Rawan Kalawoun

Sébastien Lengagne

François Bouchon

Youcef Mezouar

BSplines properties with Interval Analysis for Constraint Satisfaction Problem: Application in robotics

Keywords: Interval Analysis, pessimism, BSplines, Kronecker product, Constraint Satisfaction problem, robot, feasible workspace

Interval Analysis is a mathematical tool that could be used to solve Constraint Satisfaction Problem. It guarantees solutions, and deals with uncertainties. However, Interval Analysis suffers from an overestimation of the solutions, i.e. the pessimism. In this paper, we initiate a new method to reduce the pessimism based on the convex hull properties of BSplines and the Kronecker product. To assess our method, we compute the feasible workspace of a 2D manipulator taking into account joint limits, stability and reachability constraints: a classical Constraint Satisfaction Problem in robotics.

Introduction

Solving Constraint Satisfaction Problem (CSP) comes down to compute the feasible space of a set of variables that ensures a set of constraints. CSP has many applications in robotics: they are used in planning [START_REF] Tay | Service robot planning via solving constraint satisfaction problem[END_REF], sequential manipulation planning [START_REF] Lozano-Pérez | A constraint-based method for solving sequential manipulation planning problems[END_REF], robot control [START_REF] Fromherz | Modular robot control and continuous constraint satisfaction[END_REF] and are applied to several tasks such as grasping, painting, stripping, etc. In robotics, those constraints may be the robot kinematic and dynamic limits, or the ones imposed by the desired task. Interval Analysis (IA) is a powerful mathematical tool that solve CSP while dealing with uncertainties. In motion generation, it has been shown that finding a new posture in the feasible space is faster than generating it explicitly: IA is an efficient tool to find the feasible space [START_REF] Lengagne | Planning and fast replanning safe motions for humanoid robots[END_REF]. In parameters estimations, IA ensures the consistency of the results while dealing with some uncertainties [START_REF] Jaulin | Applied Interval Analysis with Examples in Parameter and State Estimation[END_REF].

The main drawback of IA is the pessimism, i.e. an overestimation of the solutions. BSplines properties were already used to manage the pessimism in one dimensional case [START_REF] Lengagne | Generation of Whole-body Optimal Dynamic Multi-Contact Motions[END_REF]. This paper proposes a new inclusion function for multi-dimensional systems that decreases the pessimism and the computation time using the convex hull property of BSplines and Kronecker product. We assess our method on a reaching task of 2D robot systems with 2, 3, 4 and 5 degrees of freedom while ensuring the system balance.

CSP is presented in Section 2. Section 3 introduces IA, its application in CSP, and its drawback, i.e. the pessimism. Section 4 details the proposed approach to reduce pessimism based on BSplines properties and the Kronecker product. Section 5 details the technical implementation of our method. The performance of the proposed method is evaluated using a 2D robot with 2, 3, 4, and 5 degrees of freedom in Section 6.

Problem Statement

CSP is a mathematical problem searching for a set of states or objects satisfying a certain number of constraints or criteria. CSP could be defined as: Find all q ∈ Q such as ∀ j ∈ {1, . . . , m} g j (q) ≤ 0

(1)

Where:

q = {q 1 , ..., q n } : the set of n variables.

-Q = {[q 1 : q 1], ..., [q n : q n]} ⊂ R n : the set of variable domains defined by the minimum and maximum values of each variable. g j (q): the j-th constraint equation.

In robotics, q could be the set of joint angles, or the joint trajectory parameters [START_REF] Merlet | Interval analysis and reliability in robotics[END_REF], or even the feasible space with bounding errors [START_REF] Lengagne | Planning and fast replanning safe motions for humanoid robots[END_REF], etc. Moreover, g j (q) could be non-linear and a piecewise-defined function. It may refer to joint limits, the collision avoidance constraint, the balance constraint, the reachability of the end-effector or manipulability criteria to avoid singularities.

To solve this CSP, four major algorithms can be used: backtracking, iterative improvement, consistency, and IA [START_REF] Yokoo | Algorithms for distributed constraint satisfaction: A review[END_REF][START_REF] Gelle | Solving mixed and conditional constraint satisfaction problems[END_REF]. Generally, the backtracking algorithm is implemented using its recursive formulation. It can be related to a path in depth of a tree with a constraint on the nodes: as soon as the condition is no longer filled on the current node, the descent on this node is stopped. Iterative improvement algorithms start with a random configuration of the problems and modify it to find the solution. It does not assign an empty solution as an input to the algorithm. However, the consistency in CSP is used to reduce the problem complexity by reducing the search space: it changes the problem formulation in such a way the solutions remain the same. IA is used in CSP to deal with uncertainties, it guarantees finding solutions and avoids the lack of them.

In robotics, CSP is facing inherent uncertainties in the mechanical structure of the robot. Hence, IA is chosen to solve CSP since it deals with uncertainties and it ensures the reliability [START_REF] Merlet | Interval analysis and reliability in robotics[END_REF].

Interval Analysis

Presentation

IA was initially developed to take into account the quantification errors introduced by the floating point representation of real numbers with computers [START_REF] Sunaga | Theory of interval algebra and its application to numerical analysis[END_REF][START_REF] Moore | Methods and Applications of Interval Analysis[END_REF][START_REF] Neumaier | Interval methods for systems of equations[END_REF]. IA methods have been also used to solve optimization problems. Several works showed that IA is competitive compared to the classic optimization solvers since it provides guaranteed solutions respecting the constraints [START_REF] Pérez-Galván | Global optimisation for dynamic systems using interval analysis[END_REF][START_REF] Jiang | An uncertain structural optimization method based on nonlinear interval number programming and interval analysis method[END_REF][START_REF] Ma | Global optimization of fuel consumption in j2 rendezvous using interval analysis[END_REF]. Nowadays, IA is largely used in robotics [START_REF] Merlet | Interval Analysis and Robotics[END_REF][START_REF] Jaulin | Interval analysis and robotics[END_REF]. Recent works use IA to compute robot trajectories and the guaranteed explored zone by a robot [START_REF] Rohou | Guaranteed computation of robot trajectories[END_REF][START_REF] Desrochers | Minkowski operations of sets with application to robot localization[END_REF][START_REF] Benoît | Computing a guaranteed approximation of the zone explored by a robot[END_REF].

Let us define an interval [a] = [a, ā] as a connected and closed subset of R, with a = In f ([a]), ā = Sup([a]) and Mid([a]) = a+ ā 2 . The set of all real intervals of R is denoted by IR. Real arithmetic operations are extended to intervals. Consider an operator • ∈ {+, -, * , ÷} and [a] and [b] two intervals. Then:

[a] • [b] = [in f u∈[a],v∈[b] u • v, sup u∈[a],v∈[b] u • v] (2)
Consider a function m : R n -→ R m ; the range of this function over an interval vector [a] is given by:

m([a]) = {m(u) | u ∈ [a]} (3)
The interval function [m] : IR n -→ IR m is an inclusion function for m if:

∀[a] ∈ IR n , m([a]) ⊆ [m]([a]) (4)
An inclusion function of m is evaluated by replacing each occurrence of a real variable by the corresponding interval and each standard function by its interval counterpart. The resulting function is called the natural inclusion function.

Solving CSP using Interval Analysis

IA can be used to solve CSP as defined in Equation 1. Given input bounds, the algorithm produces a subset of the input space that satisfies all the constraints. This subset is defined as a set of small boxes. A combination between bisection and contraction algorithms solves a CSP using IA. Those two operations are presented hereafter.

Bisection Bisection is an iterative process that decomposes the set of inputs into smaller sets. It can be described as:

1. starting from the initial set q = Q, 2. the set of constraints g(q) is computed, 3. q is considered as a feasible box if: ∀ j, Sup(g j (q)) ≤ 0, 4. q is an infeasible box if: ∃ j such as In f (g j (q)) ≥ 0, 5. in the other case, i.e. ∃ j such as 0 ∈ g j (q), the current set q is considered as a maybe feasible box and it is split into several sub-boxes q k . Step 2 is processed considering each q k .

Those operations are repeated until the size of the sub-boxes is inferior to a defined threshold.

Contraction Contraction is based on the filtering algorithm concept. It manipulates the equation in order to propagate the constraints in two ways: from inputs to outputs and from outputs to inputs. Thus, contraction defines a smaller subset of input boxes respecting the different constraints. For instance, given three variables

x ∈ [-∞, 5], y ∈ [-∞, 4] and z ∈ [6, ∞],
and the constraint z = x + y, find the intervals of x, y, z respecting this constraint [START_REF] Bars | Interval SLAM for underwater robots; a new experiment[END_REF]. One can process as follow:

z = x + y ⇒ z ∈ [z ∩ (x + y)] ⇒ z ∈ [6, ∞] ∩ ([-∞, 5] + [-∞, 4]) = [6, 9] x = z -y ⇒ x ∈ [x ∩ (z -y)] ⇒ x ∈ [-∞, 5] ∩ ([6, 9] -[-∞, 4]) = [2, 5] y = z -x ⇒ y ∈ [y ∩ (z -x)] ⇒ y ∈ [-∞, 4] ∩ ([6, 9] -[2, 5]) = [1, 4]
Thus, by using contractors, the intervals of the variables become tighter: Generally, a combination of contractions and bisections is used to solve CSP. Firstly, contraction reduces the input boxes size. Then, bisection is applied and contraction is called again until the dimension of the generated boxes is smaller than a threshold. This method is the classic contraction/ bisection. It uses the inclusion function m during contraction and bisection. Hence, it suffers from pessimism explained in Section 3.3. In Section 4, we propose a new method to decrease pessimism.

x ∈ [2, 5], y ∈ [1,

The pessimism

The pessimism overestimates intervals: it produces intervals larger than the real ones. For instance, consider the equation y [START_REF] Lengagne | Planning and fast replanning safe motions for humanoid robots[END_REF]. Both results are correct, but the solution range may be larger: this phenomena is called pessimism. It is clear that the inclusion function performance depends on the mathematical expression of m. Briefly, pessimism is an overestimation of the actual result. It is mainly caused by the multi-occurrence of variables in equations [START_REF] Wu | Uncertainty analysis and optimization by using the orthogonal polynomials[END_REF][START_REF] Netz | Using horner schemes to improve the efficiency and precision of interval constraint propagation[END_REF]. Each occurrence of the same variable is considered as a different variable relying on the same interval. This article uses BSplines and Kronecker product for the evaluation of the inclusion function in order to reduce pessimism. We must note that decreasing pessimism means finding tighter intervals, though, decreasing the total bisection number. The proposed method to evaluate the inclusion function is shown in Section 4.

= (x + 1) 2 with x ∈ [-1, 1]. Using this formulation y = [0, 4], but using the following expression y = x 2 + 2x + 1, y = [-1,

BSplines identification

BSplines properties were already used to tackle pessimism in one dimension: they are tested on continuous constraints used to optimize robot motion [START_REF] Lengagne | Generation of Whole-body Optimal Dynamic Multi-Contact Motions[END_REF]. In this paper, we propose a generalization of this concept to multi-dimensional problems.

Definition and convex hull property

BSplines function is the weighted sum of several basis functions. It is defined by m control points P i and basis functions B i . K is the order of the basis function B i .

F(q) = m ∑ i=1 B K i (q)p i (5)
A BSplines curve is totally inside the convex hull of its control polyline [START_REF] Lengagne | Generation of Whole-body Optimal Dynamic Multi-Contact Motions[END_REF]. This property is obtained quite easily from the following definition of a basis function:

∀q ∈ [q, q] ∑ m i=1 b K i (q) = 1 (6)
This immediately yields:

∀i ∈ [1, m] F ≤ p i ≤ F ⇒ ∀q ∈ [q, q] F ≤ F(q) ≤ F (7)
A conservative estimation of the bounds of F(q) is made based on the minimum and the maximum of the control points. Thus, a bounding box of the considered function can be computed. However, the control points of this function must be identified.

Multi-dimension BSplines

N-dimensional BSplines are functions defined as:

F(q) = m 1 ∑ i=0 m 2 ∑ j=0 ... m n ∑ z=0 B m 1 i (q 1)B m 2 j (q 2)...B m n z (q n) × P i, j,...,z (8)
Where:

-q = {q 1 , q 2 , ..., q n } ∈ [Q] ⊂ R n ,
m i is the degree of the input q i , -B m i (q i) is the BSpline Basis function of degree m i relied to input q i , -P i, j,..., z are the Control Points grouped into vector P.

As in the one-dimensional case, the BSpline curve is entirely in the convex hull of its control polyline: ∀q ∈ [Q] F(q) ∈ [min(P), max(P)] (9)

Control Point identification

One dimensional case Considering that all the functions can be described as a polynomial expression of the input as done in [START_REF] Lengagne | Generation of Whole-body Optimal Dynamic Multi-Contact Motions[END_REF], we have :

∀q ∈ [q, q] F(q) ∈ n ∑ i=0 a i × q i (10
)
where {a 0 , a 1 , . . . , a n } ∈ R n+1 are the coefficients of the polynomial. This equation can be written as :

F(q) = [1, q, . . . , q n] × [a 0 , a 1 , . . . , a n] T (11)
and knowing the coefficients a i , the coefficients p i of the equivalent control point are computed, such as:

F(q) = [1, q, . . . , q n] × B × [p 0 , p 1 , . . . , p n] T (12
)
where B is a matrix that contains the polynomial parameters of the BSplines basis functions. Therefore, we can compute the corresponding BSplines parameters as:

[p 0 , p 1 , . . . , p n] T = B -1 × [a 0 , a 1 , . . . , a n] T (13)
N-dimensional case The same procedure can be applied to the N-dimensional case. Let us note P the vector of the control points and X the vector of the polynomial coefficients. P and X are related through the following equation:

P = B -1 X (14)
Where B can be written as:

B = B 1 ⊗ B 2 ⊗ . . . ⊗ B i ⊗ . . . ⊗ B n (15)
B i are matrices linking the control point to the coefficient of the polynomial expression of the basis functions of input q i and ⊗ is the Kronecker product as defined hereafter.

Kronecker product

Definition The Kronecker product was firstly studied in the nineteenth century [START_REF] Schäcke | On the kronecker product[END_REF]. The Kronecker product of two matrices A ∈ R n 1 ,m 1 and B ∈ R n 2 ,m 2 is the matrix A ⊗ B ∈ R n 1 ×n 2 ,m 1 ×m 2 defined as follows:

A =    a 1,1 . . . a 1,n 1 a m 1 ,n 1 . . . a m 1 ,n 1    A ⊗ B =      a 1,1 × B a 1,2 × B . . . a 1,n 1 × B a 2,1 × B a 2,2 × B . . . a 2,n 1 × B a m 1 ,1 × B a m 1 ,2 × B . . . a m 1 ,n 1 × B      (16)

Properties of the Kronecker Product

More properties of the Kronecker product can be found in [START_REF] Loan | The ubiquitous kronecker product[END_REF]. Here we focus on the associative (Eq. 17) and the invertible (Eq. 18) properties :

A ⊗ (B ⊗C) = (A ⊗ B) ⊗C (17) (A ⊗ B) -1 = A -1 ⊗ B -1 (18)
Using Equation [START_REF] Rohou | Guaranteed computation of robot trajectories[END_REF], Equations (14) and (15) can be turned into :

P = B -1 1 ⊗ B -1 2 ⊗ . . . ⊗ B -1 n X (19)
Assuming B ∈ R x,x , with x = ∏ n k=1 m i , the complexity of the inversion of the matrix B in Equation (14) is O(x 3). Using the invertible property, the complexity decreases to O(x ∑ n m 2 i) where x = ∏ n m i , that will allow faster computation. Hence, Equation (19) is used to compute control points.

One can consider the following property relating matrix/vector multiplication and the Kronecker product:

A.X = (I ⊗ A)X (20
)
Where A is a matrix and X is a vector. Equation (20) is used to reduce computation time as it will be explained hereafter.

Recursive Inverse Kronecker Product

Using Equation [START_REF] Benoît | Computing a guaranteed approximation of the zone explored by a robot[END_REF], Equation (19) could be written as following:

P = B -1 1 ⊗ B -1 2 ⊗ . . . ⊗ B -1 n X n = B -1 1 ⊗ . . . ⊗ B -1 n-1 I ⊗ B -1 n X n = B -1 1 ⊗ . . . ⊗ B -1 n-1 X n-1 With: X n-1 = I ⊗ B -1 n X n (21)
This equation can be used recursively to reduce the computation time. Regarding the low dimension of the matrix B i , the inversion is done numerically. However, future works will address this issue as presented in Section 7. As an example, consider two matrices A ∈ R 2×2 and B ∈ R 2×2 , and

X = [X 1 , X 2] ∈ R 4 with {X 1 , X 2 } ⊂ R 2 ,
the following product can be computed such as:

(A ⊗ B)X = a 1,1 .B.X 1 + a 1,2 .B.X 2 a 2,1 .B.X 1 + a 2,2 .B.X 2 (22)
Despite the multi-occurrence of B.X 1 and B.X 2 , B.X 1 and B.X 2 are calculated only once.Though, the computation time is decreased.

Example

As an example of the use of BSplines to reduce pessimism, let us consider f (q 1 , q 2) = 1 -3q 1 -2q 2 + 4q 1 q 2 with q 1 , q 2 ∈ [-10, 10]. Thus, we have X = [1, -3, -2, 4] T and B 1 = B 2 = 0.5 0.5 -0.05 0.05 .

We can compute the equivalent control point using:

P = B -1 1 ⊗ B -1 2 X = [451, -389, -409, 351] T (23)
Thus using our method, we can deduce that f ∈ [-409, 451] whereas using the natural inclusion functions we obtain f ∈ [-449, 451]. Using a 3D plot of f , we can deduce that f is limited between -409 and 451. Once can deduce that our method reduces pessimism in this example. Hence, the proposed method allows to avoid or at least reduce pessimism for n=2. Moreover, if the value of n increases, then the pessimism will be more reduced: the multi-occurrence increases once n increases.

BSplines and Kronecker product in the contraction:

In this section, we present how to use the convex hull properties of BSplines and the Recursive Inverse Kronecker Product in the contraction process. Starting from a given box [q], the algorithm will perform the contraction on each constraint g j (q) while it does not produce an empty set on the constraint or on one input. For each contraction, the minimum and the maximum of each variable q i are evaluated, and tighter q i intervals are found.

One constraint contraction

Let us consider a constraint g j (q) ≤ 0, our goal is to find the set of q intervals respecting this constraint. Let g j (q) be the expression of the constraint j and υ j be a new variable initialized to [-∞, 0] (since g j (q) ≤ 0). We create an extended equation of this constraint f j (q, υ j) such as:

f j (q, υ j) = g j (q) -υ j (24
)
The contraction will be applied on the new polynomial f j (q, υ j). This polynomial is a sum of many monomials µ i . If we consider that the bounds of g j (q) can be found, using B and X, through the minimum and maximum value of the vector P (Equation 14), thus the bounds of f j (q, υ j) can be found by the minimum and maximum value of P e such as:

P e = B -1 e X e (25)
With :

B e = B υ ⊗ B (26) X e = [X T , -1, 0, . . . , 0] T (27)
With B υ a 2 × 2 matrix since υ j is only of order 1 in Equation (24). Considering x i the ith element of vector X e that corresponds to the coefficient of the monomial µ i of Equation 24, the bounds of the monomial µ i can be computed, for all x i = 0 using:

µ i ∈ [In f (ρ i); Sup(ρ i)] (28)
with

ρ i = - 1 x i B -1 e X e,i (29)
With X e,i equals to X e except for the ith component that equals to zero.

Monomial contraction:

Considering a monomial µ i = ∏ ∀k σ i,k composed of the multiplication of several input intervals [σ i,k], if no input interval contains zero, the input interval can be contracted thanks to:

[σ i,k] = [σ i,k] ∩ [In f (ρ i); Sup(ρ i)] ∏ ∀k =i σ i,k (30)
The current input set will be considered as unfeasible if this intersection returns an empty interval.

Implementation trick

The Recursive Inverse Kronecker Product requires a non negligible computation time, and hence must be used in a smart way. Hence, instead of Equation 29, we rather implement the following Equation:

ρ i = - 1 x i B -1 e X e + B -1 e X i (31)
Considering X i + X e = X e,i , the first part of the Equation (B -1 e X e) is computed once for all the monomials of the considered constraint, whereas the structure of X i (only one non-zero value) makes possible faster computation of B -1 e X i .

How to deal with non linear functions ?

The proposed method assumes that the constraints can be formulated as polynomial equations of the inputs. Nevertheless, robotics equations are generally non-linear (using sine and cosine). Here we proposed to create intermediate inputs for cos(q i) and sin(q i).

Each time those intermediate inputs are contracted, they propagate the modification to the input q i that re-propagate on cos(q i) and sin(q i).

Simulations and results

Fig. 1: Two dof Robot with a square surface in three different positions and a robot stability margin

We tested our BSplines IA algorithm on 2D-robots with n degrees of freedom. The feasible space of the joint values is computed using our method. Hence, a set of joints boxes, i.e. intervals, of the robot respecting a set of constraints is defined. In this application, the end-effector must be inside a square surface while the quasi-static balance of the robot is guaranteed though the projection of the center of mass. We show the results of the implementation of the proposed method for three different positions of the square surface as presented in Figure 1, with a robot of 2, 3, 4 and 5 degrees of freedom for each position. We consider the 2D robot with a total length of 2, with all the segment of equal values (2/n) and equal mass, a root position in (0,0) and with all joint limits of [-1.5, 1.5]. The size of the desired square surface is 0.2 with two feasible positions (0.2; 1.7), (0.4; 1.4) and one unfeasible position (0.6; 1.1) (due to balance constraint).

The balance of the robot is considered by ensuring that the projection of its center of mass remains in the interval [-0.1, 0.1] (considering that the center of mass of each segment is at the middle of the segment).

The surface reachability decision is based on the position of the end-effector. This position is computed using a composition of transformation matrices. The transformation matrix of q i is defined by: T q i =   cos(q i) -sin(q i) β i sin(q i) cos(q i) 0 0 0 1

  Where ∀i > 1, β i = l n
and β 0 = 0, since the initial robot position is along y axis. Hence the position of the end-effector P f = (T f (0,2), T f (1,2)) Where T f = T π/2 T q 1 ...T q i ...T q n . We assign 0.01 to the box threshold during the bisection process. We compare three methods: the classic contraction with the bisection (Solver 1), the BSplines contraction of the monomial that are composed only of input variables with the bisection (Solver 2), and the BSplines contraction of all the monomials in the constraints equations with the bisection (Solver 3).

The number of iterations and the computation time required to find the feasible workspace are shown in Figures 3a and3b respectively, for a threshold of 0.01 and in Figures 2a and2b respectively, for a threshold of 0.1. The computing time required to find the feasible workspace for a robot of 5 dof using a precision of 0.01 was very huge: more than one week. Hence, we show the results of a robot with 1, 2, 3, and 4 dof for a precision of 0.01.

For both threshold, the number of iterations using the BSplines contraction with the bisection (Solver 2, 3) is smaller than the number of iterations in the state-of-the-art method (Solver 1). Though, BSplines IA uses less number of bisections to find the robot feasible workspace. Hence, our method decreases pessimism.

A comparison between the two solvers using the BSplines contraction (Solver 2 and 3) shows that (Solver 3) has lower number of iterations than (Solver 2). Though, the contraction of each monomials of the constraint equation helps to reduce pessimism. However, (Solver 3) is slower than (Solver 2), since doing better contractions requires more computation time (see Figure 3b,2b). It is clear that while increasing the accuracy (decreasing the threshold), our method (Solver 2) becomes faster than the classic method (Solver 1). Hence the BSplines contraction/ bisection reduces pessimism, and it is faster than the contraction/ bisection for high accuracy. We proposed two solvers using BSplines contraction: Solver 2 is faster than Solver 3 and 1, but Solver 3 reduces the pessimism more than Solver 2.

Tables 1 and2 shows the number of iterations and the computing time required to find the feasible space of our different problems for a precision of 0.01.

Conclusion and perspectives

In robotics, Constraint Satisfaction Problem is used to compute the feasible space of the set of robot joint angles: this computation is still an open research domain. In this paper, Interval Analysis is used to solve Constraint Satisfaction Problem based on bisection and contraction concept. This technique suffers from pessimism. Hence, we propose a new way to represent the inclusion function that decreases pessimism. Our to Solver 1 for a precision of 0.1 method is based on the convex hull properties of BSplines functions and the resolution of an iterative Kronecker product. We assessed our method on different 2D cases and emphasize that it decreases the number of iterations and it may decrease the computation time. In future works, we do believe that the computation time can be reduced by solving the Kronecker inverse recursive product without inverting all the matrices. In the current implementation used in this paper, the bisection process is performed by splitting the largest input interval into two equal intervals. We plan to implement more efficient bisection process by bisecting the input interval that has the most significant impact on unsatisfied constraint. Eventually, the proposed method can be applied to 3D robot taking into account kinematic constraints such as collision and self-collision avoidance and also singularity avoidance or more dynamic constraints such balance or torque limits.

Position Solver DOF

Fig. 2 :

 2 Fig.2: Iteration numbers and computation time of the three different solvers compared to Solver 1 for a precision of 0.1 method is based on the convex hull properties of BSplines functions and the resolution of an iterative Kronecker product. We assessed our method on different 2D cases and emphasize that it decreases the number of iterations and it may decrease the computation time. In future works, we do believe that the computation time can be reduced by solving the Kronecker inverse recursive product without inverting all the matrices. In the current implementation used in this paper, the bisection process is performed by splitting the largest input interval into two equal intervals. We plan to implement more efficient bisection process by bisecting the input interval that has the most significant impact on unsatisfied constraint. Eventually, the proposed method can be applied to 3D robot taking into account kinematic constraints such as collision and self-collision avoidance and also singularity avoidance or more dynamic constraints such balance or torque limits.

Fig. 3 :

 3 Fig. 3: Iteration numbers and computation time of the three different solvers compared to Solver 1 for a precision of 0.01

 4] and z ∈[START_REF] Lengagne | Generation of Whole-body Optimal Dynamic Multi-Contact Motions[END_REF][START_REF] Gelle | Solving mixed and conditional constraint satisfaction problems[END_REF]. Contractions generate three types of boxes exactly as bisections: feasible box, infeasible box, and maybe feasible box.

Table 1 :

 1 The number of incrementation required to solve Position 1 problem using Solver 1, Solver 2 and Solver 3/ PRECISION 0.01

(a) Iteration numbers (b) Computation time

Table 2 :

 2 The time (in days / HH:MM:SS) required to solve Position 1 problem using Solver 1, Solver 2 and Solver 3/ PRECISION 0.01