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The Corona Problem
on a complete ultrametric algebraically closed field

by Alain Escassut

Abstract Let IK be a complete ultrametric algebraically closed field and let A be the
Banach IK-algebra of bounded analytic functions in the ”open” unit disk D of IK provided
with the Gauss norm. Let Mult(A, ‖ . ‖) be the set of continuous multiplicative semi-norms
of A provided with the topology of simple convergence, let Multm(A, ‖ . ‖) be the subset
of the φ ∈ Mult(A, ‖ . ‖) whose kernel is a maximal ideal and let Mult1(A, ‖ . ‖) be the
subset of the φ ∈ Mult(A, ‖ . ‖) whose kernel is a maximal ideal of the form (x − a)A
with a ∈ D. By analogy with the Archimedean context, one usually calls ultrametric
Corona problem the question whether Mult1(A, ‖ . ‖) is dense in Multm(A, ‖ . ‖). In a
previous paper, it was proved that when IK is spherically complete, the answer is yes.
Here we generalize this result to any algebraically closed complete ultrametric field, which
particularly applies to lCp.

On the other hand, we also show that the continuous multiplicative semi-norms whose
kernel are neither a maximal ideal nor the zero ideal, found by Jesus Araujo, also lie in
the closure of Mult1(A, ‖ . ‖), which suggest that Mult1(A, ‖ . ‖) might be dense in
Mult(A, ‖ . ‖).
2000 Mathematics subject classification: Primary 12J25 Secondary 46S10
Keywords: p-adic analytic functions, corona problem, multiplicative spectrum

Introduction and results.
Let E be the open disk of center 0 and radius 1 in lC and let B = H∞(E) be the

unital Banach algebra of bounded analytic functions on E. Each point a ∈ E defines a
multiplicative linear functional φa on B by φa(f) = f(a). But the set of maximal ideals
of B defined by points of E are not the only maximal ideals of B. The Corona Conjecture
posed by Kakutani in 1941 stated that the set of maximal ideals defined by points of E
is dense in the whole set Max(B) of maximal ideals with respect to the Gelfand topology
which is the topology of pointwise convergence on B, defined on the space Max(B). This
was famously proved by Carleson in 1962 [4]. The key fact is that if f1, ..., fn belong to
B and if there exists d > 0 such that, for all z ∈ D we have |f1(z)| + ...... + |fn(z)| > d
then the ideal generated by the f1, ...., fn is the whole algebra B. People often transfer
the name ”Corona Statement” to this key fact. Indeed, this Corona Statement implies
that the Corona Conjecture is true, thanks to the fact that all maximal ideals of a Banach
lC-algebra are of codimension 1.

Now consider the situation in the non-Archimedean context. Let IK be an alge-
braically closed field complete with respect to an ultrametric absolute value | . |. Given
a ∈ IK and r > 0, we denote by d(a, r) the disk {x ∈ IK | |x−a| ≤ r}, by d(a, r−) the disk
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{x ∈ IK | |x− a| < r}, by C(a, r) the circle {x ∈ IK | |x− a| = r} and set D = d(0, 1−).
Let A be the IK-algebra of bounded power series converging in D which is complete with

respect to the Gauss norm defined as
∥∥ ∞∑
n=1

anx
n
∥∥ = sup

n∈ IN
|an|. We know that this norm

actually is the norm of uniform convergence on D [8], Theorem 13.9 or [15].
In [19] the Corona problem was considered in a similar way as it is on the field lC

[4]: the author asked the question whether the set of maximal ideals of A defined by the
points of D (which are well known to be of the form (x − a)A) is ”dense” in the whole
set of maximal ideals with respect to a so-called ”Gelfand Topology”. In fact, the Gelfand
topology was originally defined on a Banach algebra B on the field lC where all maximal
ideals are known to be of codimension 1 and hence each one is the kernel of a lC-algebra
morphism onto lC. Therefore the pointwise topology on the set of lC-algebra morphisms
from B to lC is called the Gelfand topolgy. A similar topology exists on a Banach IK-
algebra when all maximal ideals have codimension 1. But as explained in [10], this makes
no sense when certain maximal ideals are of infinite codimension, which is the case for
our algebra A, since the maximal ideals which are not of the form (x− a)A are of infinite
codimension [10] and therefore, there is no Gelfand topology on the whole set of maximal
ideals of A. Consequently, a Corona problem should be defined in a different way, as
explained in [10]. However, in [19] a ”Corona Statement” similar to that mentioned above
was shown in our algebra A and it is useful in the present paper as it was in [10].

Given a commutative unital IK-algebra B, provided with a IK-algebra norm ‖ . ‖, the
set of continuous multiplicative IK-algebra semi-norms of B was studied in many works
[2], [7], [8], [9], [14] and is usually denoted by Mult(B, ‖ . ‖) [7], [8], [9], [14]. For each
φ ∈ Mult(B, ‖ . ‖), we denote by Ker(φ) the closed prime ideal of the f ∈ B such that
φ(f) = 0. The set of the φ ∈Mult(B, ‖ . ‖) such that Ker(φ) is a maximal ideal is denoted
by Multm(B, ‖ . ‖) and the set of the φ ∈ Mult(B, ‖ . ‖) such that Ker(φ) is a maximal
ideal of codimension 1 is denoted by Mult1(B, ‖ . ‖).

We know that sup{φ(f) | φ ∈ Mult(B, ‖ . ‖)} = limn→∞(‖fn‖) 1
n ∀f ∈ B [9], [13].

On the other hand, Mult(B, ‖ . ‖) is provided with the topology of pointwise convergence
and is compact with respect to this topology [9], [14].

We know that for every M ∈Max(B), there exists at least one φ ∈Multm(B, ‖ . ‖)
such that Ker(φ) =M but in certain cases, there exist infinitely many φ ∈Multm(B, ‖ . ‖)
such that Ker(φ) =M [6], [7], [9]. A maximal idealM of B is said to be univalent if there
is only one φ ∈ Multm(B, ‖ . ‖) such that Ker(φ) = M and the algebra B is said to be
multbijective if every maximal ideal is univalent (so, unital non-multbijective commutative
Banach IK-algebras do exist).

Thus, the ultrametric Corona problem may be viewed at two levels:

1) Is Mult1(A, ‖ . ‖) dense in Multm(A, ‖ . ‖) (with respect to the topology of pointwise
convergence)?

2) Is Mult1(A, ‖ . ‖) dense in Mult(A, ‖ . ‖) (with respect to the same topology )?

Actually, this way to set the Corona problem on an ultrametric field is not really

2



different from the original problem once considered on lC because on a commutative unital
lC-Banach algebra, all continuous multiplicative semi-norms are known to be of the form
|χ| where χ is a character of A. Thus the Corona problem was equivalent to show that the
set of multiplicative semi-norms defined by the points of the open disk was dense inside
the whole set of continuous multiplicative semi-norms, with respect to the topology of
pointwise convergence.

Here we will restrict to the first level: Is Mult1(A, ‖ . ‖) dense in Multm(A, ‖ . ‖)
(with respect to the topology of pointwise convergence)?

The answer to that question is immediate if A is multbijective. This is the case when
the field IK is strongly valued i.e. either the value group or the residue class field, or the
two both are not countable [7], [9] and particularly this applies to the Levi-Civita field C
[] that is algebraically closed, complete and has a residue field isomorphic to lC.

Recall that the field IK is said to be spherically complete if every decreasing sequence
of disks has a non-empty intersection. Then the answer to the question was given in [11]
when the field is spherically complete. The gap to generalize to any complete algebraically
closed field was due to Lazard’s problem appearing when the field IK is not spherically
complete [16]. The problem is the following. If IK is spherically complete, M. Lazard
proved in [16] that given any sequence (an)n∈ IN such that |an| < 1 and lim

n→+∞
|an| = 1

and any sequence of integers (qn)n∈ IN, there exists a function f ∈ A admitting each an for
zero of order qn. But if IK is not spherically complete, there are counter-examples showing
that such functions f , sometimes do not exist. In the proof of the following Proposition
11, we will need a certain function admitting for zeros a certain sequence of zeros in D,
which requires to work in a spherically complete field.

However, the field IK admits a spherical competion K̂ (that is algebraically closed).
The problem is then to show that the solution we obtain on this spherical K̂ lets us find a
similar solution on the field IK, by using a closed subspace of K̂ that is of countable type.

Here we will show that we can solve that problem thanks to a specific result due to
Banachic properties. So, we will recall the main points of the proof of [11] and we will
generalize the proof to any algebraically closed field complete with respect to an ultrametric
absolute value: the first interest of such a generalization is to apply to fields such as lCp,
the completion of an algebraic closure of lQp. The main tools to solve this problem are the
ultrametric holomorphic functional calculus [7], [9] and a Banachic property [19].

Remark Given a filter G, if for every f ∈ A, |f(x)| admits a limit ϕG(f) along G, the
function ϕG obviously belongs to Mult(A, ‖ . ‖). Moreover, it clearly belongs to the closure
of Mult1(A, ‖ . ‖). Consequently, if we can prove that every element of Multm(A, ‖ . ‖)
is of the form ϕG , with G a certain filter on D, Question 1) is solved. And similarly, if we
could prove that every element of Mult(A, ‖ . ‖) were of the form ϕG , Question 2) would
also be solved.

Definitions and notation: Given a ∈ D and r, s ∈]0, 1[ such that r < s, let Γ(a, r, s) =
{x ∈ IK r < |x − a| < s}. Let W be the filter admitting for basis the family of annuli
Γ(0, r, 1).
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Given a ∈ IK and r > 0 we call circular filter of center a and diameter R on D
the filter F which admits as a generating system the family of sets Γ(α, r′, r′′) ∩ D with
α ∈ d(a,R), r′ < R < r′′, i.e. F is the filter which admits as a basis the family of sets of

the form D ∩
( q⋂
i=1

Γ(αi, r′i, r
′′
i )
)

with αi ∈ d(a,R), r′i < R < r′′i (1 ≤ i ≤ q , q ∈ IN).

If the field IK is not spherically complete, we must also define circular filters with no
center: given a decreasing sequence of disks (Dn) with empty intersection, we call circular
filter with no center, of basis (Dn) the filter admitting that sequence (Dn) for basis.

Given a filter F onD, we denote by J (F) the ideal of the f ∈ A such that lim
F
f(x) = 0.

Every ultrafilter U onD defines an element ϕU ofMult(A, ‖ . ‖) as ϕU (f) = limU |f(x)|:
such a limit does exist because each function f ∈ A is bounded and therefore |f(x)| takes
values in the compact [0, ‖f‖].

An ultrafilter U on D is said to be coroner if it is thinner than W.
A maximal ideal M of A is said to be coroner if there exists a coroner ultrafilter U

such that M = J (U).

An element f ∈ A is said to be quasi-invertible if it has finitely many zeros.

Given a closed bounded subset S of IK, we denote by H(S) the Banach IK-algebra
of analytic elements on S, i.e. the set of limits of all sequences of rational functions with
no pole in S with respect to the uniform convergence on S [15], [8].

Given a circular filter F on a disk L, for every f ∈ H(L), |f(x)| admits a limit ϕF
along F [12], [14], [8]. Particularly, if F is the filter of center a and diameter r, we put
ϕa,r = ϕF and let ϕa be the multiplicative semi-norm defined as ϕa(f) = |f(a)|, f ∈ A.
Then given an ultrafilter U thinner than a circular filter on D, of diameter r < 1, the
limit of |f(x)| on U equals that on F because given f ∈ A, a ∈ D and r ∈ [0, 1[, f
belongs to H(d(a, r)) and hence ϕa,r applies to f and has continuation to an element
of Mult(A, ‖ . ‖) because every function f ∈ A belongs to H(d(a, r)). The situation is
completely different for the circular filter W because many functions f ∈ A do not belong
to H(D). As a consequence, the restriction of the Gauss norm defined on A to IK[x]
admits many extensions on A, defined by various coroner ultrafilters. For example, if f
admits a sequence of zeros (αn) ( lim

n→+∞
|αn| = 1), then given an ultrafilter U thinner than

that sequence, we have ϕU (f) = 0, but of course ‖f‖ > 0.

The following Theorem A derives from the general characterization of continuous
multiplicative semi-norms on algebras of analytic elements [8] , [12], [14]. However, here
we have to consider other continuous multiplicative semi-norms because the algebra A is
much bigger than the algebra of analytic elements in D.

Theorem A [10], [11]: For every ultrafilter F on D, (respectively for every circular
filter F of diameter r < 1), on D, for every element f ∈ A, |f(x)| admits a limit along F
which belongs to Mult(A, ‖ . ‖).
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Thus, the question arising here is the continuation to A of the Gauss norm defined on
IK[x]. The problem, then is not this simple: we have to consider coroner ultrafilters.

By Theorem (3.2) in [17], we have the following Theorem B also called Corona state-
ment [17]:

Theorem B: Let f1, ..., fq ∈ A satisfy ‖fj‖ < 1 ∀j = 1, ..., q and

inf{ max
j=1,...,q

(|fj(x)|)
∣∣ x ∈ D} = ω > 0. There exist g1, ..., gq ∈ A such that

q∑
j=1

gjfj = 1

and max
j=1,...,q

‖gj‖ < ω−2.

Corollary B1: Let I be an ideal of A. There exists a filter F on D such that I ⊂ J (F).

Corollary B2: Let M be a maximal ideal of A. There exists an ultrafilter U on D such
that M = J (U).

Theorem C is classical and was given in [10], [11].
Theorem C: Let M be a maximal ideal of A. Either M is of codimension 1 and then
it is of the form (x− a)A (a ∈ D), or it is of infinite codimension and then it is coroner,
of the form J (U). Moreover, if J (U) is of infinite codimension, then:

i) ϕU belongs to the closure of Mult1(A, ‖ . ‖).
ii) For every f ∈M, f is not quasi-invertible.

Remark: Characterizing the coroner ultrafilters U such that J (U) is a maximal ideal
appears very hard. For instance, let Y be the filter admitting for basis the family of

sets Γ(0, r, 1) \
( ∞⋃
n=1

d(an, |an|−)
)

with an ∈ D, lim
n→+∞

|an| = 1 and consider an ultrafilter

U thinner than Y. It is a coroner ultrafilter. But J (U) = {0}. Indeed, suppose a non-
identically zero function f lies in J (U). Let (an) be its sequence of zeros, set rn = |an|, n ∈
IN, and let E = D \

⋃∞
n=0 d(an, r−n ). Clearly |f(x)| = |f |(|x|) ∀x ∈ E hence limU |f(x)| =

‖f‖. However, E belongs to Y and therefore, U is secant with E, a contradiction with the
hypothesis f ∈ J (U).

However, it is obvious that maximal ideals of infinite codimension do exist. Consider

a sequence (an)n∈ IN such that lim
n→+∞

|an| = 1 and
∏
n∈ IN

|an| > 0 and let I be the ideal of

f ∈ A such that lim
n→+∞

f(an) = 0. Then by Theorem 25.5 in [8], I is not {0}. But clearly,

it is not included in any maximal ideal of the form (x− a)A. Consequently, it is included
in a maximal ideal of infinite codimension.

On the other hand, the mapping J from the set of coroner ultrafilters to the set of
ideals of A is not injective. Two ultrafilters U , V are said to be contiguous if for every ε > 0,

5



there exists X ∈ U and Y ∈ V such that the distance from X to Y is less than ε. Then,
as noticed in [10], two contiguous coroner ultrafilters define the same ideal. Conversely, if
two coroner ultrafilters U , V define the same ideal, are they contiguous? The answer seems
unclear.

In [10] and [11] we proved that there exist no continuous multiplicative norm on A,
other than the Gauss norm, inducing the Gauss norm on IK[x]. However, how we just saw,
each coroner maximal ideal, of the form J (U), defines an element ϕU of Mult(A, ‖ . ‖)
whose restriction to IK[x] is the Gauss norm, but of course ϕU is not the Gauss norm on
certain non-quasi-invertible elements of A.

Theorem D is given in [10], [11].

Theorem D: Suppose A is multbijective. Then for every φ ∈Multm(A, ‖ . ‖)\Mult1(A, ‖ . ‖)
there exists a coroner ultrafilter U such that φ = ϕU . Moreover Mult1(A, ‖ . ‖) is dense
in Multm(A, ‖ . ‖).

In [10] and [11] we considered the following conjectures: A is multbijective no matter
what the complete algebraically closed field IK. We are now able to prove that conjecture.

Theorem 1: A is multbijective.

Corollary 1.1: For every φ ∈ Multm(A, ‖ . ‖) \Mult1(A, ‖ . ‖) there exists a coroner
ultrafilter U such that φ = ϕU .

Corollary 1.2: Mult1(A, ‖ . ‖) is dense in Multm(A, ‖ . ‖).

Remark: Thus we have proved that every element of Multm(A, ‖ . ‖) belongs to the
closure of Mult1(A, ‖ . ‖). On the other hand, by Corollary 1.20 in [11], we know that all
continuous multiplicative norms of A lie in the closure of Mult1(A, ‖ . ‖). That makes quite
exciting the question whether Mult1(A, ‖ . ‖) is dense in the whole set Mult(A, ‖ . ‖). In
order to examine a bit better that question, let us recall that we know a kind of continuous
multiplicative semi-norms whose kernel is neither {0} nor a maximal ideal: they are due
to J. Araujo [1] and are defined in the following way.
Let r ∈]0, 1[ and let (an)n∈ IN be a sequence in D such that lim

n→+∞
|an| = 1. Let U be an

ultrafilter on IN and take f ∈ A. The image of U by the mapping hf defined on IN as
hf (n) = ‖f‖(d(an,r− is included in [0, ‖f‖] and therefore that image defines an ultrafilter
that converges to a value ψ(f) ∈ [0, ‖f‖]. Then, ψ belongs to Mult(A, ‖ . ‖) and Ker(ψ)
is the prime ideal of functions f ∈ A such that lim

U
‖f‖(d(an,r− = 0.

Definition: We will call Araujo’s semi-norms the semi-norms defined in that way.

Theorem 2: Every Araujo’s semi-norm lies in the closure of Mult1(A, ‖ . ‖).
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Thus, Theorem 2 strongly suggests that Mult1(H(D), ‖ . ‖) might be dense inside
Mult(H(D), ‖ . ‖): it would just suffice to prove that all continuous multiplicative semi-
norm of H(D) either are norms, or have a maximal ideal for kernel, or are Araujo’s
semi-norms, or some semi-norms of the same kind. Unfortunately, we have no mean to
prove this.

The Proofs.

By Theorems 23.5 and 23.6 in [8] we have Lemma 1:

Lemma 1: Let a ∈ IK and r > 0 and let f ∈ H(d(a, r)) (resp. f ∈ H(d(a, r−)), resp.
f ∈ H(C(a, r)))). If f has no zero in d(a, r), (resp. in d(a, r−), resp. in C(a, r)), |f(x)|
is constant. The set of zeros of f in d(a, r) (resp. in (d(a, r−), resp. in C(a, r)) is finite.

By Theorem 13.3 and Corollary 13.4 in [8], we can derive Lemma 2:

Lemma 2 : An element of A is quasi-invertible if and only if it is of the form Pg with
P ∈ IK[x], P 6= 0, having all its zeros in D and g an invertible element of A.

Lemma 3 is Theorem 20.2 in [8]:

Lemma 3: Let a ∈ IK and r > 0 and b ∈ d(a, r). Then ϕa,r = ϕb,r.

Proposition 4 due to M. Lazard comes from [16]:

Proposition 4: Suppose IK is spherically complete. Let a ∈ IK, R > 0, let (an)n∈ IN

be a sequence of d(a,R−) such that lim
n→+∞

|an − a| = R and let (qn)n∈ IN be a sequence of

integers. There exists f ∈ A(d(a,R−)) admitting each an as a zero of order qn and having
no other zero.

Notation: Let ÎK be an extension of IK provided with an ultrametric absolute value
extending that of IK, let a ∈ ÎK and let r > 0. We put d̂(a, r) = {x ∈ ÎK | |x − a| ≤
r}, d̂(a, r−) = {x ∈ ÎK | |x− a| < r}, Ĉ(a, r) = {x ∈ ÎK | |x− a| = r}.

By Theorem 23.1 in [8] we have the following:

Proposition 5: Let ÎK be an algebraically closed complete extension of IK, a ∈ IK and
r > 0 and let f ∈ H(d(a, r)) (resp. f ∈ H(d(a, r−)), resp. f ∈ H(C(a, r))). The zeros
of f in d(a, r) (resp. in d(a, r−), resp. in C(a, r)) are the same as in d̂(a, r) (resp. in
d̂(a, r−), resp in Ĉ(a, r)).

From the classical Krasner Mittag-Leffler Theorem ([15] and Theorem 15.1 in [8]),
here we can state Proposition 6.
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Proposition 6: Let E be a set of the form d(0, R) \
⋃
i∈J

d(ai, r−i ) (where J is a set of

indices). Then any element h ∈ H(E) has a unique Mittag-Leffler decomposition of the

form
∞∑
n=0

hn whereas h0 ∈ H(d(0, R)) and for each n ≥ 1, hn ∈ H(K \ d(ain , r
−
in

)) and

lim|x|→+∞ hn(x) = 0. Then ‖h‖E = max
(
‖h0‖d(0,R), sup

n≥1
(‖hn‖K\(d(ain ,r

−
in

))
)
. Further, h0

is of the form
∞∑
j=0

a0,jx
j with ‖h0‖d(0,R) = sup

j≥0
|a0,j |Rj and for n ≥ 1, hn is of the form

∞∑
j=1

an,j(x− ain)−j with ‖hn‖ IK\(d(ain ,r
−
in

)) = sup
j≥1
|an,j |(rin)−j.

Notation: Let B be a unital commutative IK-algebra. Given f ∈ B, we denote by sp(f)
the set of λ ∈ IK such that f − λ is not invertible.

By using properties of T -filters and particularly idempotent T -sequences [8], Lemma
35.1 and Proposition 37.1 (see also [5], Proposition 1.6 and [17]), we have the following
proposition:

Proposition 7 : Let (rn)n∈ IN be a sequence in | IK| such that 0 < rn < rn+1, lim
n→+∞

rn = R,

let (qn)n∈ IN be a sequence of IN such that qn ≤ qn+1 and lim
n→+∞

( rn
rn+1

)qn = 0. Let l ∈]0, R[

and for each n ∈ IN, let bn ∈ C(0, (rn)qn), let an,1, ..., an,qn be the qn-th roots of bn and

let E = d(0, R−) \
( ⋃
n∈ IN

(
qn⋃
j=1

d(an,j , l−)
)

. Set fn(x) =
n∏
k=1

qk∏
j=1

( 1
1− x

ak,j

)
. Then each fn

belongs to R(E) and the sequence (fn)n∈ IN converges in H(E) to an element f strictly
vanishing along the pierced increasing filter of center 0 and diameter R.

Proposition 8: Let (B, ‖ . ‖) be a commutative unital ultrametric IK-Banach alge-
bra. Suppose there exist ` ∈ B , φ, ψ ∈ Mult(B, ‖ . ‖) such that ψ(`) < φ(`), sp(`) ∩
Γ(0, ψ(`), φ(`)) = ∅ and there exists ε ∈]0, φ(`) − ψ(`)[ satisfying further ‖(` − a)−1‖ ≤
M, ∀a ∈ Γ(0, ψ(`), φ(`)− ε). Then there exists f ∈ B such that ψ(f) = 1, φ(f) = 0.

Proof: Let s = ψ(`), t = φ(`), Q = ‖`‖, R = t − ε and l =
1
M

. Let r0 ∈]s, t − ε[.

Consider the sequence (an,j)n∈ IN,1≤j≤qn
defined in Proposition 7 and the set

E = d(0, Q−) \
( ⋃
n∈ IN

( qn⋃
j=1

d(an,j , l−)
))

. Then in H(E) we have

(1)
∥∥∥ 1
x− b

∥∥∥
E
≤ l ∀b ∈

⋃
n∈ IN

( qn⋃
j=1

d(an,j , l−)
)
.
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There exists a natural homomorphism σ from R(E) into B such that σ(x) = `. Since
Q = ‖`‖ and ‖(` − b)−1‖ ≤ M ∀b ∈ Γ(0, s, t), by Proposition 15.1 in [8] and by (1) σ is
clearly continuous with respect to the norms ‖ . ‖E of R(E) and ‖ . ‖ of B. Consequently,
σ has continuation to a continuous homomorphism from H(E) to B.

Now, let ψ′ = ψ ◦ σ, φ′ = φ ◦ σ. Then both φ′, ψ′ belong to Mult(H(E), ‖ . ‖)
and satisfy ψ′(x) = s, φ′(x) = t − ε. So, ψ′ is of the form ϕF with F a circular filter on
E secant with C(0, s) and φ′ is of the form ϕG with G a circular filter on E secant with
C(0, t).

Consider now the function f constructed in Proposition 7 which, by construction,
belongs to H(E) and has no zero and no pole in d(0, s−). Consequently, |f(x)| = |f(0)| =
1 ∀x ∈ d(0, s−). Moreover, we have lim

G
f(x) = 0, hence φ′(f) = 0. Let g = σ(f). Then

ψ(g) = ψ′(f) = 1 and φ(g) = φ′(f) = 0, which ends the proof.

Proposition 9: Let U be a coroner ultrafilter on D, let f ∈ A \ J (U) be non-invertible
in A, such that ‖f‖ ≤ 1 and let g ∈ A, h ∈ J (U) such that fg = 1 + h. Let τ = ϕU (f),
let ε ∈]0, τ [ and let Λ = {x ∈ D

∣∣ |f(x)g(x)| − 1|∞ < ε, | |f(x)| − τ |∞ < ε}.
Suppose that there exist a function h̃ ∈ A admitting for zeros in D the zeros of h

in D \ Λ and a function h ∈ A admitting for zeros the zeros of h in Λ, each counting
multiplicities, so that h = hh̃. Then |h̃(x)| has a strictly positive lower bound in Λ and h

belongs to J (U).
Moreover, there exists ω ∈]0, τ [ such that ω ≤ inf{max(|f(x)|, |h(x)|)

∣∣ x ∈ D}.
Further, for every a ∈ d(0, (τ − ε)), we have ω ≤ inf{max(|f(x)− a|, |h(x)|)

∣∣ x ∈ D}.
Proof: Let u ∈ Λ and let s be the distance of u from IK \ Λ. So, the disk d(u, s−) is
included in Λ, hence fg has no zero inside this disk. Consequently, |f(x)g(x)| is a constant
b in d(u, s−). Consider the family Fu of radii of circles C(u, r), containing at least one zero
of fg. By Lemma 1 Fu has no cluster point different from 1. Consequently, there exists
ρ ≥ s such that fg admits at least one zero in C(u, ρ) and admits no zero in d(u, ρ−).
Thus, we know that |f(x)g(x)| is a constant c in d(u, ρ−). But then, at u we see that b = c

and therefore d(u, ρ−) is included in Λ. Hence ρ = s and therefore fg admits at least one
zero α in C(u, s). Thus, at α we have h(α) = −1. Therefore, in the disk d(α, s−) we can
check that ϕα,s(h) ≥ 1. But by Lemma 3 ϕα,s(h) = ϕu,s(h), hence ϕu,s(h) ≥ 1.

Now,

‖h‖
ϕu,s(h)

=
‖h̃‖

ϕu,s(h̃)

‖h‖
ϕu,s(h)

≥ ‖h̃‖
ϕu,s(h̃)

.

Therefore, since ϕu,s(h) ≥ 1, we obtain

(1)
‖h̃‖

ϕu,s(h̃)
≤ ‖h‖.
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But since by definition d(u, s−) is included in Λ, h̃ has no zero in this disk, hence |h̃(x)| is

constant and equal to ϕu,s(h̃). Consequently, by (1) we obtain
‖h̃‖
|h̃(u)|

≤ ‖h‖ and therefore

we have

|h̃(u)| ≥ ‖h̃‖
‖h‖

∀u ∈ Λ.

This shows that h̃ does not belong to J (U), hence, ϕU (h̃) 6= 0. Consequently, ϕU (h) = 0.

Now, by hypothesis, we have fg− hh̃ = 1. Since both g, h̃ belong to A and therefore
are bounded in D, it is obvious that inf{max(|f(x)|, |h(x)|)

∣∣ x ∈ D} > 0. So, we may
obviously choose ω ∈]0, τ − ε[ such that

(2) ω ≤ inf{max(|f(x)|, |h(x)|)
∣∣ x ∈ D}.

Let us now show that for every a ∈ d(0, (τ − ε)), we have
ω ≤ inf{max(|f(x)− a|, |h(x)|)

∣∣ x ∈ D}.
Let Λ′ = {x ∈ D

∣∣ |f(x)| ≥ τ − ε} and let a ∈ d(0, (τ − ε)−). When β lies in

Λ′, we have |f(β)| > |a|, hence by (2), max(|f(β) − a|, |h(β)|) ≥ ω because by(2), either
ω ≤ |h(β)|, or ω ≤ |f(β)| = |f(β)− a|.

Now, let β lie in D \ Λ′ and let t be the distance from β to Λ′. Since D \ Λ′ is
open, t is > 0. Consider ϕβ,t(f). Either there exists µ ∈ Λ′ such that |β − µ| = t

and then ϕβ,t(f) ≥ |f(µ)| ≥ τ − ε or there exists a sequence (xn)n∈ IN ∈ Λ′ such that
lim

n→+∞
|β − xn| = t and |xn−β| > t. Suppose that we are in the second case: there exists a

sequence (xn)n∈ IN ∈ Λ′ such that lim
n→+∞

|β − xn| = t and |xn−β| > t. Then the sequence

is thinner than the circular filter of center β and diameter t, hence

lim
n→+∞

|f(xn)| = ϕβ,t(f)

hence ϕβ,t(f) ≥ τ − ε again. If f has no zero in d(β, t−), then |f(x)| is a constant in that
disk, hence of course ϕβ,t(f) < τ − ε. a contradiction. Consequently, f must have a zero
γ in d(β, t−). Therefore, due to (2), we have |h(γ)| ≥ ω. But since by definition, Λ ⊂ Λ′,
the zeros of h belong to Λ′. And since d(β, t−)∩Λ′ = ∅ actually h has no zero in d(β, t−).
Consequently |h(x)| is constant in d(β, t−) and hence |h(β)| ≥ ω, which completes the
proof.

The following basic lemma is easily checked and is an application of Proposition 10 in
[3]:

Lemma 10: Let S be a set and let E be a subset. Let F be an ultrafilter on E. Then
the filter F̃ on S with base F is an ultrafiter inducing on E the ultrafilter F .

10



Corollary 10.1: Let S be a set and let E be subset of S. Let F be an ultrafilter on E

and let F̂ = G be the ultrafilter on S having F as a base of filter. Let f be a function
defined on S with values in a compact topological space T . Then lim

G
f(x) = lim

F
f(x).

Proof: Suppose that f admits distinct limits on F and G. Then F is a basis of a filter
on S that is not secant with G, a contradiction since F is the ultrafilter induced by G on
E.

Proposition 11: LetM be a non-principal maximal ideal of A and let U be an ultrafilter
on D such thatM = J (U). Let f ∈ A\M satisfy ‖f‖ < 1, let τ = ϕU (f) and let ε ∈]0, τ [.
There exists c > 0 such that, for every a ∈ d(0, τ − ε), there exists ga ∈ A satisfying
(f − a)ga − 1 ∈M and ‖ga‖ ≤ c.

Proof: Suppose first that f is invertible in A. By Lemma 1 |f(x)| is a constant and
hence is equal to τ . Therefore, |f(x) − a| = τ ∀a ∈ d(0, τ − ε). Consequently, f − a is
invertible and its inverse ga satisfies ‖ga‖ = τ−1. Thus, we only have to show the claim
when f is not invertible.

Since f does not belong to M, we can find g ∈ A and h ∈ M such that fg = 1 + h
with h ∈M.

Let ÎK be an algebraically closed spherically complete extension of IK, let D̂ be the
disk {x ∈ ÎK | |x| < 1}. Let Â be the algebra of bounded power series converging in D̂

with coefficients in ÎK.
U makes a basis of a filter Û on D̂ and by definition, U is the the filter induced by Û

on D. By Lemma 10, Û is an ultrafilter on D̂.

Consider now f as an element of Â. Then Û defines an element ψ of Mult(Â, ‖ . ‖)
as ψ(`) = lim

Û
|`(x)|,∀` ∈ Â. Consequently, by Corollary 10.1 τ is equal to lim

U
|f(x)|. Let

Λ = {x ∈ D̂
∣∣ | |f(x)g(x)| − 1|∞ < ε, | |f(x)| − τ |∞ < ε}.

By Proposition 4 we can factorize h in the form h̃h where h̃ ∈ Â is a function admitting
for zeros in D̂ the zeros of h in D̂ \Λ and h ∈ Â is a function admitting for zeros the zeros
of h in Λ, each counting multiplicities. Moreover, we can choose h so that ‖h‖ < 1.

Now, in the field ÎK, by Proposition 9, there exists ω > 0 such that for every
a ∈ d̂(0, (τ − ε)), we have ω ≤ inf{max(|f(x) − a|, |h(x)|)

∣∣ x ∈ D̂}. This implies that

inf{max(|f(x) − a|, |h(x)|) |x ∈ D} ≥ ω ∀a ∈ d̂(0, τ − ε). We notice that ‖f − a‖ < 1 for
every a ∈ d̂(0, τ − ε), so we may apply Theorem B and obtain a bound b only depending
on f and h and functions `a, ha ∈ Â such that (f − a)`a + hha = 1, with

(1) ‖`a‖ < b, ‖ha‖ < b ∀a ∈ d̂(0, τ − ε).
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By hypothesis we have lim
U
h(x) = 0. Hence by Corollary 10.1, on D̂ we have lim

Û
h(x) = 0.

Then, by Proposition 9 we have lim
Û
h(x) = 0 hence, on D,

(2) lim
U
hha(x) = 0 ∀a ∈ d(0, τ − ε).

Now, let us fix a ∈ d(0, τ − ε). Let G be the closed IK-vector subspace of ÎK (considered
as a IK-Banach space), linearly generated over IK by 1 and all coefficients of `a. Take
η > 0 such that (1 + η) max(‖`a‖, ‖ha‖) ≤ b. We notice that G is a IK-Banach space of
countable type, hence there exists a IK-linear mapping Ξ from G to IK of norm ≤ 1 + η,
such that Ξ(1) = 1 [17]. Let F be the closed IK-vector subspace of Â consisting of all
power series with coefficients in E. Then F is a A-module and Ξ has continuation to a

A-linear mapping Ξ̂ from F to A defined as Ξ̂(
∞∑
n=0

bnx
n) =

∞∑
n=0

Ξ(bn)xn. This mapping Ξ̂

has a norm bounded by 1 + η. Set ga = Ξ̂(`a). Then by (1) we have

(3) ‖ga‖ ≤ b(1 + η) ∀a ∈ d(0, τ − ε).

On the other hand, by construction, for every z ∈ G, we have |Ξ̂(z)| ≤ |z|(1 + η): that
holds particularly for elements of G ∩D. Now, since (f − a)(la)− hha = 1, for all x ∈ D,
we have la(x) ∈ G, f(x)− a ∈ K and hence hha(x) belongs to G. Therefore the inequal-
ity applies and shows that |Ξ̂(hha)(x)| ≤ |(hha)(x)|(1 + η), hence by (2) we can derive
lim
U

Ξ̂(hha)(x) = 0 ∀a ∈ d(0, τ − ε). But since Ξ̂ is a A-module linear mapping, we have

Ξ̂((f−a)ha−1) = (f−a)ga−1. Consequently, lim
U
|(f(x)− a)ga(x)− 1| = 0 ∀a ∈ d(0, τ − ε)

and hence (f − a)ga − 1 belongs to J (U). Putting c = b(1 + η), by (3) we are done.

Proof of Theorem 1: Suppose that A is not multbijective and let M be a maximal

ideal which is not univalent. Let IF be the quotient field
A

M
, let θ be the canonical

surjection from A onto IF and let ‖ . ‖q be the IK-Banach algebra quotient norm of F .
By Theorem C there exists an ultrafilter U on D such that M = J (U). Thus, there
exists ψ ∈ Mult(A, ‖ . ‖) such that Ker(ψ) = M and ψ 6= ϕU . Consequently, there
exists f ∈ A such that ψ(f) 6= ϕU (f), with ψ(f) 6= 0, ϕU (f) 6= 0. We shall check that
we may also assume ψ(f) < ϕU (f). Indeed, suppose ψ(f) > ϕU (f). Let g ∈ A be such
that θ(g) = θ(f)−1. Then we can see that ψ(g) = ψ(f)−1, ϕU (g) = (ϕU (f))−1, therefore
ψ(g) < ϕU (g). Thus, we may assume ψ(f) < ϕU (f) without loss of generality. Similarly,
we may obviously assume that ‖f‖ < 1.

By construction, ϕU factorizes in the form φ1 ◦ θ and similarly, ψ factorizes as φ2 ◦ θ
with φ1, φ2 ∈Mult( IF, ‖ . ‖q). So, on F we have φ1(θ(f)) > φ2(θ(f)).
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Let τ = ϕU (f) and let ε ∈]0, τ [. By Proposition 11, there exists c > 0 such that, for
every a ∈ d(0, τ − ε), there exists ga ∈ A satisfying (f − a)ga− 1 ∈M and ‖ga‖ ≤ c. Now,
θ(ga) = (θ(f − a))−1. Thus, ‖(θ(f − a))−1‖q ≤ c for all a ∈ d(0, τ − ε). Therefore, by
applying Proposition 8 to the IK-Banach algebra IF, we can see that there exists y ∈ IF
such that φ1(y) = 1, φ2(y) = 0. Therefore, taking g ∈ A such that θ(g) = y, we get
ϕU (g) = 0, ψ(g) = 1, a contradiction to the hypothesis Ker(ϕU ) = Ker(ψ). This finishes
the proof that A is multbijective.

Proof of Theorem 2: Given a φ ∈ Mult(A, ‖ . ‖), ε > 0 and f1, ..., fq ∈ A, we set
W(ψ, f1, ..., fq, ε) = {θ ∈Mult(A, ‖ . ‖) | |φ(fj)− θ(fj)|∞ ≤ ε ∀j = 1, ..., q. We know that
such sets make a basis of neighborhoods of φ with respect to the topology of Mult(A, ‖ . ‖).

Now, let ψ be an Araujo semi-norm defined by a sequence of disks d(an, r), with
lim

n→+∞
|an| = 1 and an ultrafilter T on IN so that ψ(f) = limT |f(an)| ∀f ∈ A.

Consider a neighborhood W(ψ, f1, ..., fq, ε) of ψ, with fj ∈ A and ε > 0. Set sj =
ψ(fj), j = 1, ..., q. By hypothesis, there exists an infinite subset S ∈ T such that | ϕan,r−
sj |∞ ≤ ε ∀n ∈ T, ∀j = 1, ...q.

Let us fix m ∈ S. For each j = 1, ...q, we then have

lim
|x−am|→r

|fj(x)| = ‖fj‖d(am,r) = ϕam,r(fj)

therefore there exists bm ∈ d(am, r) such that | |fj(bm)| − ϕam,r(fj)|∞ ≤ ε ∀j = 1, ..., q
and therefore we derive |ϕbm(fj)− ψ(fj)|∞ ≤ 2ε ∀j = 1, ..., q. Consequently, ϕbm belongs
to W(ψ, f1, ..., fq, 2ε), which proves that ψ belongs to the closure of Mult1(A, ‖ . ‖).
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