
HAL Id: hal-01915423
https://uca.hal.science/hal-01915423

Submitted on 15 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning to touch objects through stage-wise deep
reinforcement learning

François de La Bourdonnaye, Céline Teulière, Jochen Triesch, Thierry Chateau

To cite this version:
François de La Bourdonnaye, Céline Teulière, Jochen Triesch, Thierry Chateau. Learning to touch
objects through stage-wise deep reinforcement learning. IEEE/RSJ International Conference on In-
telligent Robots and Systems, Oct 2018, Madrid, Spain. �hal-01915423�

https://uca.hal.science/hal-01915423
https://hal.archives-ouvertes.fr


HAL Id: hal-01820043
https://hal.archives-ouvertes.fr/hal-01820043

Submitted on 21 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning to touch objects through stage-wise deep
reinforcement learning

François De La Bourdonnaye, Céline Teulière, Jochen Triesch, Thierry
Chateau

To cite this version:
François De La Bourdonnaye, Céline Teulière, Jochen Triesch, Thierry Chateau. Learning to touch
objects through stage-wise deep reinforcement learning. 2018. <hal-01820043>

https://hal.archives-ouvertes.fr/hal-01820043
https://hal.archives-ouvertes.fr


Learning to touch objects through stage-wise deep reinforcement
learning

François de La Bourdonnaye1, Céline Teulière1, Jochen Triesch2, and Thierry Chateau1

Abstract— Learning complex behaviors through reinforce-
ment learning is particularly challenging when reward is only
available upon successful completion of the full behavior. In
manipulation robotics, so-called shaping rewards are often
used to overcome this problem. However, these usually require
human engineering or (partial) world models describing, e.g.,
the kinematics of the robot or high-level modules for perception.
Here we propose an alternative method to learn an object
palm-touching task through a weakly-supervised and stage-
wise learning of simpler tasks. First, the robot learns to fixate
the object with its cameras. Second, the robot learns eye-hand
coordination by learning to fixate its end effector. Third, using
the previously acquired skills an informative shaping reward
can be computed which facilitates efficient learning of the object
palm-touching task. We demonstrate in simulation that learning
the full task with this shaping reward is comparable to learning
with an informative supervised reward.

I. INTRODUCTION

Fig. 1. Palm-touching learning process: (a) Object fixation, (b) End-effector
fixation and hand-eye coordination, (c) Palm-touching

In recent years, deep reinforcement learning (RL) al-
gorithms have allowed the learning of complex behaviors
directly mapping pixels to actions without using hand-crafted
features [1], [2]. However, learning can be prohibitively slow
when reward is only available when the full task has been
completed successfully. This problem of sparse rewards is
frequently addressed by specifying more informative reward
functions that rely on additional forms of supervision. In-
deed, informative shaping rewards have long been applied

*This work is sponsored by the French government research program
“Investissements d’avenir” through the IMobS3 Laboratory of Excellence
(ANR-10-LABX-16-01), by the European Union through the program
Regional competitiveness and employment (ERDF Auvergne region), and
by the Auvergne region. J.Triesch acknowledges support from the Quandt
foundation and the European Union’s Horizon 2020 Research and Innova-
tion Programme under grant agreement no. 713010 (GOAL-Robots Goal-
based Open-ended Autonomous Learning Robots).

1F. de La Bourdonnaye, C.Teulière and T. Chateau are with the university
of Clermont Auvergne, the Pascal Institute CNRS, UMR6602, Aubière,
France

2J.Triesch is with the Frankfurt Institute for Advanced Studies, Frankfurt
am Main, Germany

in manipulation robotics [3], [4], because they help to
discriminate values of close states. For instance, [3], [4],
[5], [6] and [7] use a distance measure between the current
pose and a target pose to design an informative reward in
manipulation tasks such as block stacking, reaching and
door pushing or pulling. These rewards require knowledge
of robot kinematics and target pose. Similarly, for tasks such
as placing wooden rings or screwing bottle caps onto bottles
[2] and [8] use an informative reward based on the distance
between actual positions of end-effector or target object
and their target positions. Tracking these points requires
knowledge of the kinematics or non-trivial vision modules.
For the same kind of task, [1] designs a reward based on a
distance between visual features produced by an autoencoder
and target features. This requires to place the robot in a target
position and extract the target visual features each time the
target location changes.

In contrast to these previous works, the aim of this paper
is a robot that learns an object palm-touching task with
only weak human intervention or supervision i.e. without
kinematic models, hand-crafted features, or calibration pa-
rameters. More precisely, the task consists of reaching with
the end-effector palm an object put on a table. This behavior
can be seen as a natural predecessor to grasping. To learn this
task with little supervision, we propose a stage-wise learning
strategy inspired by infant development [9], [10], [11]. The
central idea is that an informative reward is constructed
from knowledge that has been acquired during the learning
of simpler predecessor tasks. Specifically, our robot first
learns to fixate an object or its own end-effector using deep
RL. Based on the knowledge acquired during these tasks
an informative reward function is constructed that allows
the robot to efficiently learn the object palm-touching task.
Our results demonstrate that learning this task based on
the learned informative reward signal works about as well
as learning with a fully supervised reward, while naively
learning from only a sparse reward signal fails completely
in the same setting.

II. RELATED WORK

Our approach resembles developmental robotics methods
[9], [12], [13], [14] which learn to reach using a hand-eye
coordination function and object fixation. However, they are
usually paired with supervision for the object and/or end-
effector fixations [12], [13], [14] or computation of action
primitives [9].

Our work is also related to methods which use sparse-
only rewards in the sense that our sparse term fully defines



the task. Though hardly using any supervision, sparse-only
rewards generally require some strategies to increase the
probability of getting a sparse reward. This can be done
by increasing the number of agents learning the task [15]
or by simplifying the action space using hand-crafted pre-
processing [16]. Besides, if the agent has access to one
of its goal states, a mechanism of learning from easy
missions [17] can be implemented to learn very precise
robotic manipulation tasks [18]. We propose to increase
the touching probabilities by building a weakly-supervised
reward shaping term from learned skills without using action
space simplification, several agents or the indication of a goal
state.

III. METHODS

A. Background

An RL algorithm is usually based on Markov decision
processes < S,A,R, T > where S is the set of states, A the
set of actions, T the transition model (T : S × A→ S) and
R the reward function (R : S ×A× S → R).

The goal of the agent is to maximize the sum of discounted
future rewards: J =

∑∞
k=0 rkγ

k, where γ ∈ [0, 1] is a
discount factor and rk the reward value at step k.

To optimize the criterion, we train a deterministic policy
π : S → A. In the paper, we also estimate the state-action
value function:

Qπ(s, a) = Eπ

[ ∞∑
k=0

rkγ
k

∣∣∣∣∣s, a
]
, (s, a) ∈ S ×A. (1)

Both the policy and the Q function are approximated by a
neural network. Specifically, we use the DDPG algorithm
[19] which combines the deterministic policy gradient al-
gorithm [20] and the DQN [21]. DDPG is an “actor-critic”
algorithm updating the critic Qφ with parameters φ and the
deterministic policy πθ with parameters θ as follows. At each
time-step, we choose Nb transitions from a large memory
buffer using a uniform distribution:
< si, ai, ri, s

′

i >i∈{1,...,Nb}∈ S ×A× R× S.
The targets of the Qφ neural network are computed using

a TD(0) update (with a learning rate equal to 1):

∀i ∈ {1, ..., Nb}, yi = ri + γQφ′

(
s
′

i, πθ′ (s
′

i)
)
. (2)

φ
′

and θ
′

are the parameters of the target networks updated
using a rate parameter τ (t denotes a time-step):

φ
′

t+1 = τφt + (1− τ)φ
′

t, θ
′

t+1 = τθt + (1− τ)θ
′

t, (3)

The Qφ network updates its weights by minimizing the
squared error 1

2Nb

∑Nb

i=1 (yi −Qφ(si, ai))
2.

Using the Qφ network and the fact that the policy is
deterministic, the following policy gradient is derived:

∂Qφ
∂θ
' 1

Nb

Nb∑
i=1

∂Qφ (si, πθ(si))

∂a

∂πθ(si)

∂θ
. (4)

This update makes the policy select the actions that maximize
the Q function at the batch states. In addition to this

algorithm, we use the inverting gradient procedure of [22]
to bound the actions. This method downscales the gradient
when the action computed by the policy approaches its limit.
When it exceeds its limit, the gradient is inverted. This
mechanism prevents the actions from becoming too large.

B. Overview

We describe here the stage-wise learning process (see
Figures 1 and 2 for a schematic view). The task consists
of touching the object with the palm. In the following, we
use the notations:
• I = (I left, Iright) represents the images from the left

and right cameras.
• q = (qcamera, qrobot) represents the 3 camera joint

angles (one common tilt angle and two independent pan
angles) and 7 joint arm joint angles.

Fig. 2. Overall scheme of the touching task learning procedure

Our stage-wise learning framework involves three succes-
sive tasks:

First, the robot learns from raw pixels to fixate the object
with a two-camera system. For this, we use [23] to learn to
fixate an object with weak supervision. At the end of the
fixation, the camera system coordinates qcamera

fix implicitly
encode the object position in 3D space.

Second, the robot learns a hand-eye coordination function
fη which maps robot joint coordinates to virtual camera
coordinates:

qcamera
virt = fη(qrobot). (5)

These virtual camera coordinates correspond to the camera
coordinates which would make the camera system look at
the end-effector. Finally, a reward signal using qcamera

fix and
qcamera
virt to make the end-effector close to the object is

computed and combined with a sparse reward, indicating if
there is palm-touching or not. In the following, we describe
each of the three steps.

C. Learning binocular object fixations

Fixating an object means bringing the object at the center
of Ileft and Iright by moving the cameras. To learn it, we
build on our prior work [23].



The task is learned with the DDPG algorithm [19] using I
and qcamera as states, and ∆qcamera as actions. The reward
function is the sum of left and right camera components:
robj = rleft

obj + rright
obj . For each camera c = left or right,

the reward function is an affine decreasing function of the
distance between the image center Pi and the estimated
object position P c

o (computed below):

rc
obj = 2

1
2dmax − ||Pi − P c

o ||2
dmax

∈ [−1, 1], (6)

with dmax being the maximal distance between the image
center and the object pixellic position.

An episodic set-up is used. For each episode, a random
object is put at a random location above the table. The
episode ends when a given number of transitions has been
reached.

The object detection mechanism involves a convolutional
autoencoder training step in which images of the environ-
ment without object are encoded. Then, when an object
appears in the environment, it is detected as an anomaly
and localized in the images I left and Iright. More precisely,
we apply a kernel density estimator on the autoencoder
reconstruction error images respectively |I left − Î left| and
|Iright − Îright|. After that, the estimated object pixellic
positions, respectively P left

o and P right
o are at the maximal

probabilities as described in [23]. This object detection prin-
ciple only requires an autoencoder pre-training step without
object and the assumption that there is an object in the scene
subsequently.

D. Learning a hand-eye coordination function fη
To build fη , we need to have a database D of input-output

pairs (qrobot, qcamera) where qcamera makes the camera look
at the end-effector. To produce such samples, we learn how to
fixate the end-effector the same way [23] learns to fixate an
object. We use the DDPG algorithm and a reward requiring
weak supervision. The Markov Decision Process is the same
as for the object fixation with the exception of the reward
function. The latter involves the end-effector detection P c

e

(computed below) instead of P c
o :

rc
eff = 2

1
2dmax − ||Pi − P c

e ||2
dmax

∈ [−1, 1]. (7)

The set-up is also episodic. For each episode, random
robot joint coordinates are generated using uniform distri-
bution with fixed limits. They are empirically set to provide
a large variety of reachable arm configurations.

During learning, training pairs (qrobot, qcamera) are added
to D when the reward is above a fixed threshold. When the
number of samples in D is higher than the batch size Nbf ,
we train fη on random batches of D as soon as a new sample
is added to D.

We describe here how we detect the end-effector in the
image. Unlike [23] which uses an autoencoder to detect
the object as an anomaly, the end-effector image position
is computed using the difference in the image before and
after pre-defined end-effector finger moves. This end-effector

Icb Ica |Icb − Ica | P c
E

Fig. 3. End-effector computation scheme

detection method inspired by [24] only requires to specify
finger moves.

Figure 3 presents the different steps of the end-effector
detection:
• The image before the end-effector Icb is saved.
• The end-effector fingers make pre-defined moves and

the image Ica is saved
• The difference of images is calculated and the end-

effector position P cE is computed using a kernel density
estimator the same way P cO is calculated from the
autoencoder reconstruction error image.

E. Learning to touch

The goal of the robot is to touch with the end-effector
palm the object above the table from a large set of initial
arm positions.

It is defined by a sparse reward term rsparse which
indicates if there is palm-touching or not:

rsparse =

{
1, if palm-touching,
0, otherwise.

(8)

As the object is kept at the same position, the state space S
is composed of the arm and camera coordinates, q. Indeed,
for this task, we do not need to add images in the state space
since the right arm movements can be decided from the robot
joint angles only. The actions consist of the variations of the
robot joint angles: a = ∆qrobot which are seven real-valued
scalars.

The object binocular fixation task and the hand-eye coor-
dination function are used to compute the touching reward
function.

After the execution of an object fixation step (using the
object fixation policy πψ), we get the fixation camera angles
qcamera
fix which localize the object. After that, using equation

5 at each time-step, the hand-eye coordination function fη
gives us qcamera

virt which localizes the end-effector. Then, a
reward shaping term rshaping can be computed:

rshaping = ccam||qcamera
fix − qcamera

virt ||2, (9)

with ccam < 0. rshaping represents an informative term
which depends on the distance between the virtual camera
coordinates and the camera coordinates which make the
camera system fixate the object. It can be seen as an open-
loop term which constrains the 3 translational degrees of
freedom of the end-effector. It takes negative values to ensure
quick trajectories are learned. Furthermore, the slope ccam is



chosen to ensure shaping rewards are small compared with
the non-zero sparse reward. Finally, the reward function is
the sum of the two terms:

rcam = rshaping + rsparse. (10)

IV. EXPERIMENTS

In this section, we describe the experimental protocol. The
experimental objective is two-fold. First, we want to evaluate
performances of our weakly-supervised reward in a palm-
touching task. Second, we wish to compare our reward with
an informative reward requiring external information.

A. Experiment environment

The experiments are carried out using the Gazebo simu-
lator jointly with the ROS [25] middleware. A two-camera
system is mounted on a bi-arm robotic platform (see Figure
1). Only one arm is used for the experiments and a Barrett
hand is attached to this arm. A table from the Gazebo object
database is placed below the cameras and in front of the bi-
arm platform. Note that this table is not present when we
learn the hand-eye coordination function. Our method does
not depend on a specific object model because the robot
learned to look at any object in [23]. In our experiments, we
use a blue ball.

B. Different reward functions

In this paragraph, we present the reward functions which
will be used in our experiments:

• rcam = rshaping + rsparse.
This is the proposed reward function (described in
Section III-E).

• rsparsePen =

{
1, if success,
−0.0125, otherwise.

This rewards the robot only when the palm touches
the object. Besides, it penalizes each unsuccessful
movement to encourage the robot to quickly touch the
object.

• rcart = ccart||X−Xtarget||2+rsparse, with ccart < 0. To
build this reward, we give a 3-dimensional end-effector
target pose Xtarget for the shaping part and we add a
sparse reward. This reward is the closest to the proposed
rcam but its shaping term requires forward kinematics
and 3D object pose information. Finally, the slope ccart

is chosen to make the shaping term take about the same
values as rshaping.

We choose not to compare our reward function with one
which would constrain both the end-effector position and
orientation. Indeed, for such a reward function, a success
would be to touch with the palm from a specific orientation
and position. In our case, a success can be to touch with the
palm from any position. The tasks are then too different to
be compared in terms of touching improvement.

C. Experimental protocol
We describe how we compare the reward functions for

the touching task. The protocol contains a training and a test
phase.

1) Training phase:
For training, we use the DDPG algorithm [19] and the
previously defined reward functions. Learning happens on
Ntot fixed-length episodes of size Neps. Each episode has
an initial arm position and an object position. The object
position is kept fixed. For the initial arm position, we use
two different settings. The first (P1) one uses a single initial
arm position for learning as in [7]. This position is made
well oriented for a palm-touching purpose. This means that
the robot has to move its end-effector mainly in translation
to touch the object. The second (P2) uses random robot joint
angles generated from uniform distributions. The goal of this
setting is to check if we can learn to touch the object with
our reward signal including initial positions with a badly
oriented end-effector. In such a position, the robot has to
substantially modify its end-effector orientation to touch the
object. Furthermore, it is known that learning from different
initial states allows to learn policies that are more robust to
perturbations [26].

We use constant zero-mean Gaussian noises εtrans and εrot

for the exploration. The variances of the noise are higher for
joints which strongly influence the end-effector orientation
(εrot). Indeed, more exploration is required for wrist angles
because “touching” orientations are only rewarded by the
sparse reward.

To accelerate learning, we handle the times when the robot
reaches “unsuccessful” contact areas where its movement is
blocked. Indeed, in the training phase, the robot often touches
the object without a palm contact though it is close to being
successful. To make exploration easier in these areas, we
record contact-less positions through a short-sized circular
buffer. In case of contact, we pick the oldest position in the
buffer, compute the action to go to this position, and apply
it. This allows to more correctly discriminate actions in the
contact areas.

Through the training experiments, we wish to compare our
reward requiring weak supervision with other ones. Conse-
quently, for all the reward signals, in order to monitor the
learning progress, we specifically plot the touching frequency
f type

t over the episodes, type referring to a specific reward
function. We average three experiments per setting with the
exception of the sparse reward setting. The latter is done
once.

2) Test phase:
The goal of test experiments is to evaluate final reaching
performances. We test the learned policies without any
exploration noise on Ntot random episodes. At the end,
we compute the touching frequency f type

test . Note that we do
not apply the trick used in the training phase to deal with
blocked situations. Instead, when the robot is blocked, it just
computes its next action with the policy. Like in the training
phase, the results are averaged over three experiments per
setting.



D. Implementation details

For all the neural network algorithms, we use the caffe
library [27]. A GPU (nvidia GeForce GTX Titan X) is used
for the experiments.

We use the same neural network structures as in [23] for
the end-effector and object fixation tasks. The hyperparame-
ter values are also the same with the exception of the number
of iterations: 200000. The hand-eye coordination function is
a neural network with 2 fully connected hidden layers of 10
and 5 neurons and a batch size Nbf of 32 is used to learn
it. For the episode initialization of the end-effector fixation
task, the seven arm joint angle distribution amplitudes are
11, 46, 69, 92, 92, 86 and 0◦ if we consider the ascending
order in the kinematic chain i.e. from the base link to the
end-effector.

For the touching task, the Q network has 3 fully connected
layers with 250, 200 and 1 neural units. The policy network
involves 3 fully connected layers with 200, 150 and 7 neural
units. The weights are updated using the Adam [28] solver.
Table I and II provide values for the parameters used in
the experiments. For the Q update, the discount factor γ
is equal to 0.99. For the episode initialization of the P2
problem, the distribution limits are the same as in the hand-
eye coordination learning with the exception of the last joint
(end-effector spin angle) for which the amplitude is 11◦.

Parameters εTrans εRot Neps Nb ccam ccart
Values 0.01 0.04 100 32 − 1

30
− 1

40

TABLE I
PARAMETER VALUES

Phase P1 P2

Training 4000 40000
Test 300 1000

TABLE II
Ntot VALUES

V. RESULTS AND DISCUSSION

We present here the results in the two previously defined
settings which are used in the experiments.

A. P1

Figure 4 shows the touching rates. First, we observe that
f sparsePen
t is zero almost everywhere. In the experiment, it

touches one time and is never able to further improve. This
is because transitions with high TD values are not trained
enough through DDPG. Second, we have similarly good
performance of over 90% for the proposed reward rcam and
the reward function rcart, which requires forward kinematics
and 3D object pose information. For this task, this shows
that a shaping term which requires forward kinematics and
precise 3D target information can be replaced without loss
of performance by a weakly-supervised shaping reward
resulting from learning simpler predecessor tasks. The
reason is that the objective of the task is defined by the
terminal sparse reward. The shaping term is used only to
get closer to good touching postures. When the terminal

rewards are back-propagated through the Q function to
all the trajectory states, the shaping term becomes small
compared to the Q values and therefore less important.

Fig. 4. Learning curves for the P1 problem

The results from policy exploitation show that we reach
the object with 100 % of successes for both policies for
300 test experiments. This shows that the residual errors at
the end of learning were only due to the exploration noise
applied to the policy.

B. P2

Figure 5 shows the results of training experiments for
the P2 problem. We still observe that, with our setting,
sparse rewards do not allow to efficiently learn a touching
policy. Furthermore, we observe again that our weakly-
supervised reward and its supervised counterpart give similar
performances. It means that with very different initial posi-
tions including those with difficult end-effector orientations,
the robot can learn to correctly orientate its end-effector
given a long-delayed sparse reward. In the test phase, we

Fig. 5. Learning curves for the P2 problem

observe 94,9 % and 95.4 % of success for the policy learned
with, respectively, rcam and rcart, which represent good and



comparable results. This shows that our reward signal with
very little supervision allows to learn a complex touching
task from different initial positions.

VI. CONCLUSION

For a complex palm-touching task, we have designed a
stage-wise learning procedure which does not require any
kinematic models, hand-crafted features, calibration param-
eters and needs minimal human supervision. Inspired by
developmental robotics, our approach involves three steps.
First, a binocular vision system learns to fixate an object.
This implicitly encodes the position of the object in the 3D
camera angle space, while requiring only an autoencoder pre-
training step. Second, by learning to fixate the end-effector
from its finger moves, the robot learns a hand-eye coordina-
tion function which maps robot joint angles to camera angles.
In a nutshell, from a given arm configuration, this function
allows to localize the end-effector in the 3D camera angle
space. Third, we compute the reward signal for the palm-
touching task by summing an informative shaping reward
computed with the previous steps and a sparse terminal
reward indicating the true objective of the task. This shaping
term encourages the end-effector to be close to the object in
the 3D camera angle space.

The experiments show that our reward signal allows to
learn complex touching policies, notably from various initial
positions. In addition, policies learned with our reward and
with a supervised counterpart reward give similar perfor-
mances. This shows that for this complex task, our reward
based on weak supervision can replace a reward based on
forward kinematics and object tracking.

One advantage of our framework is that it is suitable for
other types of manipulation tasks with different terminal
rewards such as object grasping or pushing. Indeed, our
shaping term is used to bring the robot closer to terminal
rewards. Thus, switching to another task just requires to
change the terminal sparse reward.

Even though our reward computation framework is based
on weak supervision, it still has a limitation regarding
autonomy. Indeed, even if the object fixation method hardly
requires external information, it cannot cope with environ-
ment changes in an online way. If the environment varies,
the autoencoder has to be trained again. In future work, we
wish to implement an object detection method which would
adapt to environment variations. Finally, we wish to learn
the same task in a real world setting.

REFERENCES

[1] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel,
“Deep spatial autoencoders for visuomotor learning,” in ICRA, 2016.

[2] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end Training
of Deep Visuomotor Policies,” J. Mach. Learn. Res., 2016.

[3] A. Ghadirzadeh, A. Maki, D. Kragic, and M. Björkman, “Deep
predictive policy training using reinforcement learning,” in IROS,
2017.

[4] Y. Chebotar, K. Hausman, M. Zhang, G. S. Sukhatme, S. Schaal,
and S. Levine, “Combining Model-Based and Model-Free Updates
for Trajectory-Centric Reinforcement Learning.” in ICML, 2017.

[5] M. P. Deisenroth, C. E. Rasmussen, and D. Fox, “Learning to Control a
Low-Cost Manipulator using Data-Efficient Reinforcement Learning.”
in Robotics: Science and Systems, 2011.

[6] S. Gu, E. Holly, T. P. Lillicrap, and S. Levine, “Deep reinforcement
learning for robotic manipulation with asynchronous off-policy up-
dates.” in ICRA, 2017.

[7] Y. Tsurumine, Y. Cui, E. Uchibe, and T. Matsubara, “Deep dynamic
policy programming for robot control with raw images.” in IROS,
2017.

[8] S. Levine, N. Wagener, and P. Abbeel, “Learning contact-rich manip-
ulation skills with guided policy search.” in ICRA, 2015.

[9] H. Hoffmann, W. Schenck, and R. Möller, “Learning visuomotor trans-
formations for gaze-control and grasping.” Biological Cybernetics,
2005.

[10] D. Carey, R. Coleman, and S. Della Salla, “Magnetic Misreaching,”
Cortex, 2018.

[11] K. Fischer, “A Theory of Cognitive Development: The Control and
Construction of Hierarchies of Skills,” Psychological Review, 1980.

[12] F. Nori, L. Natale, G. Sandini, and G. Metta, “Autonomous learning
of 3D reaching in a humanoid robot.” in IROS, 2007.

[13] J. Law, P. Shaw, M. Lee, and M. Sheldon, “From Saccades to
Grasping: A Model of Coordinated Reaching Through Simulated
Development on a Humanoid Robot,” IEEE Trans. on Autonomous
Mental Development, 2014.

[14] E. Chinellato, M. Antonelli, B. J. Grzyb, and A. P. del Pobil, “Implicit
Sensorimotor Mapping of the Peripersonal Space by Gazing and
Reaching,” IEEE Trans. on Autonomous Mental Development, 2011.

[15] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and
large-scale data collection,” Int. J. of Rob. Res., 2017.

[16] A. Boularias, J. A. D. Bagnell, and A. T. Stentz, “Learning to
Manipulate Unknown Objects in Clutter by Reinforcement,” in AAAI,
2015.

[17] M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda, “Purposive
Behavior Acquisition for a Real Robot by Vision-Based Reinforcement
Learning.” Machine Learning, 1996.

[18] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel,
“Reverse Curriculum Generation for Reinforcement Learning,” in
CoRL, 2017.

[19] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning.” in ICLR, 2016.

[20] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic Policy Gradient Algorithms,” in ICML, Beijing,
China, 2014.

[21] V. Mnih, K. Kavukcuoglu , D. Silver, A. Rusu Andrei, J. Veness, M.
Bellemare, A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski , S.
Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg , and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, 2015.

[22] M. J. Hausknecht and P. Stone, “Deep Reinforcement Learning in
Parameterized Action Space.” in ICLR, 2016.

[23] F. de La Bourdonnaye, C. Teulière, T. Chateau, and J. Triesch,
“Learning of binocular fixations using anomaly detection with deep
reinforcement learning.” in IJCNN, 2017.

[24] G. Metta and P. Fitzpatrick, “Early Integration of Vision and Manipu-
lation,” Adaptive Behavior special issue on Epigenetic Robotics, 2003.

[25] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[26] A. Rajeswaran, K. Lowrey, E. V. Todorov, and S. M. Kakade, “Towards
Generalization and Simplicity in Continuous Control,” in Advances in
NIPS, 2017.

[27] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for
Fast Feature Embedding,” in ACM, 2014.

[28] D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in ICLR, 2015.


