
HAL Id: hal-01913931
https://uca.hal.science/hal-01913931

Submitted on 12 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BSplines properties with Interval Analysis for Constraint
Satisfaction Problem: Application in robotics.

Rawan Kalawoun, Sebastien Lengagne, François Bouchon, Youcef Mezouar

To cite this version:
Rawan Kalawoun, Sebastien Lengagne, François Bouchon, Youcef Mezouar. BSplines properties with
Interval Analysis for Constraint Satisfaction Problem: Application in robotics.. 15th International
Conference on Intelligent Autonomous Systems IAS-15, Jun 2018, Baden-Baden, Germany. pp.490-
453, �10.1007/978-3-030-01370-7_39�. �hal-01913931�

https://uca.hal.science/hal-01913931
https://hal.archives-ouvertes.fr


BSplines properties with Interval Analysis for
Constraint Satisfaction Problem: Application in robotics

Rawan Kalawoun1,2, Sébastien Lengagne1,3, François Bouchon1,4, and Youcef
Mezouar1,2

1 CNRS, UMR 6602, Pascal Institute, 63171 Aubiére, France
2 SIGMA Clermont, Pascal Institute, BP10448, 63000 Clermont-Ferrand

3 Clermont-Auvergne University, Pascal Institute, BP10448, 63000 Clermont-Ferrand, France
4 Clermont-Auvergne University, Mathematical Laboratory, BP10448, 63000 Clermont-Ferrand

Abstract. Interval Analysis is a mathematical tool that could be used to solve
Constraint Satisfaction Problem. It guarantees solutions, and deals with uncer-
tainties. However, Interval Analysis suffers from an overestimation of the solu-
tions, i.e. the pessimism. In this paper, we initiate a new method to reduce the
pessimism based on the convex hull properties of BSplines and the Kronecker
product. To assess our method, we compute the feasible workspace of a 2D ma-
nipulator taking into account joint limits, stability and reachability constraints: a
classical Constraint Satisfaction Problem in robotics.

Keywords: Interval Analysis, pessimism, BSplines, Kronecker product, Con-
straint Satisfaction problem, robot, feasible workspace

1 Introduction

Solving Constraint Satisfaction Problem (CSP) comes down to compute the feasible
space of a set of variables that ensures a set of constraints. CSP has many applications
in robotics: they are used in planning [1], sequential manipulation planning [2], robot
control [3] and are applied to several tasks such as grasping, painting, stripping, etc. In
robotics, those constraints may be the robot kinematic and dynamic limits, or the ones
imposed by the desired task. Interval Analysis (IA) is a powerful mathematical tool that
solve CSP while dealing with uncertainties. In motion generation, it has been shown
that finding a new posture in the feasible space is faster than generating it explicitly: IA
is an efficient tool to find the feasible space [4]. In parameters estimations, IA ensures
the consistency of the results while dealing with some uncertainties [5].

The main drawback of IA is the pessimism, i.e. an overestimation of the solutions.
BSplines properties were already used to manage the pessimism in one dimensional
case [6]. This paper proposes a new inclusion function for multi-dimensional systems
that decreases the pessimism and the computation time using the convex hull property
of BSplines and Kronecker product. We assess our method on a reaching task of 2D
robot systems with 2, 3, 4 and 5 degrees of freedom while ensuring the system balance.

CSP is presented in Section 2. Section 3 introduces IA, its application in CSP, and
its drawback, i.e. the pessimism. Section 4 details the proposed approach to reduce
pessimism based on BSplines properties and the Kronecker product. Section 5 details



2

the technical implementation of our method. The performance of the proposed method
is evaluated using a 2D robot with 2, 3, 4, and 5 degrees of freedom in Section 6.

2 Problem Statement

CSP is a mathematical problem searching for a set of states or objects satisfying a
certain number of constraints or criteria. CSP could be defined as:

Find all q ∈ Q
such as ∀ j ∈ {1, . . . ,m} g j(q)≤ 0 (1)

Where:

– q = {q1, ...,qn} : the set of n variables.
– Q = {[q

1
: q1], ..., [qn

: qn]} ⊂ Rn: the set of variable domains defined by the mini-
mum and maximum values of each variable.

– g j(q): the j-th constraint equation.

In robotics, q could be the set of joint angles, or the joint trajectory parameters
[7], or even the feasible space with bounding errors [4], etc. Moreover, g j(q) could
be non-linear and a piecewise-defined function. It may refer to joint limits, the colli-
sion avoidance constraint, the balance constraint, the reachability of the end-effector or
manipulability criteria to avoid singularities.

To solve this CSP, four major algorithms can be used: backtracking, iterative im-
provement, consistency, and IA [8, 9]. Generally, the backtracking algorithm is imple-
mented using its recursive formulation. It can be related to a path in depth of a tree with
a constraint on the nodes: as soon as the condition is no longer filled on the current
node, the descent on this node is stopped. Iterative improvement algorithms start with
a random configuration of the problems and modify it to find the solution. It does not
assign an empty solution as an input to the algorithm. However, the consistency in CSP
is used to reduce the problem complexity by reducing the search space: it changes the
problem formulation in such a way the solutions remain the same. IA is used in CSP to
deal with uncertainties, it guarantees finding solutions and avoids the lack of them.

In robotics, CSP is facing inherent uncertainties in the mechanical structure of the
robot. Hence, IA is chosen to solve CSP since it deals with uncertainties and it ensures
the reliability [7].

3 Interval Analysis

3.1 Presentation

IA was initially developed to take into account the quantification errors introduced by
the floating point representation of real numbers with computers [10–12]. IA meth-
ods have been also used to solve optimization problems. Several works showed that
IA is competitive compared to the classic optimization solvers since it provides guar-
anteed solutions respecting the constraints [13–15]. Nowadays, IA is largely used in



3

robotics [16, 17]. Recent works use IA to compute robot trajectories and the guaranteed
explored zone by a robot [18–20].

Let us define an interval [a] = [a, ā] as a connected and closed subset of R, with a =
In f ([a]), ā = Sup([a]) and Mid([a]) = a+ā

2 . The set of all real intervals of R is denoted
by IR. Real arithmetic operations are extended to intervals. Consider an operator ◦ ∈
{+,−,∗,÷} and [a] and [b] two intervals. Then:

[a]◦ [b] = [in fu∈[a],v∈[b] u◦ v, supu∈[a],v∈[b] u◦ v] (2)

Consider a function m : Rn 7−→ Rm; the range of this function over an interval vector
[a] is given by:

m([a]) = {m(u) | u ∈ [a]} (3)

The interval function [m] : IRn 7−→ IRm is an inclusion function for m if:

∀[a] ∈ IRn, m([a])⊆ [m]([a]) (4)

An inclusion function of m is evaluated by replacing each occurrence of a real variable
by the corresponding interval and each standard function by its interval counterpart.
The resulting function is called the natural inclusion function.

3.2 Solving CSP using Interval Analysis

IA can be used to solve CSP as defined in Equation 1. Given input bounds, the algo-
rithm produces a subset of the input space that satisfies all the constraints. This subset
is defined as a set of small boxes. A combination between bisection and contraction
algorithms solves a CSP using IA. Those two operations are presented hereafter.

Bisection Bisection is an iterative process that decomposes the set of inputs into
smaller sets. It can be described as:

1. starting from the initial set q = Q,
2. the set of constraints g(q) is computed,
3. q is considered as a feasible box if: ∀ j, Sup(g j(q))≤ 0,
4. q is an infeasible box if: ∃ j such as In f (g j(q))≥ 0,
5. in the other case, i.e. ∃ j such as 0∈ g j(q), the current set q is considered as a maybe

feasible box and it is split into several sub-boxes qk. Step 2 is processed considering
each qk.

Those operations are repeated until the size of the sub-boxes is inferior to a defined
threshold.

Contraction Contraction is based on the filtering algorithm concept. It manipulates
the equation in order to propagate the constraints in two ways: from inputs to outputs
and from outputs to inputs. Thus, contraction defines a smaller subset of input boxes
respecting the different constraints. For instance, given three variables x ∈ [−∞,5], y ∈



4

[−∞,4] and z∈ [6,∞], and the constraint z = x+y, find the intervals of x, y, z respecting
this constraint [21]. One can process as follow:

z = x+ y⇒ z ∈ [z∩ (x+ y)]⇒ z ∈ [6,∞]∩ ([−∞,5]+ [−∞,4]) = [6,9]
x = z− y⇒ x ∈ [x∩ (z− y)]⇒ x ∈ [−∞,5]∩ ([6,9]− [−∞,4]) = [2,5]
y = z− x⇒ y ∈ [y∩ (z− x)]⇒ y ∈ [−∞,4]∩ ([6,9]− [2,5]) = [1,4]

Thus, by using contractors, the intervals of the variables become tighter: x ∈ [2,5],
y∈ [1,4] and z∈ [6,9]. Contractions generate three types of boxes exactly as bisections:
feasible box, infeasible box, and maybe feasible box.

Generally, a combination of contractions and bisections is used to solve CSP. Firstly,
contraction reduces the input boxes size. Then, bisection is applied and contraction is
called again until the dimension of the generated boxes is smaller than a threshold. This
method is the classic contraction/ bisection. It uses the inclusion function m during
contraction and bisection. Hence, it suffers from pessimism explained in Section 3.3. In
Section 4, we propose a new method to decrease pessimism.

3.3 The pessimism

The pessimism overestimates intervals: it produces intervals larger than the real ones.
For instance, consider the equation y = (x+1)2 with x∈ [−1,1]. Using this formulation
y = [0,4], but using the following expression y = x2 +2x+1, y = [−1,4]. Both results
are correct, but the solution range may be larger: this phenomena is called pessimism. It
is clear that the inclusion function performance depends on the mathematical expression
of m. Briefly, pessimism is an overestimation of the actual result. It is mainly caused
by the multi-occurrence of variables in equations [22, 23]. Each occurrence of the same
variable is considered as a different variable relying on the same interval. This article
uses BSplines and Kronecker product for the evaluation of the inclusion function in
order to reduce pessimism. We must note that decreasing pessimism means finding
tighter intervals, though, decreasing the total bisection number. The proposed method
to evaluate the inclusion function is shown in Section 4.

4 BSplines identification

BSplines properties were already used to tackle pessimism in one dimension: they are
tested on continuous constraints used to optimize robot motion [6]. In this paper, we
propose a generalization of this concept to multi-dimensional problems.

4.1 Definition and convex hull property

BSplines function is the weighted sum of several basis functions. It is defined by m
control points Pi and basis functions Bi. K is the order of the basis function Bi.

F(q) =
m

∑
i=1

BK
i (q)pi (5)



5

A BSplines curve is totally inside the convex hull of its control polyline [6]. This
property is obtained quite easily from the following definition of a basis function:

∀q ∈ [q,q] ∑
m
i=1 bK

i (q) = 1 (6)

This immediately yields:

∀i ∈ [1,m] F ≤ pi ≤ F ⇒∀q ∈ [q,q] F ≤ F(q)≤ F (7)

A conservative estimation of the bounds of F(q) is made based on the minimum and
the maximum of the control points. Thus, a bounding box of the considered function
can be computed. However, the control points of this function must be identified.

4.2 Multi-dimension BSplines

N-dimensional BSplines are functions defined as:

F(q) =
m1

∑
i=0

m2

∑
j=0

...
mn

∑
z=0

(
Bm1

i (q1)B
m2
j (q2)...Bmn

z (qn)
)
×Pi, j,...,z (8)

Where:

– q = {q1,q2, ...,qn} ∈ [Q]⊂ Rn,
– mi is the degree of the input qi,
– Bmi(qi) is the BSpline Basis function of degree mi relied to input qi,
– Pi, j,...,z are the Control Points grouped into vector P.

As in the one-dimensional case, the BSpline curve is entirely in the convex hull of its
control polyline:

∀q ∈ [Q] F(q) ∈ [min(P),max(P)] (9)

4.3 Control Point identification

One dimensional case Considering that all the functions can be described as a poly-
nomial expression of the input as done in [6], we have :

∀q ∈ [q,q] F(q) ∈
n

∑
i=0

ai×qi (10)

where {a0,a1, . . . ,an} ∈ Rn+1 are the coefficients of the polynomial. This equation can
be written as :

F(q) = [1,q, . . . ,qn]× [a0,a1, . . . ,an]
T (11)

and knowing the coefficients ai, the coefficients pi of the equivalent control point are
computed, such as:

F(q) = [1,q, . . . ,qn]×B× [p0, p1, . . . , pn]
T (12)

where B is a matrix that contains the polynomial parameters of the BSplines basis func-
tions. Therefore, we can compute the corresponding BSplines parameters as:

[p0, p1, . . . , pn]
T = B−1× [a0,a1, . . . ,an]

T (13)



6

N-dimensional case The same procedure can be applied to the N-dimensional case. Let
us note P the vector of the control points and X the vector of the polynomial coefficients.
P and X are related through the following equation:

P = B−1X (14)

Where B can be written as:

B= B1⊗B2⊗ . . .⊗Bi⊗ . . .⊗Bn (15)

Bi are matrices linking the control point to the coefficient of the polynomial expression
of the basis functions of input qi and ⊗ is the Kronecker product as defined hereafter.

4.4 Kronecker product

Definition The Kronecker product was firstly studied in the nineteenth century [24].
The Kronecker product of two matrices A∈Rn1,m1 and B∈Rn2,m2 is the matrix A⊗B∈
Rn1×n2,m1×m2 defined as follows:

A=

 a1,1 . . . a1,n1
...

...
...

am1,n1 . . . am1,n1

 A⊗B =


a1,1×B a1,2×B . . . a1,n1 ×B
a2,1×B a2,2×B . . . a2,n1 ×B

...
...

...
...

am1,1×B am1,2×B . . . am1,n1 ×B

 (16)

4.5 Properties of the Kronecker Product

More properties of the Kronecker product can be found in [25]. Here we focus on the
associative (Eq. 17) and the invertible (Eq. 18) properties :

A⊗ (B⊗C) = (A⊗B)⊗C (17)
(A⊗B)−1 = A−1⊗B−1 (18)

Using Equation (18), Equations (14) and (15) can be turned into :

P =
(
B−1

1 ⊗B−1
2 ⊗ . . .⊗B−1

n
)

X (19)

Assuming B∈Rx,x, with x = ∏
n
k=1 mi , the complexity of the inversion of the matrix

B in Equation (14) is O(x3). Using the invertible property, the complexity decreases to
O(x∑n m2

i ) where x = ∏n mi, that will allow faster computation. Hence, Equation (19)
is used to compute control points.

One can consider the following property relating matrix/vector multiplication and
the Kronecker product:

A.X = (I⊗A)X (20)

Where A is a matrix and X is a vector. Equation (20) is used to reduce computation time
as it will be explained hereafter.



7

4.6 Recursive Inverse Kronecker Product

Using Equation (20), Equation (19) could be written as following:

P =
(
B−1

1 ⊗B−1
2 ⊗ . . .⊗B−1

n
)

Xn

=
(
B−1

1 ⊗ . . .⊗B−1
n−1

)(
I⊗B−1

n
)

Xn

=
(
B−1

1 ⊗ . . .⊗B−1
n−1

)
Xn−1

With: Xn−1 =
(
I⊗B−1

n
)

Xn

(21)

This equation can be used recursively to reduce the computation time. Regarding the
low dimension of the matrix Bi, the inversion is done numerically. However, future
works will address this issue as presented in Section 7. As an example, consider two
matrices A ∈ R2×2 and B ∈ R2×2, and X = [X1,X2] ∈ R4 with {X1,X2} ⊂ R2, the fol-
lowing product can be computed such as:

(A⊗B)X =

[
a1,1.B.X1 +a1,2.B.X2
a2,1.B.X1 +a2,2.B.X2

]
(22)

Despite the multi-occurrence of B.X1 and B.X2, B.X1 and B.X2 are calculated only
once.Though, the computation time is decreased.

4.7 Example

As an example of the use of BSplines to reduce pessimism, let us consider

f (q1,q2) = 1−3q1−2q2 +4q1q2

with q1,q2 ∈ [−10,10]. Thus, we have X = [1,−3,−2,4]T and B1 =B2 =

[
0.5 0.5
−0.05 0.05

]
.

We can compute the equivalent control point using:

P =
(
B−1

1 ⊗B−1
2
)

X = [451,−389,−409,351]T (23)

Thus using our method, we can deduce that f ∈ [−409,451] whereas using the natural
inclusion functions we obtain f ∈ [−449,451]. Using a 3D plot of f , we can deduce
that f is limited between −409 and 451. Once can deduce that our method reduces
pessimism in this example. Hence, the proposed method allows to avoid or at least
reduce pessimism for n=2. Moreover, if the value of n increases, then the pessimism
will be more reduced: the multi-occurrence increases once n increases.

5 BSplines and Kronecker product in the contraction:

In this section, we present how to use the convex hull properties of BSplines and the
Recursive Inverse Kronecker Product in the contraction process. Starting from a given
box [q], the algorithm will perform the contraction on each constraint g j(q) while it does
not produce an empty set on the constraint or on one input. For each contraction, the
minimum and the maximum of each variable qi are evaluated, and tighter qi intervals
are found.



8

5.1 One constraint contraction

Let us consider a constraint g j(q)≤ 0, our goal is to find the set of q intervals respecting
this constraint. Let g j(q) be the expression of the constraint j and υ j be a new variable
initialized to [−∞,0] (since g j(q)≤ 0). We create an extended equation of this constraint
f j(q,υ j) such as:

f j(q,υ j) = g j(q)−υ j (24)

The contraction will be applied on the new polynomial f j(q,υ j). This polynomial is a
sum of many monomials µi. If we consider that the bounds of g j(q) can be found, using
B and X , through the minimum and maximum value of the vector P (Equation 14), thus
the bounds of f j(q,υ j) can be found by the minimum and maximum value of Pe such
as:

Pe = B−1
e Xe (25)

With :

Be = Bυ ⊗B (26)
Xe = [XT ,−1,0, . . . ,0]T (27)

With Bυ a 2×2 matrix since υ j is only of order 1 in Equation (24).
Considering xi the i− th element of vector Xe that corresponds to the coefficient of

the monomial µi of Equation 24, the bounds of the monomial µi can be computed, for
all xi 6= 0 using:

µi ∈ [In f (ρi);Sup(ρi)] (28)

with ρi =−
1
xi

(
B−1

e Xe,i
)

(29)

With Xe,i equals to Xe except for the i− th component that equals to zero.

5.2 Monomial contraction:

Considering a monomial µi = ∏∀k σi,k composed of the multiplication of several input
intervals [σi,k], if no input interval contains zero, the input interval can be contracted
thanks to:

[σi,k] = [σi,k]∩
[In f (ρi);Sup(ρi)]

∏∀k 6=i σi,k
(30)

The current input set will be considered as unfeasible if this intersection returns an
empty interval.

5.3 Implementation trick

The Recursive Inverse Kronecker Product requires a non negligible computation time,
and hence must be used in a smart way. Hence, instead of Equation 29, we rather im-
plement the following Equation:

ρi =−
1
xi

(
B−1

e Xe +B−1
e Xi

)
(31)



9

Considering Xi +Xe = Xe,i, the first part of the Equation (B−1
e Xe) is computed once for

all the monomials of the considered constraint, whereas the structure of Xi (only one
non-zero value) makes possible faster computation of B−1

e Xi.

5.4 How to deal with non linear functions ?

The proposed method assumes that the constraints can be formulated as polynomial
equations of the inputs. Nevertheless, robotics equations are generally non-linear (using
sine and cosine). Here we proposed to create intermediate inputs for cos(qi) and sin(qi).
Each time those intermediate inputs are contracted, they propagate the modification to
the input qi that re-propagate on cos(qi) and sin(qi).

6 Simulations and results

Fig. 1: Two dof Robot with a square surface in three different positions and a robot
stability margin

We tested our BSplines IA algorithm on 2D-robots with n degrees of freedom. The
feasible space of the joint values is computed using our method. Hence, a set of joints
boxes, i.e. intervals, of the robot respecting a set of constraints is defined. In this appli-
cation, the end-effector must be inside a square surface while the quasi-static balance of
the robot is guaranteed though the projection of the center of mass. We show the results
of the implementation of the proposed method for three different positions of the square
surface as presented in Figure 1, with a robot of 2, 3, 4 and 5 degrees of freedom for
each position. We consider the 2D robot with a total length of 2, with all the segment
of equal values (2/n) and equal mass, a root position in (0,0) and with all joint limits
of [−1.5,1.5]. The size of the desired square surface is 0.2 with two feasible positions
(0.2;1.7), (0.4;1.4) and one unfeasible position (0.6;1.1) (due to balance constraint).



10

The balance of the robot is considered by ensuring that the projection of its center of
mass remains in the interval [−0.1,0.1] (considering that the center of mass of each
segment is at the middle of the segment).

The surface reachability decision is based on the position of the end-effector. This
position is computed using a composition of transformation matrices. The transforma-

tion matrix of qi is defined by: Tqi =

 cos(qi) −sin(qi) βi
sin(qi) cos(qi) 0

0 0 1

 Where ∀i > 1,βi =
l
n

and β0 = 0, since the initial robot position is along y axis. Hence the position of the
end-effector Pf = (Tf (0,2), Tf (1,2)) Where Tf = Tπ/2Tq1 ...Tqi ...Tqn .

We assign 0.01 to the box threshold during the bisection process. We compare three
methods: the classic contraction with the bisection (Solver 1), the BSplines contraction
of the monomial that are composed only of input variables with the bisection (Solver
2), and the BSplines contraction of all the monomials in the constraints equations with
the bisection (Solver 3).

The number of iterations and the computation time required to find the feasible
workspace are shown in Figures 3a and 3b respectively, for a threshold of 0.01 and in
Figures 2a and 2b respectively, for a threshold of 0.1. The computing time required to
find the feasible workspace for a robot of 5 dof using a precision of 0.01 was very huge:
more than one week. Hence, we show the results of a robot with 1, 2, 3, and 4 dof for a
precision of 0.01.

For both threshold, the number of iterations using the BSplines contraction with
the bisection (Solver 2, 3) is smaller than the number of iterations in the state-of-the-art
method (Solver 1). Though, BSplines IA uses less number of bisections to find the robot
feasible workspace. Hence, our method decreases pessimism.

A comparison between the two solvers using the BSplines contraction (Solver 2
and 3) shows that (Solver 3) has lower number of iterations than (Solver 2). Though,
the contraction of each monomials of the constraint equation helps to reduce pessimism.
However, (Solver 3) is slower than (Solver 2), since doing better contractions requires
more computation time (see Figure 3b, 2b). It is clear that while increasing the accu-
racy (decreasing the threshold), our method (Solver 2) becomes faster than the classic
method (Solver 1). Hence the BSplines contraction/ bisection reduces pessimism, and
it is faster than the contraction/ bisection for high accuracy. We proposed two solvers
using BSplines contraction: Solver 2 is faster than Solver 3 and 1, but Solver 3 reduces
the pessimism more than Solver 2.

Tables 1 and 2 shows the number of iterations and the computing time required to
find the feasible space of our different problems for a precision of 0.01.

7 Conclusion and perspectives

In robotics, Constraint Satisfaction Problem is used to compute the feasible space of
the set of robot joint angles: this computation is still an open research domain. In this
paper, Interval Analysis is used to solve Constraint Satisfaction Problem based on bi-
section and contraction concept. This technique suffers from pessimism. Hence, we
propose a new way to represent the inclusion function that decreases pessimism. Our



11

(a) Iteration numbers (b) Computation time

Fig. 2: Iteration numbers and computation time of the three different solvers compared
to Solver 1 for a precision of 0.1
method is based on the convex hull properties of BSplines functions and the resolution
of an iterative Kronecker product. We assessed our method on different 2D cases and
emphasize that it decreases the number of iterations and it may decrease the compu-
tation time. In future works, we do believe that the computation time can be reduced
by solving the Kronecker inverse recursive product without inverting all the matrices.
In the current implementation used in this paper, the bisection process is performed by
splitting the largest input interval into two equal intervals. We plan to implement more
efficient bisection process by bisecting the input interval that has the most significant
impact on unsatisfied constraint. Eventually, the proposed method can be applied to
3D robot taking into account kinematic constraints such as collision and self-collision
avoidance and also singularity avoidance or more dynamic constraints such balance or
torque limits.

Position
Solver

DOF
2 3 4

1
1 1975 2288339 1356748167

2 1871 2032347 1086632883

3 1555 1771783 999374305

2
1 705 466451 737351907

2 681 397469 536515897

3 477 326615 488179609

3
1 21 74895 231273567

2 37 63129 152641419

3 29 52201 132694819

Table 1: The number of incrementation required to solve Position 1 problem using Solver 1,
Solver 2 and Solver 3/ PRECISION 0.01



12

(a) Iteration numbers (b) Computation time

Fig. 3: Iteration numbers and computation time of the three different solvers compared
to Solver 1 for a precision of 0.01

Position
Solver

DOF
2 3 4

1
1 0 / 00 : 00 : 0.05 0 / 00 : 03 : 39 4 / 14 : 39 : 57

2 0 / 00 : 00 : 0.04 0 / 00 : 01 : 51 2 / 00 : 02 : 09

3 0 / 00 : 00 : 0.04 0 / 00 : 01 : 58 3 / 01 : 50 : 30

2
1 0 / 00 : 00 : 0.02 0 / 00 : 00 : 43 2 / 12 : 11 : 18

2 0 / 00 : 00 : 0.01 0 / 00 : 00 : 21 1 / 00 : 02 : 35

3 0 / 00 : 00 : 0.01 0 / 00 : 00 : 22 1 / 13 : 14 : 06

3
1 0 / 00 : 00 : 0.0005 0 / 00 : 00 : 07 0 / 19 : 08 : 45

2 0 / 00 : 00 : 0.0007 0 / 00 : 00 : 03 0 / 07 : 02 : 04

3 0 / 00 : 00 : 0.0007 0 / 00 : 00 : 035 0 / 10 : 47 : 06

Table 2: The time (in days / HH:MM:SS) required to solve Position 1 problem using Solver 1,
Solver 2 and Solver 3/ PRECISION 0.01

References

1. N. N. W. Tay, A. A. Saputra, J. Botzheim, and N. Kubota, “Service robot planning via solving
constraint satisfaction problem,” ROBOMECH Journal, vol. 3, no. 1, p. 17, 2016.

2. T. Lozano-Pérez and L. P. Kaelbling, “A constraint-based method for solving sequential ma-
nipulation planning problems,” in 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sept 2014, pp. 3684–3691.

3. M. P. Fromherz, T. Hogg, Y. Shang, and W. B. Jackson, “Modular robot control and con-
tinuous constraint satisfaction,” in Proc. IJCAI-01 Workshop on Modelling and Solving
Problems with Constraints, 2001, pp. 47–56.

4. S. Lengagne, N. Ramdani, and P. Fraisse, “Planning and fast replanning safe motions for
humanoid robots,” IEEE Transactions on Robotics, vol. 27, no. 6, pp. 1095 –1106, dec. 2011.

5. L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis with Examples in
Parameter and State Estimation, Robust Control and Robotics. Springer London Ltd, Aug.
2001.



13

6. S. Lengagne, J. Vaillant, E. Yoshida, and A. Kheddar, “Generation of Whole-body Optimal
Dynamic Multi-Contact Motions,” The International Journal of Robotics Research, p. 17,
Apr. 2013.

7. J.-P. Merlet, “Interval analysis and reliability in robotics,” International Journal of Reliability
and Safety, vol. 3, no. 1-3, pp. 104–130, 2009.

8. M. Yokoo and K. Hirayama, “Algorithms for distributed constraint satisfaction: A review,”
Autonomous Agents and Multi-Agent Systems, vol. 3, no. 2, pp. 185–207, Jun 2000.

9. E. Gelle and B. Faltings, “Solving mixed and conditional constraint satisfaction problems,”
Constraints, vol. 8, no. 2, pp. 107–141, 2003.

10. T. Sunaga, “Theory of interval algebra and its application to numerical analysis,” RAAG
Memoirs, Ggujutsu Bunken Fukuy-kai, vol. 2, pp. 547–564, 1958.

11. R. E. Moore and F. Bierbaum, Methods and Applications of Interval Analysis (SIAM Studies
in Applied and Numerical Mathematics) (Siam Studies in Applied Mathematics, 2.). Soc
for Industrial & Applied Math, 1979.

12. A. Neumaier, Interval methods for systems of equations. Cambridge: Cambridge university
press, 1990.

13. C. Pérez-Galván and I. D. L. Bogle, “Global optimisation for dynamic systems using interval
analysis,” Computers and Chemical Engineering, 2017.

14. C. Jiang, X. Han, F. Guan, and Y. Li, “An uncertain structural optimization method based
on nonlinear interval number programming and interval analysis method,” Engineering
Structures, vol. 29, no. 11, pp. 3168 – 3177, 2007.

15. H. Ma, S. Xu, and Y. Liang, “Global optimization of fuel consumption in j2 rendezvous using
interval analysis,” Advances in Space Research, vol. 59, no. 6, pp. 1577 – 1598, 2017.

16. J. P. Merlet, Interval Analysis and Robotics. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 147–156.

17. L. Jaulin, “Interval analysis and robotics,” in SCAN’12, Novosibirsk, Russia, 2012.
18. S. Rohou, L. Jaulin, L. Mihaylova, F. Le Bars, and S. M. Veres, “Guaranteed computation of

robot trajectories,” Robotics and Autonomous Systems, vol. 93, pp. 76–84, 2017.
19. B. Desrochers and L. Jaulin, “Minkowski operations of sets with application to robot local-

ization,” SNR’2017, Uppsala., 2017.
20. D. Benoît and J. Luc, “Computing a guaranteed approximation of the zone explored by a

robot,” IEEE Transactions on Automatic Control, vol. 62, no. 1, pp. 425–430, 2017.
21. F. Le Bars, A. Bertholom, J. Sliwka, and L. Jaulin, “Interval SLAM for underwater robots; a

new experiment,” in NOLCOS 2010, France, Sep. 2010, p. XX.
22. J. Wu, “Uncertainty analysis and optimization by using the orthogonal polynomials,” Ph.D.

dissertation, 2015.
23. L. Netz, “Using horner schemes to improve the efficiency and precision of interval constraint

propagation,” 2015.
24. K. Schäcke, “On the kronecker product,” 2013.
25. C. F. Loan, “The ubiquitous kronecker product,” Journal of Computational and Applied

Mathematics, vol. 123, no. 1, pp. 85 – 100, 2000, numerical Analysis 2000. Vol. III: Lin-
ear Algebra.


