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Let IK be a complete ultrametric algebraically closed field and let A be the Banach IK-algebra of bounded analytic functions in the "open" unit disk D of IK provided with the Gauss norm. Let M ult(A, . ) be the set of continuous multiplicative semi-norms of A provided with the topology of simple convergence, let M ult m (A, . ) be the subset of the φ ∈ M ult(A, . ) whose kernel is a maximal ideal and let M ult 1 (A, . ) be the subset of the φ ∈ M ult(A, . ) whose kernel is a maximal ideal of the form (x -a)A with a ∈ D. By analogy with the Archimedean context, one usually calls ultrametric Corona problem the question whether M ult 1 (A, . ) is dense in M ult m (A, . ). In a previous paper, it was proved that when IK is spherically complete, the answer is yes.

Here we generalize this result to any algebraically closed complete ultrametric field, which particularly applies to l C p . On the other hand, we also show that the continuous multiplicative semi-norms whose kernel are neither a maximal ideal nor the zero ideal, found by Jesus Araujo, also lie in the closure of M ult 1 (A, . ), which suggest that M ult 1 (A, . ) might be dense in M ult(A, . ).

Introduction and results.

Let E be the open disk of center 0 and radius 1 in l C and let B = H ∞ (E) be the unital Banach algebra of bounded analytic functions on E. Each point a ∈ E defines a multiplicative linear functional φ a on B by φ a (f ) = f (a). But the set of maximal ideals of B defined by points of E are not the only maximal ideals of B. The Corona Conjecture posed by Kakutani in 1941 stated that the set of maximal ideals defined by points of E is dense in the whole set M ax(B) of maximal ideals with respect to the Gelfand topology which is the topology of pointwise convergence on B, defined on the space M ax(B). This was famously proved by Carleson in 1962 [START_REF] Carleson | Interpolation by bounded analytic functions and the corona problem[END_REF]. The key fact is that if f 1 , ..., f n belong to B and if there exists d > 0 such that, for all z ∈ D we have |f 1 (z)| + ...... + |f n (z)| > d then the ideal generated by the f 1 , ...., f n is the whole algebra B. People often transfer the name "Corona Statement" to this key fact. Indeed, this Corona Statement implies that the Corona Conjecture is true, thanks to the fact that all maximal ideals of a Banach l C-algebra are of codimension 1. |a n |. We know that this norm actually is the norm of uniform convergence on D [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], Theorem 13.9 or [START_REF] Krasner | Prolongement analytique uniforme et multiforme dans les corps valués complets. Les tendances géométriques en algèbre et théorie des nombres[END_REF].

In [START_REF] Van Der Put | The Non-Archimedean Corona Problem Table Ronde Anal. non Archimedienne[END_REF] the Corona problem was considered in a similar way as it is on the field l C [START_REF] Carleson | Interpolation by bounded analytic functions and the corona problem[END_REF]: the author asked the question whether the set of maximal ideals of A defined by the points of D (which are well known to be of the form (x -a)A) is "dense" in the whole set of maximal ideals with respect to a so-called "Gelfand Topology". In fact, the Gelfand topology was originally defined on a Banach algebra B on the field l C where all maximal ideals are known to be of codimension 1 and hence each one is the kernel of a l C-algebra morphism onto l C. Therefore the pointwise topology on the set of l C-algebra morphisms from B to l C is called the Gelfand topolgy. A similar topology exists on a Banach IKalgebra when all maximal ideals have codimension 1. But as explained in [START_REF] Escassut | About the ultrametric Corona problem[END_REF], this makes no sense when certain maximal ideals are of infinite codimension, which is the case for our algebra A, since the maximal ideals which are not of the form (x -a)A are of infinite codimension [START_REF] Escassut | About the ultrametric Corona problem[END_REF] and therefore, there is no Gelfand topology on the whole set of maximal ideals of A. Consequently, a Corona problem should be defined in a different way, as explained in [START_REF] Escassut | About the ultrametric Corona problem[END_REF]. However, in [START_REF] Van Der Put | The Non-Archimedean Corona Problem Table Ronde Anal. non Archimedienne[END_REF] a "Corona Statement" similar to that mentioned above was shown in our algebra A and it is useful in the present paper as it was in [START_REF] Escassut | About the ultrametric Corona problem[END_REF].

Given a commutative unital IK-algebra B, provided with a IK-algebra norm . , the set of continuous multiplicative IK-algebra semi-norms of B was studied in many works [START_REF] Berkovich | Spectral Theory and Analytic Geometry over Non-archimedean Fields[END_REF], [START_REF] Escassut | The ultrametric spectral theory[END_REF], [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], [START_REF] Escassut | Ultrametric Banach Algebras[END_REF], [START_REF] Guennebaud | Sur une notion de spectre pour les algèbres normées ultramétriques[END_REF] and is usually denoted by M ult(B, . ) [START_REF] Escassut | The ultrametric spectral theory[END_REF], [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], [START_REF] Escassut | Ultrametric Banach Algebras[END_REF], [START_REF] Guennebaud | Sur une notion de spectre pour les algèbres normées ultramétriques[END_REF]. For each φ ∈ M ult(B, . ), we denote by Ker(φ) the closed prime ideal of the f ∈ B such that φ(f ) = 0. The set of the φ ∈ M ult(B, . ) such that Ker(φ) is a maximal ideal is denoted by M ult m (B, . ) and the set of the φ ∈ M ult(B, . ) such that Ker(φ) is a maximal ideal of codimension 1 is denoted by M ult 1 (B, . ). [START_REF] Guennebaud | Algèbres localement convexes sur les corps valués[END_REF]. On the other hand, M ult(B, . ) is provided with the topology of pointwise convergence and is compact with respect to this topology [START_REF] Escassut | Ultrametric Banach Algebras[END_REF], [START_REF] Guennebaud | Sur une notion de spectre pour les algèbres normées ultramétriques[END_REF].

We know that sup{φ

(f ) | φ ∈ M ult(B, . )} = lim n→∞ ( f n ) 1 n ∀f ∈ B [9],
We know that for every M ∈ M ax(B), there exists at least one φ ∈ M ult m (B, . ) such that Ker(φ) = M but in certain cases, there exist infinitely many φ ∈ M ult m (B, . ) such that Ker(φ) = M [6], [START_REF] Escassut | The ultrametric spectral theory[END_REF], [START_REF] Escassut | Ultrametric Banach Algebras[END_REF]. A maximal ideal M of B is said to be univalent if there is only one φ ∈ M ult m (B, . ) such that Ker(φ) = M and the algebra B is said to be multbijective if every maximal ideal is univalent (so, unital non-multbijective commutative Banach IK-algebras do exist).

Thus, the ultrametric Corona problem may be viewed at two levels:

1) Is M ult 1 (A, . ) dense in M ult m (A, . ) (with respect to the topology of pointwise convergence)?

2) Is M ult 1 (A, . ) dense in M ult(A, . ) (with respect to the same topology )?

Actually, this way to set the Corona problem on an ultrametric field is not really different from the original problem once considered on l C because on a commutative unital l C-Banach algebra, all continuous multiplicative semi-norms are known to be of the form |χ| where χ is a character of A. Thus the Corona problem was equivalent to show that the set of multiplicative semi-norms defined by the points of the open disk was dense inside the whole set of continuous multiplicative semi-norms, with respect to the topology of pointwise convergence.

Here we will restrict to the first level: Is M ult 1 (A, . ) dense in M ult m (A, . ) (with respect to the topology of pointwise convergence)?

The answer to that question is immediate if A is multbijective. This is the case when the field IK is strongly valued i.e. either the value group or the residue class field, or the two both are not countable [START_REF] Escassut | The ultrametric spectral theory[END_REF], [START_REF] Escassut | Ultrametric Banach Algebras[END_REF] and particularly this applies to the Levi-Civita field C [] that is algebraically closed, complete and has a residue field isomorphic to l C. Recall that the field IK is said to be spherically complete if every decreasing sequence of disks has a non-empty intersection. Then the answer to the question was given in [START_REF] Escassut | Ultrametric Corona problem and spherically complete fields[END_REF] when the field is spherically complete. The gap to generalize to any complete algebraically closed field was due to Lazard's problem appearing when the field IK is not spherically complete [START_REF] Lazard | Les zéros des fonctions analytiques sur un corps valué complet[END_REF]. The problem is the following. If IK is spherically complete, M. Lazard proved in [START_REF] Lazard | Les zéros des fonctions analytiques sur un corps valué complet[END_REF] that given any sequence (a n ) n∈ IN such that |a n | < 1 and lim

n→+∞ |a n | = 1
and any sequence of integers (q n ) n∈ IN , there exists a function f ∈ A admitting each a n for zero of order q n . But if IK is not spherically complete, there are counter-examples showing that such functions f , sometimes do not exist. In the proof of the following Proposition 11, we will need a certain function admitting for zeros a certain sequence of zeros in D, which requires to work in a spherically complete field.

However, the field IK admits a spherical competion K (that is algebraically closed).

The problem is then to show that the solution we obtain on this spherical K lets us find a similar solution on the field IK, by using a closed subspace of K that is of countable type.

Here we will show that we can solve that problem thanks to a specific result due to Banachic properties. So, we will recall the main points of the proof of [START_REF] Escassut | Ultrametric Corona problem and spherically complete fields[END_REF] and we will generalize the proof to any algebraically closed field complete with respect to an ultrametric absolute value: the first interest of such a generalization is to apply to fields such as l C p , the completion of an algebraic closure of l Q p . The main tools to solve this problem are the ultrametric holomorphic functional calculus [START_REF] Escassut | The ultrametric spectral theory[END_REF], [START_REF] Escassut | Ultrametric Banach Algebras[END_REF] and a Banachic property [START_REF] Van Der Put | The Non-Archimedean Corona Problem Table Ronde Anal. non Archimedienne[END_REF].

Remark Given a filter G, if for every f ∈ A, |f (x)| admits a limit ϕ G (f ) along G, the function ϕ G obviously belongs to M ult(A, . ). Moreover, it clearly belongs to the closure of M ult 1 (A, . ). Consequently, if we can prove that every element of M ult m (A, . ) is of the form ϕ G , with G a certain filter on D, Question 1) is solved. And similarly, if we could prove that every element of M ult(A, . ) were of the form ϕ G , Question 2) would also be solved.

Definitions and notation: Given a ∈ D and r, s ∈]0, 1[ such that r < s, let Γ(a, r, s) = {x ∈ IK r < |x -a| < s}. Let W be the filter admitting for basis the family of annuli Γ(0, r, 1).

Given a ∈ IK and r > 0 we call circular filter of center a and diameter R on D the filter F which admits as a generating system the family of sets Γ(α, r , r ) ∩ D with α ∈ d(a, R), r < R < r , i.e. F is the filter which admits as a basis the family of sets of

the form D ∩ q i=1 Γ(α i , r i , r i ) with α i ∈ d(a, R), r i < R < r i (1 ≤ i ≤ q , q ∈ IN).
If the field IK is not spherically complete, we must also define circular filters with no center: given a decreasing sequence of disks (D n ) with empty intersection, we call circular filter with no center, of basis (D n ) the filter admitting that sequence (D n ) for basis.

Given a filter F on D, we denote by J (F) the ideal of the f ∈ A such that lim

F f (x) = 0. Every ultrafilter U on D defines an element ϕ U of M ult(A, . ) as ϕ U (f ) = lim U |f (x)|: such a limit does exist because each function f ∈ A is bounded and therefore |f (x)| takes values in the compact [0, f ].
An ultrafilter U on D is said to be coroner if it is thinner than W.

A maximal ideal M of A is said to be coroner if there exists a coroner ultrafilter U such that M = J (U).

An element f ∈ A is said to be quasi-invertible if it has finitely many zeros.

Given a closed bounded subset S of IK, we denote by H(S) the Banach IK-algebra of analytic elements on S, i.e. the set of limits of all sequences of rational functions with no pole in S with respect to the uniform convergence on S [START_REF] Krasner | Prolongement analytique uniforme et multiforme dans les corps valués complets. Les tendances géométriques en algèbre et théorie des nombres[END_REF], [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF].

Given a circular filter F on a disk L, for every f ∈ H(L), |f (x)| admits a limit ϕ F along F [START_REF] Garandel | Les semi-normes multiplicatives sur les algèbres d'éléments analytiques au sens de Krasner[END_REF], [START_REF] Guennebaud | Sur une notion de spectre pour les algèbres normées ultramétriques[END_REF], [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF]. Particularly, if F is the filter of center a and diameter r, we put ϕ a,r = ϕ F and let ϕ a be the multiplicative semi-norm defined as ϕ a (f ) = |f (a)|, f ∈ A. Then given an ultrafilter U thinner than a circular filter on D, of diameter r < 1, the limit of |f (x)| on U equals that on F because given f ∈ A, a ∈ D and r ∈ [0, 1[, f belongs to H(d(a, r)) and hence ϕ a,r applies to f and has continuation to an element of M ult(A, . ) because every function f ∈ A belongs to H(d(a, r)). The situation is completely different for the circular filter W because many functions f ∈ A do not belong to H(D). As a consequence, the restriction of the Gauss norm defined on A to IK[x] admits many extensions on A, defined by various coroner ultrafilters. For example, if f admits a sequence of zeros (α n ) ( lim n→+∞ |α n | = 1), then given an ultrafilter U thinner than that sequence, we have ϕ U (f ) = 0, but of course f > 0.

The following Theorem A derives from the general characterization of continuous multiplicative semi-norms on algebras of analytic elements [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF] , [START_REF] Garandel | Les semi-normes multiplicatives sur les algèbres d'éléments analytiques au sens de Krasner[END_REF], [START_REF] Guennebaud | Sur une notion de spectre pour les algèbres normées ultramétriques[END_REF]. However, here we have to consider other continuous multiplicative semi-norms because the algebra A is much bigger than the algebra of analytic elements in D.

Theorem A [START_REF] Escassut | About the ultrametric Corona problem[END_REF], [START_REF] Escassut | Ultrametric Corona problem and spherically complete fields[END_REF]:

For every ultrafilter F on D, (respectively for every circular filter F of diameter r < 1), on D, for every element f ∈ A, |f (x)| admits a limit along F which belongs to M ult(A, . ). Thus, the question arising here is the continuation to A of the Gauss norm defined on IK[x]. The problem, then is not this simple: we have to consider coroner ultrafilters.

By Theorem (3.2) in [START_REF] Sarmant | T-suites idempotentes[END_REF], we have the following Theorem B also called Corona statement [START_REF] Sarmant | T-suites idempotentes[END_REF]:

Theorem B: Let f 1 , ..., f q ∈ A satisfy f j < 1 ∀j = 1, ..., q and inf{ max j=1,...,q (|f j (x)|) x ∈ D} = ω > 0. There exist g 1 , ..., g q ∈ A such that q j=1 g j f j = 1 and max j=1,...,q

g j < ω -2 .
Corollary B1: Let I be an ideal of A. There exists a filter F on D such that I ⊂ J (F).

Corollary B2: Let M be a maximal ideal of A. There exists an ultrafilter U on D such that M = J (U).

Theorem C is classical and was given in [START_REF] Escassut | About the ultrametric Corona problem[END_REF], [START_REF] Escassut | Ultrametric Corona problem and spherically complete fields[END_REF]. Theorem C: Let M be a maximal ideal of A. Either M is of codimension 1 and then it is of the form (x -a)A (a ∈ D), or it is of infinite codimension and then it is coroner, of the form J (U). Moreover, if J (U) is of infinite codimension, then: i) ϕ U belongs to the closure of M ult 1 (A, . ).

ii) For every f ∈ M, f is not quasi-invertible. On the other hand, the mapping J from the set of coroner ultrafilters to the set of ideals of A is not injective. Two ultrafilters U, V are said to be contiguous if for every > 0, there exists X ∈ U and Y ∈ V such that the distance from X to Y is less than . Then, as noticed in [START_REF] Escassut | About the ultrametric Corona problem[END_REF], two contiguous coroner ultrafilters define the same ideal. Conversely, if two coroner ultrafilters U, V define the same ideal, are they contiguous? The answer seems unclear.

In [START_REF] Escassut | About the ultrametric Corona problem[END_REF] and [START_REF] Escassut | Ultrametric Corona problem and spherically complete fields[END_REF] we proved that there exist no continuous multiplicative norm on A, other than the Gauss norm, inducing the Gauss norm on IK[x]. However, how we just saw, each coroner maximal ideal, of the form J (U), defines an element ϕ U of M ult(A, . ) whose restriction to IK[x] is the Gauss norm, but of course ϕ U is not the Gauss norm on certain non-quasi-invertible elements of A.

Theorem D is given in [START_REF] Escassut | About the ultrametric Corona problem[END_REF], [START_REF] Escassut | Ultrametric Corona problem and spherically complete fields[END_REF].

Theorem D: Suppose A is multbijective. Then for every φ ∈ M ult m (A, . )\M ult 1 (A, . ) there exists a coroner ultrafilter U such that φ = ϕ U . Moreover M ult 1 (A, . ) is dense in M ult m (A, . ).

In [START_REF] Escassut | About the ultrametric Corona problem[END_REF] and [START_REF] Escassut | Ultrametric Corona problem and spherically complete fields[END_REF] we considered the following conjectures: A is multbijective no matter what the complete algebraically closed field IK. We are now able to prove that conjecture.

Theorem 1: A is multbijective.

Corollary 1.1: For every φ ∈ M ult m (A, . ) \ M ult 1 (A, . ) there exists a coroner ultrafilter U such that φ = ϕ U . Corollary 1.2: M ult 1 (A, . ) is dense in M ult m (A, . ).

Remark: Thus we have proved that every element of M ult m (A, . ) belongs to the closure of M ult 1 (A, . ). On the other hand, by Corollary 1.20 in [START_REF] Escassut | Ultrametric Corona problem and spherically complete fields[END_REF], we know that all continuous multiplicative norms of A lie in the closure of M ult 1 (A, . ). That makes quite exciting the question whether M ult 1 (A, . ) is dense in the whole set M ult(A, . ). In order to examine a bit better that question, let us recall that we know a kind of continuous multiplicative semi-norms whose kernel is neither {0} nor a maximal ideal: they are due to J. Araujo [START_REF] Araujo | Prime and maximals ideals in the spectrum of the ultrametric algebra H ∞ (D)[END_REF] and are defined in the following way. 

f (n) = f (d(a n ,r -is included in [0, f ]
and therefore that image defines an ultrafilter that converges to a value ψ(f ) ∈ [0, f ]. Then, ψ belongs to M ult(A, . ) and Ker(ψ) is the prime ideal of functions f ∈ A such that lim U f (d(a n ,r -= 0.

Definition:

We will call Araujo's semi-norms the semi-norms defined in that way.

Theorem 2: Every Araujo's semi-norm lies in the closure of M ult 1 (A, . ).

Thus, Theorem 2 strongly suggests that M ult 1 (H(D), . ) might be dense inside M ult(H(D), . ): it would just suffice to prove that all continuous multiplicative seminorm of H(D) either are norms, or have a maximal ideal for kernel, or are Araujo's semi-norms, or some semi-norms of the same kind. Unfortunately, we have no mean to prove this.

The Proofs.

By Theorems 23.5 and 23.6 in [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF] we have Lemma 1:

Lemma 1: Let a ∈ IK and r > 0 and let f ∈ H(d(a, r)) (resp. f ∈ H(d(a, r -)), resp. f ∈ H(C(a, r)))). If f has no zero in d(a, r), (resp. in d(a, r -), resp. in C(a, r)), |f (x)| is constant. The set of zeros of f in d(a, r) (resp. in (d(a, r -), resp. in C(a, r)) is finite.
By Theorem 13.3 and Corollary 13.4 in [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], we can derive Lemma 2:

2 : An element of A is quasi-invertible if and only if it is of the form P g with P ∈ IK[x], P = 0, having all its zeros in D and g an invertible element of A. From the classical Krasner Mittag-Leffler Theorem ( [START_REF] Krasner | Prolongement analytique uniforme et multiforme dans les corps valués complets. Les tendances géométriques en algèbre et théorie des nombres[END_REF] and Theorem 15.1 in [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF]), here we can state Proposition 6. h n whereas h 0 ∈ H(d(0, R)) and for each n ≥ 1,

h n ∈ H(K \ d(a i n , r - i n ))
and

lim |x|→+∞ h n (x) = 0. Then h E = max h 0 d(0,R) , sup n≥1 ( h n K\(d(a i n ,r - i n ) ) . Further, h 0 is of the form ∞ j=0 a 0,j x j with h 0 d(0,R) = sup j≥0 |a 0,j |R j and for n ≥ 1, h n is of the form ∞ j=1 a n,j (x -a i n ) -j with h n IK\(d(a i n ,r - i n )) = sup j≥1 |a n,j |(r i n ) -j .
Notation: Let B be a unital commutative IK-algebra. Given f ∈ B, we denote by sp(f ) the set of λ ∈ IK such that f -λ is not invertible.

By using properties of T -filters and particularly idempotent T -sequences [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], Lemma 35.1 and Proposition 37.1 (see also [START_REF] Escassut | T-filtres, ensembles analytiques et transformations de Fourier padique[END_REF], Proposition 1.6 and [START_REF] Sarmant | T-suites idempotentes[END_REF]), we have the following proposition:

Proposition 7 : Let (r n ) n∈ IN be a sequence in | IK| such that 0 < r n < r n+1 , lim n→+∞ r n = R, let (q n ) n∈ IN be a sequence of IN such that q n ≤ q n+1 and lim n→+∞ r n r n+1 q n = 0. Let l ∈]0, R[
and for each n ∈ IN, let b n ∈ C(0, (r n ) q n ), let a n,1 , ..., a n,q n be the q n -th roots of b n and

let E = d(0, R -) \ n∈ IN ( q n j=1 d(a n,j , l -) . Set f n (x) = n k=1 q k j=1 1 1 -x a k,j
. Then each f n belongs to R(E) and the sequence (f n ) n∈ IN converges in H(E) to an element f strictly vanishing along the pierced increasing filter of center 0 and diameter R.

Proposition 8: Let (B, . ) be a commutative unital ultrametric IK-Banach algebra. Suppose there exist ∈ B , φ, ψ ∈ M ult(B, . ) such that ψ( ) < φ( ), sp( ) ∩ Γ(0, ψ( ), φ( )) = ∅ and there exists ∈]0, φ(

) -ψ( )[ satisfying further ( -a) -1 ≤ M, ∀a ∈ Γ(0, ψ( ), φ( ) -). Then there exists f ∈ B such that ψ(f ) = 1, φ(f ) = 0. Proof: Let s = ψ( ), t = φ( ), Q = , R = t -and l = 1 M . Let r 0 ∈]s, t -[.
Consider the sequence (a n,j ) n∈ IN,1≤j≤q n defined in Proposition 7 and the set

E = d(0, Q -) \ n∈ IN q n j=1 d(a n,j , l -) . Then in H(E) we have (1) 1 x -b E ≤ l ∀b ∈ n∈ IN q n j=1 d(a n,j , l -) .
There exists a natural homomorphism σ from R(E) into B such that σ(x) = . Since Q = and ( -b) -1 ≤ M ∀b ∈ Γ(0, s, t), by Proposition 15.1 in [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF] and by (1) σ is clearly continuous with respect to the norms . E of R(E) and . of B. Consequently, σ has continuation to a continuous homomorphism from H(E) to B. Now, let ψ = ψ • σ, φ = φ • σ. Then both φ , ψ belong to M ult(H(E), . ) and satisfy ψ (x) = s, φ (x) = t -. So, ψ is of the form ϕ F with F a circular filter on E secant with C(0, s) and φ is of the form ϕ G with G a circular filter on E secant with C(0, t).

Consider now the function f constructed in Proposition 7 which, by construction, belongs to H(E) and has no zero and no pole in d(0, s -). Consequently,

|f (x)| = |f (0)| = 1 ∀x ∈ d(0, s -). Moreover, we have lim G f (x) = 0, hence φ (f ) = 0. Let g = σ(f ). Then ψ(g) = ψ (f ) = 1 and φ(g) = φ (f ) = 0, which ends the proof. Proposition 9: Let U be a coroner ultrafilter on D, let f ∈ A \ J (U) be non-invertible in A, such that f ≤ 1 and let g ∈ A, h ∈ J (U) such that f g = 1 + h. Let τ = ϕ U (f ), let ∈]0, τ [ and let Λ = {x ∈ D |f (x)g(x)| -1| ∞ < , | |f (x)| -τ | ∞ < }.
Suppose that there exist a function h ∈ A admitting for zeros in D the zeros of h in D \ Λ and a function h ∈ A admitting for zeros the zeros of h in Λ, each counting multiplicities, so that h = h h. Then | h(x)| has a strictly positive lower bound in Λ and h belongs to J (U).

Moreover, there exists

ω ∈]0, τ [ such that ω ≤ inf{max(|f (x)|, |h(x)|) x ∈ D}.
Further, for every a ∈ d(0, (τ -)), we have ω ≤ inf{max(|f (x) -a|, |h(x)|) x ∈ D}.

Proof: Let u ∈ Λ and let s be the distance of u from IK \ Λ. So, the disk d(u, s -) is included in Λ, hence f g has no zero inside this disk. Consequently, |f (x)g(x)| is a constant b in d(u, s -). Consider the family F u of radii of circles C(u, r), containing at least one zero of f g. By Lemma 1 F u has no cluster point different from 1. Consequently, there exists ρ ≥ s such that f g admits at least one zero in C(u, ρ) and admits no zero in d(u, ρ -). Thus, we know that |f (x)g(x)| is a constant c in d(u, ρ -). But then, at u we see that b = c and therefore d(u, ρ -) is included in Λ. Hence ρ = s and therefore f g admits at least one zero α in C(u, s). Thus, at α we have h(α) = -1. Therefore, in the disk d(α, s -) we can check that ϕ α,s (h) ≥ 1. But by Lemma 3 ϕ α,s (h) = ϕ u,s (h), hence ϕ u,s (h) ≥ 1. Now, 

h ϕ u,s (h) = h ϕ u,s ( h) h ϕ u,s (h) ≥ h ϕ u,s ( h) 
| h(u)| ≥ h h ∀u ∈ Λ.
This shows that h does not belong to J (U), hence, ϕ U ( h) = 0. Consequently, ϕ U (h) = 0. Now, by hypothesis, we have f g -h h = 1. Since both g, h belong to A and therefore are bounded in D, it is obvious that inf{max(|f (x)|, |h(x)|) x ∈ D} > 0. So, we may obviously choose ω ∈]0, τ -[ such that [START_REF] Berkovich | Spectral Theory and Analytic Geometry over Non-archimedean Fields[END_REF] ω

≤ inf{max(|f (x)|, |h(x)|) x ∈ D}.
Let us now show that for every a ∈ d(0, (τ -)), we have The following basic lemma is easily checked and is an application of Proposition 10 in [3]: Lemma 10: Let S be a set and let E be a subset. Let F be an ultrafilter on E. Then the filter F on S with base F is an ultrafiter inducing on E the ultrafilter F . Corollary 10.1: Let S be a set and let E be subset of S. Let F be an ultrafilter on E and let F = G be the ultrafilter on S having F as a base of filter. Let f be a function defined on S with values in a compact topological space T . Then lim

ω ≤ inf{max(|f (x) -a|, |h(x)|) x ∈ D}. Let Λ = {x ∈ D |f (x)| ≥ τ -}
G f (x) = lim F f (x).
Proof: Suppose that f admits distinct limits on F and G. Then F is a basis of a filter on S that is not secant with G, a contradiction since F is the ultrafilter induced by G on E.

Proposition 11: Let M be a non-principal maximal ideal of A and let U be an ultrafilter on D such that M = J (U). Let f ∈ A \ M satisfy f < 1, let τ = ϕ U (f ) and let ∈]0, τ [. There exists c > 0 such that, for every a ∈ d(0, τ -), there exists g a ∈ A satisfying (f -a)g a -1 ∈ M and g a ≤ c.

Proof: Suppose first that f is invertible in A. By Lemma 1 |f (x)| is a constant and hence is equal to τ . Therefore, |f (x) -a| = τ ∀a ∈ d(0, τ -). Consequently, f -a is invertible and its inverse g a satisfies g a = τ -1 . Thus, we only have to show the claim when f is not invertible.

Since f does not belong to M, we can find g ∈ A and h ∈ M such that f g = 1 + h with h ∈ M.

Let IK be an algebraically closed spherically complete extension of IK, let D be the disk {x ∈ IK | |x| < 1}. Let A be the algebra of bounded power series converging in D with coefficients in IK.

U makes a basis of a filter U on D and by definition, U is the the filter induced by U on D. By Lemma 10, U is an ultrafilter on D. By Proposition 4 we can factorize h in the form hh where h ∈ A is a function admitting for zeros in D the zeros of h in D \ Λ and h ∈ A is a function admitting for zeros the zeros of h in Λ, each counting multiplicities. Moreover, we can choose h so that h < 1. Now, in the field IK, by Proposition 9, there exists ω > 0 such that for every a ∈ d(0, (τ -)), we have ω ≤ inf{max(|f (x) -a|, |h(x)|) x ∈ D}. This implies that inf{max(|f (x) -a|, |h(x)|) |x ∈ D} ≥ ω ∀a ∈ d(0, τ -). We notice that f -a < 1 for every a ∈ d(0, τ -), so we may apply Theorem B and obtain a bound b only depending on f and h and functions a , h a ∈ A such that (f -a) a + hh a = 1, with [START_REF] Araujo | Prime and maximals ideals in the spectrum of the ultrametric algebra H ∞ (D)[END_REF] a < b, h a < b ∀a ∈ d(0, τ -).

Let τ = ϕ U (f ) and let ∈]0, τ [. By Proposition 11, there exists c > 0 such that, for every a ∈ d(0, τ -), there exists g a ∈ A satisfying (f -a)g a -1 ∈ M and g a ≤ c. Now, θ(g a ) = (θ(f -a)) -1 . Thus, (θ(f -a)) -1 q ≤ c for all a ∈ d(0, τ -). Therefore, by applying Proposition 8 to the IK-Banach algebra IF, we can see that there exists y ∈ IF such that φ 1 (y) = 1, φ 2 (y) = 0. Therefore, taking g ∈ A such that θ(g) = y, we get ϕ U (g) = 0, ψ(g) = 1, a contradiction to the hypothesis Ker(ϕ U ) = Ker(ψ). This finishes the proof that A is multbijective.

Proof of Theorem 2: Given a φ ∈ M ult(A, . ), > 0 and f 1 , ..., f q ∈ A, we set W(ψ, f 1 , ..., f q , ) = {θ ∈ M ult(A, . ) | |φ(f j ) -θ(f j )| ∞ ≤ ∀j = 1, ..., q. We know that such sets make a basis of neighborhoods of φ with respect to the topology of M ult(A, . ). Now, let ψ be an Araujo semi-norm defined by a sequence of disks d(a n , r), with lim Consider a neighborhood W(ψ, f 1 , ..., f q , ) of ψ, with f j ∈ A and > 0. Set s j = ψ(f j ), j = 1, ..., q. By hypothesis, there exists an infinite subset S ∈ T such that | ϕ a n ,rs j | ∞ ≤ ∀n ∈ T, ∀j = 1, ...q.

Let us fix m ∈ S. For each j = 1, ...q, we then have .., q and therefore we derive |ϕ b m (f j ) -ψ(f j )| ∞ ≤ 2 ∀j = 1, ..., q. Consequently, ϕ b m belongs to W(ψ, f 1 , ..., f q , 2 ), which proves that ψ belongs to the closure of M ult 1 (A, . ).

  Now consider the situation in the non-Archimedean context. Let IK be an algebraically closed field complete with respect to an ultrametric absolute value | . |. Given a ∈ IK and r > 0, we denote by d(a, r) the disk {x ∈ IK | |x -a| ≤ r}, by d(a, r -) the disk {x ∈ IK | |x -a| < r}, by C(a, r) the circle {x ∈ IK | |x -a| = r} and set D = d(0, 1 -). Let A be the IK-algebra of bounded power series converging in D which is complete with respect to the Gauss norm defined as ∞ n=1 a n x n = sup n∈ IN

Remark:

  Characterizing the coroner ultrafilters U such that J (U) is a maximal ideal appears very hard. For instance, let Y be the filter admitting for basis the family of sets Γ(0, r, 1) \ ∞ n=1 d(a n , |a n | -) with a n ∈ D, lim n→+∞ |a n | = 1 and consider an ultrafilter U thinner than Y. It is a coroner ultrafilter. But J (U) = {0}. Indeed, suppose a nonidentically zero function f lies in J (U). Let (a n ) be its sequence of zeros, set r n = |a n |, n ∈ IN, and let E = D \ ∞ n=0 d(a n , r - n ). Clearly |f (x)| = |f |(|x|) ∀x ∈ E hence lim U |f (x)| = f . However, E belongs to Y and therefore, U is secant with E, a contradiction with the hypothesis f ∈ J (U). However, it is obvious that maximal ideals of infinite codimension do exist. Consider a sequence (a n ) n∈ IN such that lim n→+∞ |a n | = 1 and n∈ IN |a n | > 0 and let I be the ideal of f ∈ A such that lim n→+∞ f (a n ) = 0. Then by Theorem 25.5 in [8], I is not {0}. But clearly, it is not included in any maximal ideal of the form (x -a)A. Consequently, it is included in a maximal ideal of infinite codimension.

  Let r ∈]0, 1[ and let (a n ) n∈ IN be a sequence in D such that lim n→+∞ |a n | = 1. Let U be an ultrafilter on IN and take f ∈ A. The image of U by the mapping h f defined on IN as h

Lemma 3 isLemma 3 :Proposition 4 :Proposition 5 :

 3345 Theorem 20.2 in[START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF]: Let a ∈ IK and r > 0 and b ∈ d(a, r). Then ϕ a,r = ϕ b,r .Proposition 4 due to M. Lazard comes from[START_REF] Lazard | Les zéros des fonctions analytiques sur un corps valué complet[END_REF]: Suppose IK is spherically complete. Let a ∈ IK, R > 0, let (a n ) n∈ IN be a sequence of d(a, R -) such that lim n→+∞ |a n -a| = R and let (q n ) n∈ IN be a sequence of integers. There exists f ∈ A(d(a, R -)) admitting each a n as a zero of order q n and having no other zero.Notation: Let IK be an extension of IK provided with an ultrametric absolute value extending that of IK, let a ∈ IK and let r > 0. We put d(a, r)= {x ∈ IK | |x -a| ≤ r}, d(a, r -) = {x ∈ IK | |x -a| < r}, C(a, r) = {x ∈ IK | |x -a| = r}.By Theorem 23.1 in[START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF] we have the following: Let IK be an algebraically closed complete extension of IK, a ∈ IK and r > 0 and let f ∈ H(d(a, r)) (resp. f ∈ H(d(a, r -)), resp. f ∈ H(C(a, r))). The zeros of f in d(a, r) (resp. in d(a, r -), resp. in C(a, r)) are the same as in d(a, r) (resp. in d(a, r -), resp in C(a, r)).

Proposition 6 :

 6 Let E be a set of the form d(0, R) \ i∈J d(a i , r - i ) (where J is a set of indices). Then any element h ∈ H(E) has a unique Mittag-Leffler decomposition of the form ∞ n=0

  Consider now f as an element of A. Then U defines an element ψ of M ult( A, . ) as ψ( ) = lim U | (x)|, ∀ ∈ A. Consequently, by Corollary 10.1 τ is equal to limU |f (x)|. Let Λ = {x ∈ D | |f (x)g(x)| -1| ∞ < , | |f (x)| -τ | ∞ < }.

  n→+∞ |a n | = 1 and an ultrafilter T on IN so that ψ(f ) = lim T |f (a n )| ∀f ∈ A.

  lim |x-a m |→r |f j (x)| = f j d(a m ,r) = ϕ a m ,r (f j ) therefore there exists b m ∈ d(a m , r) such that | |f j (b m )| -ϕ a m ,r (f j )| ∞ ≤ ∀j = 1, .

  .But since by definition d(u, s -) is included in Λ, h has no zero in this disk, hence | h(x)| is constant and equal to ϕ u,s ( h). Consequently, by (1) we obtain h

			| h(u)|	≤ h and therefore
	we have		
	Therefore, since ϕ u,s (h) ≥ 1, we obtain	
	(1)	h ϕ u,s ( h)	≤ h .

  and let a ∈ d(0, (τ -) -). When β lies in Λ , we have |f (β)| > |a|, hence by (2), max(|f (β) -a|, |h(β)|) ≥ ω because by(2), either ω ≤ |h(β)|, or ω ≤ |f (β)| = |f (β) -a|. Now, let β lie in D \ Λ and let t be the distance from β to Λ . Since D \ Λ is open, t is > 0. Consider ϕ β,t (f ). Either there exists µ ∈ Λ such that |β -µ| = t and then ϕ β,t (f ) ≥ |f (µ)| ≥ τ -or there exists a sequence (x n ) n∈ IN ∈ Λ such that lim n→+∞ |β -x n | = t and |x n -β| > t. Suppose that we are in the second case: there exists a sequence (x n ) n∈ IN ∈ Λ such that lim

n→+∞ |β -x n | = t and |x n -β| > t. Then the sequence is thinner than the circular filter of center β and diameter t, hence lim n→+∞ |f

(x n )| = ϕ β,t (f ) hence ϕ β,t (f ) ≥ τ -again. If f has no zero in d(β, t -), then |f (x)| is a constant in that disk, hence of course ϕ β,t (f ) < τ -. a contradiction. Consequently, f must have a zero γ in d(β, t -).

Therefore, due to (2), we have |h(γ)| ≥ ω. But since by definition, Λ ⊂ Λ , the zeros of h belong to Λ . And since d(β, t -) ∩ Λ = ∅ actually h has no zero in d(β, t -). Consequently |h(x)| is constant in d(β, t -) and hence |h(β)| ≥ ω, which completes the proof.
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By hypothesis we have lim

Now, let us fix a ∈ d(0, τ -). Let G be the closed IK-vector subspace of IK (considered as a IK-Banach space), linearly generated over IK by 1 and all coefficients of a . Take η > 0 such that (1 + η) max( a , h a ) ≤ b. We notice that G is a IK-Banach space of countable type, hence there exists a IK-linear mapping Ξ from G to IK of norm ≤ 1 + η, such that Ξ(1) = 1 [START_REF] Sarmant | T-suites idempotentes[END_REF]. Let F be the closed IK-vector subspace of A consisting of all power series with coefficients in E. Then F is a A-module and Ξ has continuation to a

This mapping Ξ has a norm bounded by 1 + η. Set g a = Ξ( a ). Then by (1) we have Proof of Theorem 1: Suppose that A is not multbijective and let M be a maximal ideal which is not univalent. Let IF be the quotient field A M , let θ be the canonical surjection from A onto IF and let . q be the IK-Banach algebra quotient norm of F . By Theorem C there exists an ultrafilter U on D such that M = J (U). Thus, there exists ψ ∈ M ult(A, . ) such that Ker(ψ) = M and ψ = ϕ U . Consequently, there exists f ∈ A such that ψ(f ) = ϕ U (f ), with ψ(f ) = 0, ϕ U (f ) = 0. We shall check that we may also assume ψ(f

, therefore ψ(g) < ϕ U (g). Thus, we may assume ψ(f ) < ϕ U (f ) without loss of generality. Similarly, we may obviously assume that f < 1. By construction, ϕ U factorizes in the form φ 1 • θ and similarly, ψ factorizes as φ 2 • θ with φ 1 , φ 2 ∈ M ult( IF, . q ). So, on F we have φ 1 (θ(f )) > φ 2 (θ(f )).