ≤ -n log p (|Q(a)| p )

and hence, by (1):

-n log p (|a -b| p ) -n(q -1) log p (|a| p ) ≤ -nq log p (|a| p ) + C a (nq) τ . Finally, n(log p (|a| p ) -log p (|a -b| p )) ≤ C a (nq) τ . Since |a| p > 1 and |a -b| p < 1, this inequality is impossible again when n tends to +∞, which ends the proof.

Lemma A: Let P (X) ∈ l Q[x] and let a ∈ U , let t = X -a and let Q(t) = P (X). Then P = Q . Lemma B: Let b ∈ l C p be transcendental over l Q p and let q ∈ IN * . There exists a real constant m > 0 such that |Q(b)| p ≥ m for every polynomial Q ∈ l Q p [X] such that Q = 1 and deg(Q) ≤ q. Proof: Suppose that Lemma B is wrong and let (Q n ) n∈IN * be a sequence of l Q p [X] such that Q n = 1, deg(Q n ) ≤ q ∀n ∈ IN * and such that lim n→+∞ Q n (b) = 0.
We then can extract from the sequence (Q n ) a subsequence converging to a polynomial 

Q ∈ l Q p [X] such that Q = 1 and Q(b) = 0, a contradiction since b is transcendental over l Q p . Lemma C: Let a ∈ l C p be algebraic over l Q p , log p (|a|)
r n = +∞, ii) for every n ∈ IN, n n < r n < (n + 1) n , iii) v n > n-1 j=1 v j iv) (a n ) v n = p u n v) (a n ) l n = a n-1
By construction, the sequence (|a n | p ) n∈IN is strictly decreasing and tends to 0 and all terms belong to U . Set b = ∞ n=1 a n . Now, let us fix ε > 0. We will show that b is transcendental over l Q p and has a transcendence order ≤ 1 + ε.

Since the sequence ( n ) tends to 0, we can find an integer t(ε) such that m < ε ∀m ≥ t(ε). Thus, as a first step, let us take q ≥ t(ε) and let us find a constant C(ε) > 0, not depending on b, such that for every P ∈ l Q[X] satisfying P = 1 and deg(P ) = q, we have Now, since the sequence n log p (n) tends to +∞, we can choose n(q) such that (n(q) + 1) n(q)+1 > (q + 1) 1+ε . Then by [START_REF] Amice | Les nombres p-adiques[END_REF] we have

-log p (|P (b)| p ) ≤ C(ε)q 1+ε .
(2) log p (|P (b)-P (b n(q) )| p ) < log p (|a n(q)+1 | p ) = -(r n(q)+1 ) < -(n(q)+1) n(q)+1 < -(q + 1) 1+ε .
We will show the following inequality (3)

(3) -log p (|P (b n(q) )| p ) ≤ (q + 1) 1+ε .
Thus, suppose (3) is wrong. Set h q = n(q) m=q a m . Then b n(q) = b q-1 +h q . Now, developping P at the point b q-1 , we have (4) log p (|P (b n(q) )| p ) = log p q m=0 P (m) (b q-1 ) m! (h q ) m p < -(q + 1) 1+ε

Consider now the sum q m=0 P (m) (b q-1 ) m! (h q ) m . Since the sequence |a m | p is strictly decreasing, we have |h q | p = |a q | p , hence log p (|h q | p ) = -r q . On the other hand, due to the hypothesis r q = u q v q , it appears that v q is a prime integer, prime to u q and bigger than q and than q-1 j=1 v j . And thanks to the hypothesis v), each P (b m ) is a polynomial in a q-1 . Consequently, we can apply Lemma C and we can see that for each m = 0, ..., q -1, all the

P (m) (b q-1 ) m! (h q ) m p are pairwise distinct.
Consequently we have ( 5)

q m=0 P (m) (b q-1 ) m! (h q ) m p = max 1≤m≤q P (m) (b q-1 ) m! (h q ) m p .
Next, since -log p (|h q | p ) = r q < (q + 1) ε , for each integer m = 1, ..., q, we have log p (|(h q ) m | p ) = -mr q > -m(q + 1) ε ≥ -q(q + 1) ε , hence (6) log p (|(h q ) m | p ) ≥ -q(q + 1) ε > -(q + 1) 1+ε ∀m ≤ q.

Consequentlly, by ( 4), ( 5) and (6), the polynomial Q(X) =

q m=0 P (m) (b q-1 ) m! (X) m
has all coefficients in d(0, 1 -) and hence we have Q < 1. But since |b q-1 | p < 1, by Lemma A, we have P = Q < 1, a contradiction to the hypothesis P = 1. Therefore, Relation (3) is proven for every polynomial P ∈ l Q p [X] of degree q ≥ t(ε), such that P = 1. Consequently, by ( 3 Proof: Suppose H is transcendental over IF p and let t ∈ F be transcendental over l Q p . Since F has a transcendence degree 1 over l Q p , F is an algebraic extension of l Q p (t). Let us show that t has transcendence order 1. Suppose first that |t| F ≤ 1. Then, by a classical result (Corollary 6.8 in [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF]) the field H is algebraic over the residue class field Q t of the field l Q p (t) with the absolute value of F , since F is algebraic over l Q p (t). Now by hypothesis H is transcendental over IF p hence Q t must also be transcendental over IF p . Suppose now that t belongs to the closure of Ω p in F with respect to the topology of F . The natural isomorphism from l Q p (t) into Ω p makes an isomorphism from Q t into the residue class field of Ω p . But the residue class field of Ω p is algebraic over IF p , hence so is Q t , a contradiction. So, we have proven that t does not belong to the closure of Ω p in F . Therefore, there exists a disk d(t, r) in F (with

∈ l Q p [X] of degree q ≤ t(ε) and Q = 1. Therefore b is clearly of order ≤ 1 + ε.
0 < r ≤ 1) such that d(t, r) ∩ Ω p = ∅. Let Q(X) ∈ l Q p [X] be of degree n, such that Q = 1 and consider its factorization in Ω p [X]: n k=1 (a k X -b k ) with a k , b k ∈ Ω p and a k X -b k = 1 ∀k = 1, ..., n.
Let Ξ be the mapping defined on F as Ξ(z) = log p (|z| F ). Since F ⊃ Ω p , we know that the absolute value

| . | F of F induces | . | p on Ω p because the extension of the absolute value | . | p of l Q p to Ω p is unique. If |a k | p = 1, then |a k t -b k | F = |t - b k a k | F ≥ r and if |a k | p < 1, then |a k t -b k | F = |b k | p = 1 ≥ r.
Thus, in all cases, we have

|Q(t)| F ≥ r deg(Q) hence Ξ(Q(t)) ≥ (log p r) deg(Q).
Consequently, we have proven that t has transcendence order ≤ 1 whenever |t| F ≤ 1.

Suppose now that |t|

F > 1. We can set Q(t) = t n G( 1 t ) with G ∈ l Q p [X] and deg(G) ≤ deg(Q). Since |t| F > 1, we have Ξ(G( 1 t )) ≥ (log p r) deg(G) ≥ (log p r) deg(Q) and therefore Ξ(Q(t)) ≥ (log p r) deg(Q)+deg(Q) log p (|t| F )
, which finishes proving that t has transcendence order ≤ 1.

Proof of Theorem 3:

Let E = l Q p (x, y) and let m = [E : l Q p (x)].
Let y 1 = y and y 2 , ..., y m be the conjugates of y in l C p . We set (t -y 1 ) • • • (t -y m ) = m i=0 S i t m-i in order to define the i-th symmetric function S i (y 1 , ..., y m ), with respect to the extension E over l Q p (x).

We know that the S i belong to l Q p (x) and hence are of the form

f i (x) G(x) with f i (x), G(x) ∈ l Q p [x]
and G = 1. Let t i be the degree of f i and set

A = max(t i | 1 ≤ i ≤ m). Let N denote the l Q p (x)-algebraic norm defined on E. Now, take Q(X) ∈ l Q p [X] with Q = 1 and deg(Q) = q. We can write Q(X) = a q k=1 (X -c k ) with a ∈ l Q p and c k ∈ Ω p and X -c k = 1, k = 1, ..., q. Set R(x) = N ((G(x)) q Q(y)) = (G(x)) mq N (Q(y)). We have R(x) = (G(x)) mq (a) m 1≤k≤q, 1≤i≤m (y i -c k ) Hence R(x) = (-1) mq (a) m (G(x)) mq 1≤k≤q m i=0 (c k ) m-i S i (y 1 , ..., y m ) = (-1) mq (a) m (G(x)) (m-1)q 1≤k≤q m i=0 (c k ) m-i f i (x) .
We now set J = (m -1) deg(G) + A. Then J ≥ 1 and we have Then, by definition, for all F (x) ∈ l Q p [x], we have Ξ(F (x)) = log p ( F ). On the other hand, by hypothesis, y is transcendental over l Q p and so is y j , j = 2, ..., m. We can apply Lemma D because the Gauss norm defined in l Q p (t) induces the p-adic value on l Q p . Therefore, by Lemma D there exists a constant B > 0 such that Ξ(P (y j ))) ≥ -B deg(P ) for every polynomial P

(X) ∈ l Q p [X] such that P ≥ 1 (1 ≤ j ≤ m).
Particularly, here, we have Ξ

(Q(y j )) ≥ -B deg(Q) and therefore Ξ(N (Q(y))) ≥ -mB deg(Q). Consequently, we obtain log p ( R ) = Ξ((G(x)) mq N (Q(y))) ≥ -mb deg(Q) log p ( (G(x)) mq ). But since G = 1, we can derive Ξ(R(x)) ≥ -mB deg(Q) and hence (2) log p ( R(x) ) ≥ -mB deg(Q).
Let us consider now the p-adic absolute value | . | p defined on l C p together with the function Ψ p that is associated. Set = max(0, Ψ p (y 1 ), ..., Ψ p (y m )). According to the definition of R, we have 

(3) Ψ p (Q(y)) = Ψ p (R(x)) -mΨ p (G(x))(deg(Q)) - m j=2 Ψ p (Q(y j )). ≥ Ψ p (R(x)) -deg(Q)(Ψ p (G(x)) + )(deg(Q)).

1

  We will say that a number x ∈ l C p is of infinite transcendence order if it does not belong to S(τ ) for all τ ∈ IR * + Given a ∈ l C p and r > 0 we denote by d(a, r) the disk {x ∈ l C p | |x -a| ≤ r} and by d(a, r -) the disk {x ∈ l C p | |x -a| < r}. We will denote by U the disk d(0, 1).

Theorem 4 :

 4 There exists numbers in l C p having infinite order. The proofs Notation: We denote by | . | ∞ the Archimedean absolute value defined on IR. Proof of Theorem 1: Let a ∈ l C p , a = 0, be trenscendental over l Q p and have transcendence order ≤ τ . We can find b ∈ Ω p , (b = 0) such that |a -b| p < 1. Consider the minimal polynomial Q of b over l Q p . Let b 2 , ..., b q be the conjugates of b over l Q p and set b 1 = b. Since l Q p is complete, we notice that all conjugates b j of b over l Q p satisfy |b j | p = |b| p = |a| p .

For

  each n ∈ IN * , set b n = n m=1 a m . Since the sequence (|a m | p ) m∈IN is strictly decreasing, we have |b -b n | p = |a n+1 | p and since P is obviously 1-Lipschitzian in the disk U , we have |P (b) -P (b n )| p ≤ |a n+1 | p hence (1) log p (|P (b) -P (b n )| p ) ≤ log p (|a n+1 | p ) = -r n+1 .

  ) we obviously have a constant C > 0, not depending on b, such that -log p (|P (b)| p ) ≤ C(deg(P )) 1+ε for every P ∈ l Q p [X] such that deg(P ) ≥ t(ε) and P = 1. Particularly b is transcendental over l Q p because if it were algebraic, the degrees of polynomials P ∈ l Q p [X] such that P (b) = 0 wouldn't be bounded. Finally, by Lemma B there exists a constant m > 0 such that |Q(b)| p ≥ m for every polynomial Q

  Lemma D: Let F be an extension of l Q p of transcendence degree 1 containing Ω p and provided with an absolute value | . | F that extends the absolute value of l Q p . Let H be the residue class field of F . If H is transcendental over IF p , then any t ∈ F transcendental over l Q p has transcendence order 1 over l Q p .

( 1 )

 1 deg(R) ≤ J deg(Q). Consider the absolute value φ on l Q p [x] induced by the Gauss norm . defined on the algebra of polynomials l Q p [X]. Then, φ admits an extension φ to an algebraic closure of l Q p (x). Particularly, φ is defined on E and obviously satisfies φ(x) = φ(x) = 1 since φ is induced by the Gauss norm on l Q p [x]. Let E be the residue class field of E equiped with φ and let x be the residue class of x in E. By construction, the image of Z Z p [x] in E is IF p [x] and x is obviously transcendental over IF p . Let Ξ be the mapping defined on E as Ξ(z) = log p ( φ(z)).

  Now, since x has transcendence order ≤ τ in l C p , with respect to | . | p , there exists a constant C > 0 such that Ψ p (P (x)) ≥ log p ( P ) -C(deg(P )) τ for everyP ∈ l Q p [x], hence Ψ p (R(x)) ≥ log p ( R ) -C(deg(R)) τ and hence by (2), we can derive Ψ p (R(x)) ≥ -mB deg(Q) -C(deg R) τ . Then by (1), since by Theorem 1, τ ≥ 1, we obtain Ψ p (R(x)) ≥ -(mB + C)J τ (deg(Q)) τ . Now, let D = (B + C)J τ + m(Ψ p (G(x)) + ). We can check that D does not depend on Q. Then by (3) we have Ψ p (Q(y)) ≥ -D(deg(Q)) τ because τ ≥ 1 again. Since we have taken Q such that Q = 1, that ends the proof.Proof of Theorem 4: For each n ∈ IN * , take a primitive root u n of order n of 1, set c n = 1 + n k=1 p (k!) u k , c = lim n→+∞ c n and let P n be the minimal polinomial of c n over l Q p . Clearly, each u n is integral over Z Z p , hence c n belongs to the integral closure of Z Z p . Consequently, for every n ∈ IN * , P n belongs to Z Z p [x] and therefore P n = 1.Now, we haveP n (c) = P n (c n )+(P n (c)-P n (c n )) = P n (c)-P n (c n ). But since P n is obviously 1-Lipschitzian in U , we notice that |(c k ) -(c n ) k | p ≤ |c -c n | p ≤ p -(n+1)! and hence |P n (c) -P n (c n )| p ≤ p -(n+1)! .Consequently, (1) Ψ p (P n (c)) ≤ -(n + 1)!. On the other hand, since [ l Q p [u n ] : l Q p ] = n, each c n is at most of degree n! over l Q p , hence deg(P n ) ≤ n!. Consequently, by (1) we have lim n→+∞ -Ψ p (P n (c)) deg(P n ) = +∞, which proves that c has infinite order. @math.univ-bpclermont.fr

  Take m, n ∈ IN and b ∈ l C p such that log p (|b|) is of the form u w with u ∈ IN and w ∈ IN prime, prime with u and such that w > max(m, n, t). Let f, g ∈ l Q p [a] be such that |f b m | p = |gb n | p . Then m = n. Proof: We notice that for every x ∈ l Q p [a], log p (|x|) is of the form t with ∈ IN.

	Consequently, log p (|f |) is of the form	h t	and log p (|g|) is of the form	k t	with h and
	k ∈ IN * . Consequently, log p (|f b m |) =	h t	+	mu w	and log p (|gb n |) =	k t	+	nu w	and
	therefore, due to the equality |f b								

is of the form λ t , with λ and t in IN. m | p = |gb n | p , we have (h -k)w = ut(n -m). But since w > t, it is prime with ut, hence it must divide n -m, which is impossible because max(m, n) < w, except if m = n. Proof of Theorem 2: Consider first a strictly decreasing sequence ( n ) n∈ such that lim n→+∞ n = 0 and lim n→+∞ n log p (n) = +∞. We can always divide any polynomial P ∈ l Q p [x] by some λ ∈ l Q p such that |λ| p = P and hence we go back to the hypothesis P = 1. So, if we can find some b ∈ l C p and, for every ε > 0, a constant C(ε) > 0 and show that for every P ∈ l Q[X] such that P = 1, we have -log p (|P (b)| p ) ≤ C(ε)(deg(P )) 1+ε , Theorem 2 will be proven. By induction we can define a strictly increasing sequence (r n ) n∈IN of l Q and a sequence (a n ) n∈IN of l C p with r n = u n v n , irreducible and (v n ) n∈IN a strictly increasing sequence of prime numbers and a sequence (l n ) n∈IN * satisfying further the following properties: i) lim n→+∞
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