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February 6, 2013

Abstract

Let K be a complete algebraically closed p-adic field of characteristic zero. Let f, g be
two transcendental meromorphic functions in the whole field K or meromorphic functions in
an open disk that are not quotients of bounded analytic functions. Let P be a polynomial of
uniqueness for meromorphic functions in K or in an open disk and let α be a small meromorphic
function with regards to f and g. If f ′P ′(f) and g′P ′(g) share α counting multiplicity, then we
show that f = g provided that the multiplicity order of zeroes of P ′ satisfy certain inequalities.
If α is a Moebius function or a non-zero constant, we can obtain more general results on P .

1 Introduction and Main Results

Let f, g be two meromorphic functions in a p-adic field. Here we study polynomials P such
that, when f ′P ′(f) and g′P ′(g) share a small function α, then f = g. Problems of uniqueness on
meromorphic functions were examined first in C [7], [8], [10], [13], [14], [15], [16], [17], [22], [23]
and next in a p-adic field [1], [3], [4], [5], [11], [12], [18], [20], [21]. After examining problems of the
form P (f) = P (g), several studies were made on the equality f ′P ′(f) = g′P ′(g), or value sharing
questions: if f ′P ′(f) and g′P ′(g) share a value, or a small function, do we have f = g? Here
we will try to generalize results previously obtained no matter what the number of zeroes of P ′.
Moreover results also apply to meromorphic functions inside an open disk.

Let K be an algebraically closed field of characteristic zero, complete for an ultrametric absolute
value denoted by | . |. We denote by A(K) the K-algebra of entire functions in K, by M(K) the
field of meromorphic functions in K, i.e. the field of fractions of A(K) and by K(x) the field of
rational functions.

Let a ∈ K and R ∈]0,+∞[. We denote by d(a,R) the closed disk {x ∈ K : |x − a| ≤ R} and
by d(a,R−) the “open” disk {x ∈ K : |x− a| < R}. We denote by A(d(a,R−)) the set of analytic

functions in d(a,R−), i.e. the K-algebra of power series
∞∑
n=0

an(x− a)n converging in d(a,R−) and

by M(d(a,R−)) the field of meromorphic functions inside d(a,R−), i.e. the field of fractions of
02000 Mathematics Subject Classification: 12J25; 30D35; 30G06.
0Keywords: Meromorphic, Nevanlinna, Ultrametric, Sharing Value, Unicity, Distribution of values.
1Partially funded by the research project CONICYT

`
“Inserción de nuevos investigadores en la academia”

N◦79090014
´

from the Chilean Government.



p-adic meromorphic functions f ′P (f), g′P ′(g) sharing a small function 2

A(d(a,R−)). Moreover, we denote by Ab(d(a,R−)) the K - subalgebra of A(d(a,R−)) consisting of
the bounded analytic functions in d(a,R−), i.e. which satisfy sup

n∈N
|an|Rn < +∞ . And we denote

by Mb(d(a,R−)) the field of fractions of Ab(d(a,R−)). Finally, we denote by Au(d(a,R−)) the
set of unbounded analytic functions in d(a,R−), i.e. A(d(a,R−)) \ Ab(d(a,R−)). Similarly, we set
Mu(d(a,R−)) =M(d(a,R−)) \Mb(d(a,R−)).

The problem of value sharing a small function by functions of the form f ′P ′(f) was examined
first when P was just of the form xn [7], [18], [24]. More recently it was examined when P was a
polynomial such that P ′ had exactly two distinct zeroes [15], [17], [20], both in complex analysis
and in p-adic analysis. In [15], [17] the functions where meromorphic on C, with a small function
that was a constant or the identity. In [20], the problem was considered for analytic functions
in the field K: on one hand for entire functions and on the other hand for unbounded analytic
functions in an open disk.

Actually solving a value sharing problem involving f ′P ′(f), g′P ′(g) requires to know polyno-
mials of uniqueness P for meromorphic functions.

In [20] the third author studied several problems of uniqueness and particularly the following:
Let f, g ∈ A(K) be transcendental

(
resp. Let f, g ∈ Au(d(0, R−))

)
and α ∈ A(K)

(
resp.

α ∈ Au(d(0, R−))
)

be a small function, such that fn(f − a)kf ′ and gn(g− a)kg′ share α, counting
multiplicity, with n, k ∈ N and a ∈ K \ {0} (see Theorems D and E below).

Here we consider functions f, g ∈ M(K) or f, g ∈ M(d(a,R−)) and ordinary polynomials P :
we must only assume certain hypotheses on the multiplicity order of the zeroes of P ′. The method
for the various theorems we will show is the following: assuming that f ′P ′(f) and g′P ′(g) share a
small function, we first prove that f ′P ′(f) = g′P ′(g). Next, we derive P (f) = P (g). And then,
when P is a polynomial of uniqueness for the functions we consider, we can conclude f = g.

Now, in order to define small functions, we have to briefly recall the definitions of the clas-
sical Nevanlinna theory in the field K and a few specific properties of ultrametric analytic or
meromorphic functions.

Let log be a real logarithm function of base b > 1 and let f ∈M(K)
(
resp. f ∈M(d(0, R−))

)
having no zero and no pole at 0. Let r ∈]0,+∞[

(
resp. r ∈]0, R[

)
and let γ ∈ d(0, r). If f has a

zero of order n at γ, we put ωγ(f) = n. If f has a pole of order n at γ, we put ωγ(f) = −n and
finally, if f(γ) 6= 0,∞, we set ωγ(f) = 0

We denote by Z(r, f) the counting function of zeroes of f in d(0, r), counting multiplicity, i.e.
we set

Z(r, f) =
∑

ωγ(f)>0, |γ|≤r

ωγ(f)(log r − log |γ|).

Similarly, we denote by Z(r, f) the counting function of zeroes of f in d(0, r), ignoring multi-
plicity, and set

Z(r, f) =
∑

ωγ(f)>0, |γ|≤r

(log r − log |γ|).

In the same way, we set N(r, f) = Z
(
r,

1
f

) (
resp. N(r, f) = Z

(
r,

1
f

))
to denote the counting

function of poles of f in d(0, r), counting multiplicity (resp. ignoring multiplicity).
For f ∈ M(d(0, R−)) having no zero and no pole at 0, the Nevanlinna function is defined by

T (r, f) = max
{
Z(r, f) + log |f(0)|, N(r, f)

}
.

Now, we must recall the definition of a small function with respect to a meromorphic function
and some pertinent properties.
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Definition. Let f ∈ M(K)
(
resp. let f ∈ M(d(0, R−))

)
such that f(0) 6= 0,∞. A function

α ∈ M(K)
(
resp. α ∈ M(d(0, R−))

)
having no zero and no pole at 0 is called a small function

with respect to f , if it satisfies lim
r→+∞

T (r, α)
T (r, f)

= 0
(

resp. lim
r→R−

T (r, α)
T (r, f)

= 0
)

.

If 0 is a zero or a pole of f or α, we can make a change of variable such that the new origin is
not a zero or a pole for both f and α. Thus it is easily seen that the last relation does not really
depend on the origin.

We denote by Mf (K)
(
resp. Mf (d(0, R−))

)
the set of small meromorphic functions with

respect to f in K
(
resp. in d(0, R−)

)
.

Remark 1. Thanks to classical properties of the Nevanlinna function T (r, f) with respect to
the operations in a field of meromorphic functions, such as T (r, f + g) ≤ T (r, f) + T (r, g) and
T (r, fg) ≤ T (r, f) + T (r, g), for f, g ∈ M(K) and r > 0, it is easily proved that Mf (K)

(
resp.

Mf (d(0, R−))
)

is a subfield of M(K)
(
resp. M(d(0, R−))

)
and that M(K)

(
resp. M(d(0, R))

)
is

a transcendental extension of Mf (K)
(
resp. of Mf (d(0, R−))

)
[6].

Let us remember the following definition.

Definition. Let f, g, α ∈M(K)
(
resp. let f, g, α ∈M(d(0, R−))

)
. We say that f and g share the

function α C.M., if f − α and g − α have the same zeroes with the same multiplicity in K
(
resp.

in d(0, R−)
)
.

Recall that a polynomial P ∈ K[x] is called a polynomial of uniqueness for a class of functions
F if for any two functions f, g ∈ F the property P (f) = P (g) implies f = g.

The definition of polynomials of uniqueness was introduced in [16] by P. Li and C. C. Yang and
was studied in many papers [9], [10] for complex functions and [1], [4], [5], [11], [12], [14], [21], for
p-adic functions.

Actually, in a p-adic field, we can obtain various results, not only for functions defined in the
whole field K but also for functions defined inside an open disk because the p-adic Nevanlinna
Theory works inside a disk, for functions of Mu(d(0, R−)).

Let us recall Theorem A [5], [21]:

Theorem A. Let P ∈ K[x] be such that P ′ has exactly two distinct zeroes γ1 of order c1 and γ2

of order c2. Then P is a polynomial of uniqueness for A(K). Moreover, if min{c1, c2} ≥ 2, then
P is a polynomial of uniqueness for M(K).

Theorem A was first proved in [21] with the addiditional hypothesis P (c1) 6= P (c2). Actually
this hypothesis is useless because, as showed in Lemma 10 [5], the equality P (c1) = P (c2) is
impossible since P ′ only has two distinct zeroes.

Notation: Let P ∈ K[x] \K and let Ξ(P ) be the set of zeroes c of P ′ such that P (c) 6= P (d) for
every zero d of P ′ other than c. We denote by Φ(P ) the cardinal of Ξ(P ).

Remark 2. If deg(P ) = q then Φ(P ) ≤ q − 1.

From [5] we have the following results:

Theorem B. Let d(a,R−) be an open disk in K and P ∈ K[x]. If Φ(P ) ≥ 2 then P is a
polynomial of uniqueness for A(K). If Φ(P ) ≥ 3 then P is a polynomial of uniqueness for both



p-adic meromorphic functions f ′P (f), g′P ′(g) sharing a small function 4

Au(d(a,R−)) and M(K). If Φ(P ) ≥ 4 then P is a polynomial of uniqueness for Mu(d(a,R−)).

And from [20] we have:
Theorem C. Let P ∈ K[x] be of degree n ≥ 6 be such that P ′ only has two distinct zeroes, one of
them being of order 2. Then P is a polynomial of uniqueness for Mu(d(0, R−)).

In [19], the third author proved the following theorems concerning entire functions and analytic
functions in a disk:

Theorem D. Let f, g ∈ A(K) be transcendental such that fn(f − a)kf ′ and gn(g − a)kg′ share
the function α ∈ Af (K) ∩ Ag(K) C.M. with n, k ∈ N and a ∈ K \ {0}. If n ≥ max{6− k, k+ 1},
then f = g. Moreover, if α ∈ K \ {0} and n ≥ max{5− k, k + 1}, then f = g.

Theorem E. Let f, g ∈ Au(d(0, R−)), let α ∈ Af (d(0, R−)) ∩ Ag(d(0, R−)) and let a ∈ K \ {0}.
If fn(f − a)2f ′ and gn(g − a)2g′ share the function α C.M. and n ≥ 4, then f = g. Moreover, if
fn(f − a)f ′ and gn(g − a)g′ share the function α C.M. and n ≥ 5, then again f = g.

We can now state our main theorems.

Theorem 1. Let P be a polynomial of uniqueness for M(K), let P ′ = b(x− a1)n
l∏
i=2

(x− ai)ki

with b ∈ K∗, l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l− 1 and let k =
∑l
i=2 ki. Suppose P satisfies the following

conditions:

n ≥ 10 +
l∑
i=3

max(0, 4− ki) + max(0, 5− k2),

n ≥ k + 2,
if l = 2, then n 6= 2k, 2k + 1, 3k + 1,
if l = 3, then n 6= 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α ∈ Mf (K) ∩Mg(K) be non-identically zero. If

f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

By Theorem B, we have Corollary 1.1:

Corollary 1.1 Let P ∈ K[x] satisfy Φ(P ) ≥ 3, let P ′ = b(x− a1)n
l∏
i=2

(x− ai)ki with b ∈ K∗,

l ≥ 3, ki ≥ ki+1, 2 ≤ i ≤ l − 1 and let k =
∑l
i=2 ki. Suppose P satisfies the following conditions:

n ≥ 10 +
l∑
i=3

max(0, 4− ki) + max(0, 5− k2),

n ≥ k + 2,
if l = 3, then n 6= 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α ∈ Mf (K) ∩Mg(K) be non-identically zero. If

f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

And by Theorem A we also have Corollary 1.2.

Corollary 1.2 Let P ∈ K[x] be such that P ′ is of the form b(x− a1)n(x− a2)k with min(k, n) ≥
2.
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Suppose P satisfies the following conditions:
n ≥ 10 + max(0, 5− k),
n ≥ k + 2,
n 6= 2k, 2k + 1, 3k + 1.
Let f, g ∈ M(K) be transcendental and let α ∈ Mf (K) ∩Mg(K) be non-identically zero. If

f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

Theorem 2. Let P be a polynomial of uniqueness for M(K), let P ′ = b(x− a1)n
l∏
i=2

(x− ai)ki

with b ∈ K∗, l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l− 1 and let k =
∑l
i=2 ki. Suppose P satisfies the following

conditions:

n ≥ 9 +
l∑
i=3

max(0, 4− ki) + max(0, 5− k2),

n ≥ k + 2,
if l = 2, then n 6= 2k, 2k + 1, 3k + 1,
if l = 3, then n 6= 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.

By Theorem B, we have Corollary 2.1.

Corollary 2.1 Let P ∈ K[x] satisfy Φ(P ) ≥ 3, let P ′ = b(x− a1)n
l∏
i=2

(x− ai)ki with b ∈ K∗,

l ≥ 3, ki ≥ ki+1, 2 ≤ i ≤ l − 1 and let k =
∑l
i=2 ki. Suppose P satisfies the following conditions:

n ≥ 9 +
l∑
i=3

max(0, 4− ki) + max(0, 5− k2),

n ≥ k + 2,
if l = 3, then n 6= 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.

And by Theorem A, we have Corollary 2.2.

Corollary 2.2 Let P ∈ K[x] be such that P ′ is of the form b(x− a1)n(x− a2)k with min(k, n) ≥ 2
and with b ∈ K∗. Suppose P satisfies the following conditions:

n ≥ 9 + max(0, 5− k),
n ≥ k + 2,
n 6= 2k, 2k + 1, 3k + 1,
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.

Theorem 3. Let P be a polynomial of uniqueness for M(K), let P ′ = b(x− a1)n
l∏
i=2

(x− ai)ki

with b ∈ K∗, l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l− 1 and let k =
∑l
i=2 ki. Suppose P satisfies the following

conditions:
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n ≥ k + 2,

n ≥ 9 +
l∑
i=3

max(0, 4− ki) + max(0, 5− k2).

Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′P ′(f) and g′P ′(g)
share α C.M., then f = g.

By Theorem B, we have Corollary 3.1.

Corollary 3.1 Let P ∈ K[x] satisfy Φ(P ) ≥ 3, let P ′ = b(x− a1)n
l∏
i=2

(x− ai)ki with b ∈ K∗,

l ≥ 3, ki ≥ ki+1, 2 ≤ i ≤ l − 1 and let k =
∑l
i=2 ki. Suppose P satisfies the following conditions:

n ≥ k + 2,

n ≥ 9 +
l∑
i=3

max(0, 4− ki) + max(0, 5− k2).

Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′P ′(f) and g′P ′(g)
share α C.M., then f = g.

And by Theorem A, we have Corollary 3.2

Corollary 3.2 Let P ∈ K[x] be such that P ′ is of the form b(x− a1)n(x− a2)k with k ≥ 2 and
with b ∈ K∗. Suppose P satisfies the following conditions:

n ≥ 9 + max(0, 5− k),
n ≥ k + 2,
n 6= 2k, 2k + 1, 3k + 1.
Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.

Theorem 4. Let a ∈ K and R > 0. Let P be a polynomial of uniqueness for Mu(d(a,R−)) and

let P ′ = b(x− a1)n
l∏
i=2

(x− ai)ki with b ∈ K∗, l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l− 1 and let k =
∑l
i=2 ki.

Suppose P satisfies the following conditions:

n ≥ 10 +
l∑
i=3

max(0, 4− ki) + max(0, 5− k2),

n ≥ k + 3,
if l = 2, then n 6= 2k, 2k + 1, 3k + 1,
if l = 3, then n 6= 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈Mu(d(a,R−)) and let α ∈Mf (d(a,R−))∩Mg(d(a,R−)) be non-identically zero. If

f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

By Theorem B we can state Corollary 4.1.

Corollary 4.1 Let a ∈ K and R > 0. Let P ∈ K[x] satisfy Φ(P ) ≥ 4, let P ′ = b(x− a1)n
l∏
i=2

(x− ai)ki

with b ∈ K∗, l ≥ 4, ki ≥ ki+1, 2 ≤ i ≤ l−1 and let k =
∑l
i=2 ki. Suppose P satisfies the following

conditions:
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n ≥ 10 +
l∑
i=3

max(0, 4− ki) + max(0, 5− k2),

n ≥ k + 3,
Let f, g ∈Mu(d(a,R−)) and let α ∈Mf (d(a,R−))∩Mg(d(a,R−)) be non-identically zero. If

f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

And by Theorem C we have Corollary 4.2:

Corollary 4.2 Let a ∈ K and R > 0. Let P ∈ K[x] be such that P ′ is of the form b(x− a1)n(x− a2)2

with b ∈ K∗. Suppose P satisfies
n ≥ 10 + max(0, 5− k).
Let f, g ∈Mu(d(a,R−)) and let α ∈Mf (d(a,R−))∩Mf (d(a,R−)) be non-identically zero. If

f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

Theorem 5. Let P be a polynomial of uniqueness for M(K) such that P ′ is of the form

b(x− a1)n
l∏
i=2

(x− ai) with l ≥ 3 , b ∈ K∗, satisfying:

n ≥ l + 10.
Let f, g ∈M(K) be transcendental and let α ∈Mf (K)∩Mg(K) be non-identically zero. If f ′P ′(f)
and g′P ′(g) share α C.M., then f = g.

By Theorem B, we have Corollary 5.1:

Corollary 5.1 Let P ∈ K[x] satisfy Φ(P ) ≥ 3 and be such that P ′ is of the form

b(x− a1)n
l∏
i=2

(x− ai) with l ≥ 3, b ∈ K∗ satisfying:

n ≥ l + 10.
Let f, g ∈M(K) be transcendental and let α ∈Mf (K)∩Mg(K) be non-identically zero. If f ′P ′(f)
and g′P ′(g) share α C.M., then f = g.

Theorem 6. Let a ∈ K and R > 0. Let P be a polynomial of uniqueness for Mu(d(a,R−)) such

that P ′ is of the form P ′ = b(x− a1)n
l∏
i=2

(x− ai) with l ≥ 3, b ∈ K∗ satisfying:

n ≥ l + 10.
Let f, g ∈ Mu(d(a,R−)) and let α ∈ Mf (d(a,R−)) ∩Mg(d(a,R−)) be non-identically zero. If
f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

By Theorem B, we have Corollary 6.1:

Corollary 6.1 Let a ∈ K and R > 0. Let P ∈ K[x] satisfy Φ(P ) ≥ 4 and be such that P ′ is of

the form P ′ = b(x− a1)n
l∏
i=2

(x− ai) with l ≥ 4, b ∈ K∗ and n ≥ l + 10.

Let f, g ∈Mu(d(a,R−)) and let α ∈Mf (d(a,R−))∩Mg(d(a,R−)) be non-identically zero. If
f ′P ′(f) and g′P ′(g) share α C.M., then f = g.
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Example: Let P (x) =
x18

18
− 2x17

17
− x16

16
+

2x15

15
. Then P ′(x) = x17 − 2x16 − x15 + 2x14 =

x14(x− 1)(x+ 1)(x− 2). We check that:
P (0) = 0,

P (1) =
1
18
− 2

17
− 1

16
+

2
15

,

P (−1) =
1
18

+
2
17
− 1

16
− 2

15
6= 0, P (1), and P (2) =

218

18
− 218

17
− 216

16
+

216

15
6= 0, P (1), P (−1).

Then Φ(P ) = 4. So, P is a polynomial of uniqueness for bothM(K) andM(d(0, R−)). Moreover,
we have n = 14, l = 4, hence we can apply Corollaries 5.1 and 6.1.

Given f, g ∈ M(K) transcendental or f, g ∈ Mu(d(0, R−)) such that f ′P ′(f) and g′P ′(g)
share a small function α C.M., we have f = g.

Theorem 7. Let P be a polynomial of uniqueness for M(K) such that P ′ is of the form

P ′ = b(x− a1)n
l∏
i=2

(x− ai) with l ≥ 3, b ∈ K∗ satisfying

n ≥ l + 9.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.

Theorem 8. Let P be a polynomial of uniqueness for M(K) such that P ′ is of the form

P ′ = b(x− a1)n
l∏
i=2

(x− ai) with l ≥ 3, b ∈ K∗ satisfying n ≥ l + 9.

Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′P ′(f) and g′P ′(g)
share α C.M., then f = g.

Example: Let P (x) = xq − axq−2 + b with a ∈ K∗, b ∈ K, with q ≥ 5 an odd integer. Then q
and q − 2 are relatively prime and hence by Theorem 3.21 [12] P is a uniqueness polynomial for
M(K) and P ′ admits 0 as a zero of order n = q − 3 and two other zeroes of order 1.

Let f, g ∈ M(K) be transcendental and let α ∈ M(K) be a small function such that
f ′P ′(f), g′P ′(g) share α C.M.

Suppose first q ≥ 17. By Theorem 5 we have f = g. Now suppose q ≥ 15 and suppose α is a
Moebius function or a non-zero constant. Then by Theorem 7 and 8, we have f = g.

Theorem 9. Let f, g ∈M(K) be transcendental and let α ∈Mf (K)∩Mg(K) be non-identically
zero. Let a ∈ K \ {0}. If f ′fn(f − a) and g′gn(g − a) share the function α C.M. and if n ≥ 12,

then either f = g or there exists h ∈ M(K) such that f =
a(n+ 2)
n+ 1

(hn+1 − 1
hn+2 − 1

)
h and g =

a(n+ 2)
n+ 1

(hn+1 − 1
hn+2 − 1

)
. Moreover, if α is a constant or a Moebius function, then the conclusion

holds whenever n ≥ 11.

Inside an open disk, we have a version similar to the general case in the whole field.

Theorem 10. Let f, g ∈ Mu(d(0, R−)), and let α ∈ Mf (d(0, R−)) ∩ Mg(d(0, R−)) be non-
identically zero. Let a ∈ K \ {0}. If f ′fn(f − a) and g′gn(g − a) share the function α C.M. and
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n ≥ 12, then either f = g or there exists h ∈ M(d(0, R−)) such that f =
a(n+ 2)
n+ 1

(hn+1 − 1
hn+2 − 1

)
h

and g =
a(n+ 2)
n+ 1

(hn+1 − 1
hn+2 − 1

)
.

Remark 3. In Theorems 9 and 10, the second conclusion does occur. Indeed, let h ∈M(K) (resp.

let h ∈Mu(d(0, R−))). Now, let us precisely define f and g as: g = (
n+ 2
n+ 1

)
(hn+1) − 1
hn+2 − 1

)
and f =

hg. Then we can see that the polynomial P (y) =
1

n+ 2
yn+2 − 1

n+ 1
yn+1 satisfies P (f) = P (g),

hence f ′P ′(f) = g′P ′(g), therefore f ′P ′(f) and g′P ′(g) trivially share any function.

2 Basic Results

Let us recall a few classical lemmas [3], [4], [12]:

Lemma 1. Let f ∈ M(K) (resp. Let f ∈ M(d(0, R−))), let a ∈ K, let Q(x) ∈ K[x] of degree s.
Then T (r,Q(f)) = sT (r, f) +O(1) and T (r, f ′Q(f)) ≥ sT (r, f) +O(1).

Lemma 2. Let f ∈M(K) (resp. Let f ∈M(d(0, R−))). Then N(r, f ′) = N(r, f)+N(r, f), Z(r, f ′) ≤
Z(r, f) +N(r, f)− log r +O(1). Moreover, T (r, f)− Z(r, f) ≤ T (r, f ′)− Z(r, f ′) +O(1).

Notation: Given two meromorphic functions f, g ∈M(K) (resp. f, g ∈M(d(0, R−))), we will
denote by Ψf,g the function

f ′′

f ′
− 2f ′

f − 1
− g′′

g′
+

2g′

g − 1
.

Lemma 3. Let f ∈ M(K) (resp. Let f ∈ M(d(0, R−))) and let ψ =
f ′

f
. Then Z(r, ψ) ≤

N(r, ψ)− log r +O(1).

The following Lemma 4 is an immediate consequence of Lemma 3:

Lemma 4. The function Ψf,g satisfies Z(r,Ψf,g) ≤ N(r,Ψf,g)− log r.

Lemma 5. Let f, g ∈ M(K) (resp. Let f, g ∈ M(d(0, R−))). If a is a simple zero of f − 1 and
g − 1, it is a zero of Ψf,g.

In order to state the following lemma, we must recall the definition of quasi-eceptional values
[19].

(i) Let f ∈ M(K) \ K. (resp. let f ∈ Mu(d(0, R−))). Then b will be said to be a Picard
exceptional value of f (or just an exceptional value) if f(x) 6= b ∀x ∈ K (resp f(x) 6= b ∀x ∈
d(0, R−)).
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(ii) Let f ∈M(K) \K(x). (resp. let f ∈Mu(d(0, R−))) and let b ∈ K. Then b will be said to be
a quasi-exceptional value of f if the function f − b has a finite number of zeroes in K (resp.
in d(0, R−)).

The following results are then immediate [19]:

Lemma 6. Let f ∈ A(K)\K
(
resp. let f ∈ Au(d(0, R−))

)
. Then f has no exceptional value. If f is

transcendental, it has no quasi-exceptional value. Let f ∈M(K)\K
(
resp. let f ∈Mu(d(0, R−))

)
.

Then f has at most one exceptional value in K. Let f ∈ M(K) be transcendental
(
resp. let

f ∈Mu(d(0, R−))
)
. Then f has at most one quasi-exceptional value in K.

We now have to recall the ultrametric Nevanlinna Second Main Theorem in a basic form which
we will frequently use.

Let f ∈ MK
(
resp. f ∈ M(d(0, R−))

)
satisfy f ′(0) 6= 0,∞. Let S be a finite subset of K and

r ∈]0,+∞[
(
resp. r ∈]0, R[

)
. We denote by ZS0 (r, f ′) the counting function of zeroes of f ′ in d(0, r)

which are not zeroes of any f − s for s ∈ S. This is, if (γn)n∈N is the finite or infinite sequence of
zeroes of f ′ in d(0, r) that are not zeroes of f − s for s ∈ S, with multiplicy order qn respectively,
we set

ZS0 (r, f ′) =
∑
|γn|≤r

qn(log r − log |γn|).

Theorem N. [2], [3] Let a1, ..., aq ∈ K with q ≥ 2, q ∈ N, and let f ∈ M(K) (resp. let
f ∈ M(d(0, R−))). Let S = {a1, ..., aq}. Assume that none of f, f ′ and f − aj with 1 ≤ j ≤ q,
equals 0 or ∞ at the origin. Then, for r > 0

(
resp. for r ∈]0, R[

)
, we have

(q − 1)T (r, f) ≤
q∑
j=1

Z(r, f − aj) +N(r, f)− ZS0 (r, f ′)− log r +O(1).

3 Specific Lemmas

We will need the following Lemma 7:

Lemma 7. Let f, g ∈ M(K) be transcendental (resp. f, g ∈ Mu(d(0, R−))). Let P (x) =
xn+1Q(x) be a polynomial such that n ≥ deg(Q) + 2 (resp. n ≥ deg(Q) + 3). If P ′(f)f ′ = P ′(g)g′

then P (f) = P (g).

Proof : Put k = deg(Q). Since P ′(f)f ′ = P ′(g)g′ there exists c ∈ K such that P (f) = P (g) + c.
Suppose that c 6= 0. Then by Theorem N, we have

T (r, P (f)) ≤ Z(r, P (f)) + Z(r, P (f)− c) +N(r, P (f))− log r +O(1). (1)

Obviously we see that Z(r, P (f)) = Z(r, fn+1Q(f)) = Z(r, fQ(f)) ≤ T (r, fQ(f)). By Lemma
1 we have T (r, fQ(f)) = (k+1)T (r, f)+O(1) and then Z(r, P (f)) ≤ (k+1)T (r, f)+O(1). We also
have Z(r, P (f) − c) = Z(r, P (g)) ≤ Z(r, g) + Z(r,Q(g)) ≤ T (r, g) + T (r,Q(g)). Then by Lemma



p-adic meromorphic functions f ′P (f), g′P ′(g) sharing a small function 11

1, Z(r, P (f)− c) ≤ (k+ 1)T (r, g) +O(1). Notice that N(r, P (f)) = N(r, f) ≤ T (r, f) +O(1) then
by (1) we obtain

T (r, P (f)) ≤ (k + 2)T (r, f) + (k + 1)T (r, g)− log r +O(1). (2)

According to Lemma 1 we have T (r, P (f)) = (n+ k + 1)T (r, f) +O(1). Then by (2) we have

nT (r, f) ≤ T (r, f) + (k + 1)T (r, g)− log r +O(1). (3)

We similarly we obtain

nT (r, g) ≤ T (r, g) + (k + 1)T (r, f)− log r +O(1). (4)

Hence adding (3) and (4) we have

n(T (r, f) + T (r, g)) ≤ (k + 2)
(
T (r, f) + T (r, g)

)
− 2 log r +O(1)

and then

0 ≤ (k + 2− n)
(
T (r, f) + T (r, g)

)
− 2 log r +O(1).

That leads to a contradiction because n ≥ k + 2 (resp. n ≥ k + 3) and limr→+∞(T (r, f) +
T (r, g)) = +∞ (resp. limr→R(T (r, f) + T (r, g)) = +∞). Thus c = 0 and consequently P (f) =
P (g).

Lemma 8. Let F,G ∈ M(K)
(
resp. Let F,G ∈ M(d(0, R−))

)
be non-constant, having no zero

and no pole at 0 and sharing the value 1 C.M.
If ΨF,G = 0 and if

lim
r→+∞

(
T (r, F )− [Z(r, F ) +N(r, F ) + Z(r,G) +N(r,G)]

)
= +∞

( resp.

lim
r→R−

(
T (r, F )− [Z(r, F ) +N(r, F ) + Z(r,G) +N(r,G)]

)
= +∞)

then either F = G or FG = 1.

Proof. Suppose ΨF,G = 0 and that the above limit is +∞ in the situation we consider: F,G ∈
M(K) or F,G ∈M(d(0, R−)).

Since ΨF,G =
φ′

φ
with φ =

( F ′

(F − 1)2
)( (G− 1)2

G′

)
, there exist a, b ∈ K with a 6= 0, such that

1
F − 1

=
a

G− 1
+ b, this is, F =

(1 + b)G+ a− (1 + b)
bG+ (a− b)

. Hence

F =
AG+B

CG+D
(1)

with A,B,C,D ∈ K.
Let r > 0

(
resp. Let r ∈]0, R[

)
. Consider the following three cases:
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• Case 1: A 6= 0 and C = 0.

By (1), we have F − B

D
=
A

D
G. Suppose B 6= 0. Then Z

(
r, F − B

D

)
= Z(r,G). So, applying

Theorem N to F , we obtain

T (r, F ) ≤ Z(r, F ) + Z
(
r, F − B

D

)
+N(r, F )− log r +O(1)

= Z(r, F ) + Z(r,G) +N(r, F )− log r +O(1)

< Z(r, F ) +N(r, F ) + Z(r,G) +N(r,G) +O(1),

a contradiction to our hypothesis. Thus B = 0 and, so F =
A

D
G.

Suppose
A

D
6= 1. Since F and G share 1 C.M. and F =

A

D
G, we have

(
F (x), G(x)

)
6= (1, 1)

∀x ∈ K
(
resp. ∀x ∈ d(0, R−)

)
, because if F (x) = 1, then G(x) = 1 and hence

A

D
= 1, a

contradiction. But G(x) = 1 if and only if F (x) =
A

D
. Thus F cannot take values 1 and

A

D
and hence F has two exceptional values. Consequently, by Lemma 6, F is a constant, a

contradiction. Thereby
A

D
= 1, and hence F = G.

• Case 2: A = 0 and C 6= 0.

By (2), we have G =
B

CF
− D

C
. Suppose D 6= 0. Since T (r, F ) = T

(
r,

1
F

)
+ O(1) and

Z
(
r,

1
F
− D

B

)
= Z(r,G), applying Theorem N to F , we have

T (r, F ) ≤ Z
(
r,

1
F

)
+ Z

(
r,

1
F
− D

B

)
+N

(
r,

1
F

)
− log r +O(1)

= Z(r, F ) + Z(r,G) +N(r, F )− log r +O(1)

< Z(r, F ) +N(r, F ) + Z(r,G) +N(r,G) +O(1),

a contradiction to our hypothesis, again. Thus D = 0 and, so F =
B

CG
.

Now, suppose
B

C
6= 1. Using the same argument as in Case 1, we conclude that F (x)− 1 6= 0

and G(x) − 1 6= 0 ∀x ∈ K
(
resp. ∀x ∈ d(0, R−)

)
. Moreover, G(x) = 1 if and only if

F (x) =
B

C
. Then, it is necessary that F (x) 6= B

C
. Hence, as in Case 1, F omits two values

in K which is impossible (Lemma 6), F is a constant, a contradiction again. Consequently
B

C
= 1 and, hence FG = 1.

• Case 3: AC 6= 0.

By (1), we have F − A
C

=
B − AD

C

CG+D
and hence Z

(
r, F − A

C

)
= N(r,G). Applying Theorem N
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to F , we have

T (r, F ) ≤ Z(r, F ) + Z
(
r, F − A

C

)
+N(r, F )− log r +O(1)

= Z(r, F ) +N(r,G) +N(r, F )− log r +O(1)

< Z(r, F ) +N(r, F ) + Z(r,G) +N(r,G) +O(1),

a contradiction to our hypothesis, again.

Lemma 9. Let Q(x) = (x − a1)n
∏l
i=2(x − ai)ki ∈ K[x] (ai 6= aj , ∀i 6= j) with l ≥ 2 and

n ≥ max{k2, .., kl} and let k =
∑l
i=2 ki. Let f, g ∈ M(K) be transcendental (resp. f, g ∈

Mu(d(0, R−))) such that θ = Q(f)f ′Q(g)g′ is a small function with respect to f and g. We have
the following :

If l = 2 then n belongs to {k, k + 1, 2k, 2k + 1, 3k + 1}.
If l = 3 then n belongs to {k2 , k + 1, 2k + 1, 3k2 − k, .., 3kl − k}.
If l ≥ 4 then n = k + 1.
If θ is a constant and f, g ∈M(K) then n = k + 1.

Proof. Without loss of generality, we can assume a1 = 0. Suppose f, g ∈ M(K) (resp. f, g ∈
Mu(d(0, R−))) satisfy

fn(
l∏
i=2

(f − ai)ki)f ′gn(
l∏
i=2

(g − ai)ki)g′ = θ (1)

Let Σ be the set of zeroes and poles of θ. We will denote by S(r) any function ϕ defined in ]0,+∞[

(resp. in ]0, R[) such that lim
r→+∞

ϕ(r)
T (r, f)

= 0 and lim
r→+∞

ϕ(r)
T (r, g)

= 0.

Let γ ∈ K \ Σ (resp. γ ∈ d(0, R−) \ Σ) be a zero of g of order s. Clearly, by (1), γ is a pole of
f of order, for example, t. And since γ is neither a zero nor a pole of θ we can derive the following
relation

s(n+ 1) = t(n+ k + 1) + 2 (2)

Now, suppose that for i ∈ {2, .., l}, g− ai has a zero γ ∈ K \Σ (resp. γ ∈ d(0, R−) \Σ) of order
si. It is a pole of f of order ti. So, by (2), we obtain

si(ki + 1) = ti(n+ k + 1) + 2 (3)

By (2) and (3) it is obvious that s > t and si > ti and hence, s ≥ 2, si ≥ 2.
Consider now a pole γ ∈ K \ Σ (resp. γ ∈ d(0, R−) \ Σ) of f . Either it is a zero of g, or it is

a zero of g − ai for some i ∈ {2, .., l}, or it is a zero of g′ that is neither a zero of g nor a zero of
g − ai (∀i ∈ {2, .., l}). Let Z0(r, g′) be the counting function of zeroes of g′ that are neither a zero
of g nor a zero of g− ai for all i ∈ {2, .., l} (counting multiplicity) and let Z0(r, g′) be the counting
function of zeroes of g′ that are neither a zero of g nor a zero of g− ai for all i ∈ {2, .., l}, ignoring
multiplicity. Since T (r, θ) = S(r), we have
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N(r, f) ≤ Z(r, g) +
l∑
i=2

Z(r, g − ai) + Z0(r, g′) + S(r) (4)

And if θ is a constant, we have

N(r, f) ≤ Z(r, g) +
l∑
i=2

Z(r, g − ai) + Z0(r, g′) (5)

Now, by Theorem N, we have (l−1)T (r, f) ≤ Z(r, f)+
∑l
i=2 Z(r, f−ai)+N(r, f)−Z0(r, f ′)−

log r +O(1), hence by (4), we obtain

(l−1)T (r, f) ≤ Z(r, f)+
l∑
i=2

Z(r, f−ai)+Z(r, g)+
l∑
i=2

Z(r, g−ai)+Z0(r, g′)−Z0(r, f ′)+S(r) (6)

and if θ is a constant, by (5) we have

(l−1)T (r, f) ≤ Z(r, f)+
l∑
i=2

Z(r, f−ai)+Z(r, g)+
l∑
i=2

Z(r, g−ai)+Z0(r, g′)−Z0(r, f ′)−log r+O(1)

(7)
And similarly, with f , in the general case we have

(l−1)T (r, g) ≤ Z(r, g)+
l∑
i=2

Z(r, g−ai)+Z(r, f)+
l∑
i=2

Z(r, f−ai)+Z0(r, f ′)−Z0(r, g′)+S(r) (8)

and if θ is a constant, we have

(l−1)T (r, g) ≤ Z(r, g)+
l∑
i=2

Z(r, g−ai)+Z(r, f)+
l∑
i=2

Z(r, f−ai)+Z0(r, f ′)−Z0(r, g′)−log r+O(1)

(9)
Hence, adding (6) and (8), in the general case we obtain

(l − 1)(T (r, f) + T (r, g)) ≤ 2
(
Z(r, g) +

l∑
i=2

Z(r, g − ai) + Z(r, f) +
l∑
i=2

Z(r, f − ai)
)

+ S(r) (10)

and if θ is a constant, by (7) and (9) we have

(l−1)(T (r, f)+T (r, g)) ≤ 2
(
Z(r, g)+

l∑
i=2

Z(r, g−ai)+Z(r, f)+
l∑
i=2

Z(r, f−ai)
)
)−2 log r+O(1) (11)

Case l=2 :
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Without loss of generality, we can assume a2 = 1. Relation (10) now becomes

T (r, f) + T (r, g) ≤ 2
(
Z(r, g) + Z(r, g − 1) + Z(r, f) + Z(r, f − 1)

)
+ S(r) (10− a)

Suppose now that all zeroes of f, f − 1, g, g − 1 are at least of order 5, except maybe those
lying in Σ: then

Z(r, f) ≤ 1
5
T (r, f) + S(r), Z(r, f − 1) ≤ 1

5
T (r, f) + S(r),

Z(r, g) ≤ 1
5
T (r, g) + S(r), Z(r, g − 1) ≤ 1

5
T (r, g − 1) + S(r)

a contradiction to (10-a), proving the statement of the Lemma.

Consequently, we will examine all situations leading to zeroes of order ≤ 4 for f, f−1, g, g−1
out of Σ. Actually, since f and g play the same role with respect to n and k, it is sufficient to
examine the situation, for instance, when g or g − 1 has a zero out of Σ of order s ≤ 4. In each
case we denote by t the order of the pole of f which is a zero of g or g − 1. Since s > t, we only
have to examine zeroes of g or g − 1 that are poles of f of order 1, 2, 3.

Supppose first g has a zero γ /∈ Σ of order s = 2. Then

2(n+ 1) = t(k + n+ 1) + 2 (12)

By (12) if t = 1 we find a solution:
n = k + 1 (13)

Next, if t ≥ 2, we check that 2n+ 2 < t(k + n+ 1) + 2, hence (13) is the only solution.

Suppose now g has a zero γ /∈ Σ of order s = 3. Then

3(n+ 1) = t(k + n+ 1) + 2 (14)

By (14) if t = 1 we find no solution because k ≤ n.
If t = 2 we find

n = 2k + 1 (15)

If t ≥ 3 we have 3(n+ 3) < 3(k + n+ 1) + 2 hence (15) is the only solution.

Supppose now g has a zero of order s = 4. Then

4(n+ 1) = t(k + n+ 1) + 2 (16)

If t = 1, since k ≤ n, we have 4(n+ 1) > t(k + n+ 1) + 2.
If t = 2, by (16) we have a solution

n = k (17)

If t = 3, we have another solution

n = 3k + 1 (18)

Consequently, by (13), (15), (16), (18), all possibilities for g to have a zero of order s ≤ 4 are
as follows:
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n = k + 1, s = 2, n = 2k + 1, s = 3, n = k, s = 4, n = 3k + 1, s = 4. (19)

Now, we will examine zeroes of g− 1 γ out of Σ of order ≤ 4. So, the order s′ of g− 1 satisfies

s′(k + 1) = t(k + n+ 1) + 2 (20)

Supppose first g − 1 has a zero γ /∈ Σ of order s′ = 2. Then by (20), we have

2(k + 1) = t(k + n+ 1) + 2 (21)

Since k ≤ n, we find no solution neither when t = 1 that would lead to k = n+ 1, nor when t ≥ 2
because 2(k + 1) < t(k + n+ 1) + 2.

Suppose now that s′ = 3.
If t = 1 we find a solution:

n = 2k (22)

If t ≥ 2, we have no solution with k ≤ n because 3(k + 1) < t(k + n+ 1) + 2

Suppose now that s′ = 4.
If t = 1 we find a solution:

n = 3k + 1 (23)

If t = 2 we find another solution:
n = k (24)

If t ≥ 3, we find no solution with k ≤ n because 4(k + 1) < t(k + n+ 1) + 2

Consequently, by (22), (23), (24), all possibilities for g − 1 to have a zero γ /∈ Σ of order s ≤ 4
are as follows:

n = 2k, s′ = 3, n = 3k + 1, s′ = 4, n = k, s′ = 4. (25)

Thus, we have proved that when n 6= k, k+ 1, 2k, 2k+ 1, 3k+ 1, none of the zeroes of f , f − 1,
g, g − 1 out of Σ is of order ≤ 4 and therefore the general statement of the Lemma is proved in
the case l = 2.

Now, suppose that θ is a constant and f, g belong to M(K) and suppose that n 6= k + 1. We
notice that Σ is now empty. Now (11) gets

T (r, f) + T (r, g) ≤ 2
(
Z(r, g) + Z(r, g − 1) + Z(r, f) + Z(r, f − 1)

)
− 2 log r +O(1) (11− a)

First, we have seen that zeroes of order 2 for g or g− 1 (hence also for f and f − 1) only occur
when n = k + 1. Consequently, excluding this case, all zeroes of f, f − 1, g, g − 1 are of order
≥ 3. We will examine each case.

Suppose first that all zeroes of f, f − 1, g, g − 1 are at least of order 4. Then Z(r, f) ≤
1
4
T (r, f), Z(r, f − 1) ≤ 1

4
T (r, f), Z(r, g) ≤ 1

4
T (r, g), Z(r, g− 1) ≤ 1

4
T (r, g− 1) a contradiction to

(11-a).
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And finally, suppose that all zeroes of f and g are at least of order 3 and all zeroes of f −1 and

g − 1 are at least of order 6. Then we have Z(r, f) ≤ 1
3
T (r, f), Z(r, f − 1) ≤ 1

6
T (r, f), Z(r, g) ≤

1
3
T (r, g), Z(r, g − 1) ≤ 1

6
T (r, g − 1), a contradiction to (11-a) again.

Recall that when f has a pole of order 4, g or g − 1, if it has a zero, must have a zero of order
≥ 5. Consequently, we only have to examine zeroes of g or g−1 that are poles of f of order 1, 2, 3.

For each pair (n, k) leading to an order s > 2 of zero of g, we will precisely examine the possible
order of zeroes of g − 1 and vice-versa.

First we have to consider the case n = 2k + 1. We know that if g has a zero, it is at least of
order 3. If g − 1 has a zero, by (3) its order s satisfies

s(k + 1) = t(3k + 2) + 2 (26)

We can check that no solution (s, t) exists with s ≤ 4.
Suppose now s = 5.
If t = 1, we check that 5(k + 1) > 3k + 4
If t ≥ 2, we have 5k + 5 < t(3k + 2) + 2.
Hence, if n = 2k+ 1, a zero of g− 1 has order ≥ 6. Indeed, such a possibility exists with s = 6

and t = 2. Consequently, we have

Z(r, g) + Z(r, g − 1) ≤ 1
2
T (r, g) (27)

Suppose now n = 3k + 1. We have seen that all zeroes of g and g − 1 have order at least 4.
Consequently, we have

Z(r, g) + Z(r, g − 1) ≤ 1
2
T (r, g) +O(1) (28)

Suppose now n = k, then g and g − 1 play the same role. All zeroes of g and g − 1 are at least
of order ≥ 4 hence we have again:

Z(r, g) + Z(r, g − 1) ≤ 1
2
T (r, g) +O(1). (29)

Finally, suppose n = 2k. We have seen that g admits no zero of order s < 5. So we must
examine the case s = 5. By (2) we have 5(2k + 1) = t(2k + k + 1) + 2. Then t = 1 is impossible.

If t = 2, we have 10k + 5 = 6k + 4, impossible.
If t = 3, we have 10k + 5 = 9k + 5.
And if t > 3, then 5(2k + 1) < t(3k + 1) + 2 for all k ≥ 2.
Consequently, all zeroes of g have order at least 6 and hence we have again

Z(r, g) + Z(r, g − 1) ≤ 1
2
T (r, g). (30)

Thus, since n 6= k + 1, by (27), (28), (29), (30) and the symmetric inequalities for f instead of
g, we have proved a contradiction to (11-a).

Case l=3 : Suppose that all zeroes of f, g, f − ai, g − ai ∀i ∈ {2, 3} are at least of order 4,
except maybe those lying in Σ: then

Z(r, f) ≤ 1
4
T (r, f) + S(r) and ∀i ∈ {2, 3}, Z(r, f − ai) ≤

1
4
T (r, f) + S(r),
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Z(r, g) ≤ 1
4
T (r, g) + S(r) and ∀i ∈ {2, 3}, Z(r, g − ai) ≤

1
4
T (r, g) + S(r)

Then using (10) we obtain l ≤ 2 a contradiction.

Consequently, we will examine all n and ki (i ∈ {2, 3}) leading to zeroes out of Σ of order ≤ 3
for f, g, f − ai, g − ai for all i ∈ {2, 3}. And since f and g play the same role, it is sufficient to
examine the situation, for instance, when g or some g− ai has a zero of order less than 3. In each
case we denote by t the order of the pole of f which is a zero of g or g − ai for some i. Recall
that when f has a pole of order 3, g or g − ai, if it has a zero, must have a zero of order ≥ 4.
Consequently, we only have to examine zeroes of g or g − ai (∀i ∈ {2, 3}) that are poles of f of
order 1, 2.

Supppose first g has a zero γ /∈ Σ of order s = 2. Then by (2) we have

2(n+ 1) = t(k + n+ 1) + 2 (31)

By (31) if t = 1 we find a solution:

n = k + 1 (32)

Next, if t = 2, we check that 2n+ 2 < 2(k + n+ 1) + 2, hence (32) is the only solution.

Supppose now g has a zero γ /∈ Σ of order s = 3. Then

3(n+ 1) = t(k + n+ 1) + 2 (33)

By (33) if t = 1 we find a solution :

n =
k

2
(34)

If t = 2 we find

n = 2k + 1 (35)

Consequently, by (32), (34), (35) all possibilities for g to have a zero of order s ≤ 3 are as
follows:

n = k + 1, s = 2, n =
k

2
, s = 3, n = 2k + 1, s = 3.

Now, let i ∈ {2, 3} and examine zeroes of g − ai, γ /∈ Σ of order si ≤ 3. So, by (3), the order
si of g − ai satisfies

si(ki + 1) = t(k + n+ 1) + 2 (36)

Supppose first g − ai has a zero γ /∈ Σ of order si = 2. Then by (36), we have

2(ki + 1) = t(k + n+ 1) + 2 (37)

Since ki ≤ n and ki ≤ k we have 2(ki + 1) < t(k + n + 1) + 2. Hence we find no solution for
(37).

Suppose now si = 3.
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If t = 1 we find a solution:

3ki = n+ k (38)

If t = 2, we have no solution because 3ki < 2(n+ k).

Consequently, the unique possibility for g − ai to have a zero γ /∈ Σ of order si ≤ 3 is :

n+ k = 3ki, si = 3.

Thus, we have proved that when n 6= k+1, k2 , 2k+1, 3ki−k none of the zeroes of f , g, f −ai,
g − ai (∀i ∈ {2, 3}) out of Σ is of order ≤ 3 and therefore the statement of the Lemma is proved
in the case l = 3.

Case l ≥ 4 :

Suppose now that all zeroes of f, g, f − ai, g − ai ∀i ∈ {2, .., l} are at least of order 3, except
maybe those lying in Σ: then

Z(r, f) ≤ 1
3
T (r, f) + S(r) and ∀i ∈ {2, .., l}, Z(r, f − ai) ≤

1
3
T (r, f) + S(r),

Z(r, g) ≤ 1
3
T (r, g) + S(r) and ∀i ∈ {2, .., l}, Z(r, g − ai) ≤

1
3
T (r, g) + S(r).

Then using (10) we obtain l ≤ 3, a contradiction.

Consequently, we will examine all n and ki (i ∈ {2, .., l}) leading to zeroes out of Σ of order ≤ 2
for f, g, f −ai, g−ai for all i ∈ {2, .., l}. Actually, since f and g play the same role, it is sufficient
to examine the situation, for instance, when g or some g − ai has a zero of order less than 2. In
each case we denote by t the order of the pole of f which is a zero of g or g− ai for some i. Recall
that when f has a pole of order 2, g or g− ai, if it has a zero, must have a zero of order ≥ 3. And
then, we only have to examine zeroes of g or g − ai (∀i ∈ {2, .., l}) that are poles of f of order 1.

Supppose first g has a zero γ /∈ Σ of order s = 2. Then γ is a pole of f of order t = 1. Then
by (2) we have

2(n+ 1) = (k + n+ 1) + 2 (39)

We find a solution :

n = k + 1. (40)

Now, let i ∈ {2, .., l} and suppose g − ai has a zero γ /∈ Σ of order si = 2. Then γ is a pole of
f of order t = 1. So by (3) we have :

2(ki + 1) = (n+ k + 1) + 2

That means 2ki = n + k + 1. Since ki ≤ n and ki ≤ k, we find no solution when si = 2 and
t = 1.

Consequently, by (40), the only possibility for g or some g − ai to have a zero γ /∈ Σ of order
≤ 2 is :
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n = k + 1.

As in the case l = 2, we now have to consider the situation l ≥ 3 when θ ∈ K and f, g belong
to M(K).

Obviously Σ = ∅ and we have seen that zeroes of order 2 for f , g, f − ai, g − ai (∀i ∈ {2, .., l})
only occur when n = k + 1. Consequently, excluding this case, all zeroes of f , g, f − ai, g − ai
(∀i ∈ {2, .., l}) are of order ≥ 3.

Thus suppose n 6= k + 1. Then,

Z(r, f) ≤ 1
3
T (r, f) and ∀i ∈ {2, .., l}, Z(r, f − ai) ≤

1
3
T (r, f) +O(1),

Z(r, g) ≤ 1
3
T (r, g) and ∀i ∈ {2, .., l}, Z(r, g − ai) ≤

1
3
T (r, g) +O(1)

By (11), we obtain (l − 1)(T (r, f) + T (r, g)) ≤ 2l
3 (T (r, f) + T (r, g)) − 2 log(r) + O(1). Hence

l < 3 a contradiction. This finishes the proof of the Lemma.

Lemma 10 is known and easily checked [4], [23]:

Lemma 10. Let f, g ∈ M(K) be transcendental (resp. let f, g ∈ Mu(d(0, R−))) satisfy (f −

a)fn = (g − a)gn with a ∈ K and let h =
f

g
. If h is not identically 1, then

g =
hn − 1
hn+1 − 1

, f =
hn+1 − h
hn+1 − 1

.

Notation: Let f, g ∈M(K)
(
resp. Let f ∈M(d(0, R−))

)
be such that f(0) 6= 0,∞

We denote by Z1)(r, f) the counting function of simple zeroes of f and by N1)(r, f) the counting
function of simple poles of f .

We denote by Z(2(r, f) the counting function of multple zeroes of f , each counted without
multiplcity, and we denote by N(2(r, f) the counting function of multple poles of f , each counted
without multiplcity, Consequently, by definition, one has Z(r, f) = Z1)(r, f) +Z(2(r, f), N(r, f) =
N1)(r, f) +N (2(r, f)

Finally we denote by Z[2](r, f) the counting fiunction of thev zeroes of f each counted multi-
plicity when it is at most 2 and with multiplicity 2 when it is bigger.

And here we denote by Z0(r, f ′) the counting function of the zeroes of f ′ that are not zeroes
of f(f − 1).

We will now prove the following Lemma 11 in a similar way as in [13], with however some
special properties due to p-adic analytic functions:

Lemma 11. Let f, g ∈ M(K)
(
resp. Let f ∈ M(d(0, R−))

)
be such that f(0) 6= 0,∞, and share

the value 1 C.M. If Ψf,g is not identically zero, then,

max(T (r, f), T (r, g)) ≤ N[2](r, f) + Z[2](r, f) +N[2](r, g) + Z[2](r, g)− 3 log r
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Proof. Since f and g share 1 CM, each simple zero of f − 1 is a simple zero of g − 1 and is a zero
of Ψf,g. Consequently, we have

Z(2(r, f − 1) = Z(2(r, g − 1) (1)

and

Z1)(r, f − 1) = Z1)(r, g − 1) ≤ Z(r,Ψf,g) (2)

Now, by Lemma 4 we have Z(r,Ψf,g) ≤ N(r,Ψf,g)− log r. Hence by (2) we obtain

Z1)(r, f − 1) = Z1)(r, g − 1) ≤ N(r,Ψf,g)− log r (3)

On the other hand, all poles of Ψf,g are simple and only occur at zeroes of f ′ and g′ and at multiple
poles of f and g. Consequently, we have

N(r,Ψf,g) ≤ Z0(r, f ′) + Z0(r, g′) + Z(2(r, f) + Z(2(r, g) (4)

By (3) and (4), we have

Z1)(r, f − 1) ≤ Z0(r, f ′) + Z0(r, g′) + Z(2(r, f) + Z(2(r, g)− log r,

therefore

Z1)(r, f − 1) ≤ N (2(r, f) +N (2(r, g) + Z0(r, f ′) + Z0(r, g′) + Z(2(r, f) + Z(2(r, g)− log r (5)

Recall that by Lemma 2 we have

Z(r, g′) ≤ Z(r, g) +N(r, g)− log r (6)

and from the definition of Z0(r, g′) we have

Z0(r, g′) + Z(2(r, g − 1) + Z(2(r, g)− Z(2(r, g) ≤ Z(r, g′)),

consequently, we obtain

Z0(r, g′) + Z(2(r, g − 1) ≤ Z(r, g′) + Z(2(r, g)− Z(2(r, g) (7)

But by (6) and (7) we have

Z0(r, g′) + Z(2(r, g − 1) ≤ Z(r, g) + Z(2(r, g)− Z(2(r, g) +N(r, g)− log r

and Z(r, g) + Z(2(r, g)− Z(2(r, g) is just Z(r, g). Consequently, by the last inequality, we have

Z0(r, g′) + Z(2(r, g − 1) ≤ N(r, g) + Z(r, g)− log r (8)

Now, Theorem N lets us write

T (r, f) ≤ N(r, f) + Z(r, f) + Z(r, f − 1)− Z0(r, f ′)− log r (9)

By (2) we notice that Z(r, f − 1) = Z1)(r, f − 1) +Z(2(r, f − 1) = Z1)(r, f − 1) +Z(2(r, g− 1). So,
by (9) we have

T (r, f) ≤ N(r, f) + Z(r, f) + Z1)(r, f − 1) + Z(2(r, g − 1)− Z0(r, f ′)− log r
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and hence, by (8), we derive

T (r, f) ≤ N(r, f) + Z(r, f) + Z1)(r, f − 1) +N(r, g) + Z(r, g)− Z0(r, g′)− Z0(r, f ′)− 2 log r.

And now, by (5) we obtain

T (r, f) ≤ N(r, f) + Z(r, f) +N (2(r, f) +N (2(r, g) + Z(2(r, f) + Z(2(r, g)

+Z0(r, g′) + Z0(r, f ′) +N(r, g) + Z(r, g)− Z0(r, g′)− Z0(r, f ′)− 3 log r.

But now, we notice that Z(r, f) + Z(2(r, f) = Z[2](r, f), Z(r, g) + Z(2(r, g) = Z[2](r, g), N(r, f) +
N (2(r, f) = N[2](r, f), N(r, g) + N (2(r, g) = N[2](r, g). We then obtain the conclusion of Lemma
11.

4 Proof of Theorems

Proof of the Theorems. The polynomial P is considered in theorems 1, 2, 3, 4, 5, 6, 7 and we
can assume a1 = 0. In Theorems 8, and 9, we call P the polynomial such that P ′(x) = xn(x− a)k

and P (0) = 0. Set F =
f ′P ′(f)

α
and G =

g′P ′(g)
α

. Clearly F and G share the value 1 C.M. Since

f, g are transcendental (resp. unbounded), we notice that so are F and G. Recall that

ΨF,G =
F ′′

F ′
− 2F ′

F − 1
− G′′

G′
+

2G′

G− 1

We will prove that under the hypotheses of each theorem, ΨF,G is identically zero.
Set F̂ = P (f), Ĝ = P (g). We notice that P (x) is of the form xn+1Q(x) with Q ∈ K[x] of

degree k. Now, with help of Lemma 2, we can check that we have

T (r, F̂ )− Z(r, F̂ ) ≤ T (r, F̂ ′)− Z(r, F̂ ′) +O(1)

Consequently, since (F̂ )′ = αF , we have

T (r, F̂ ) ≤ T (r, F ) + Z(r, F̂ )− Z(r, F ) + T (r, α) +O(1), (1)

hence, by (1), we obtain

T (r, F̂ ) ≤ T (r, F )+(n+1)Z(r, f)+Z
(
r,Q(f)

)
−nZ(r, f)−

l∑
i=2

kiZ(r, f−ai)−Z(r, f ′)+T (r, α)+O(1).

i.e.

T (r, F̂ ) ≤ T (r, F ) + Z(r, f) + Z
(
r,Q(f)

)
−

l∑
i=2

kiZ(r, f − ai)− Z(r, f ′) + T (r, α) +O(1). (2)

and similarly,

T (r, Ĝ) ≤ T (r,G) + Z(r, g) + Z
(
r,Q(g)

)
−

l∑
i=2

kiZ(r, g − ai)− Z(r, g′) + T (r, α) +O(1). (3)



p-adic meromorphic functions f ′P (f), g′P ′(g) sharing a small function 23

Now, it follows from the definition of F and G that

Z[2](r, F ) +N[2](r, F ) ≤ 2Z(r, f) + 2
l∑
i=2

Z(r, f − ai) + Z(r, f ′) + 2N(r, f) + T (r, α) +O(1) (4)

and similarly

Z[2](r,G) +N[2](r,G) ≤ 2Z(r, g) + 2
l∑
i=2

Z(r, g − ai) + Z(r, g′) + 2N(r, g) + T (r, α) +O(1) (5)

And particularly, if ki = 1, ∀i ∈ {2, .., l}, then

Z[2](r, F ) +N[2](r, F ) ≤ 2Z(r, f) +
l∑
i=2

Z(r, f − ai) + Z(r, f ′) + 2N(r, f) + T (r, α) +O(1) (6)

and similarly

Z[2](r,G) +N[2](r,G) ≤ 2Z(r, g) +
l∑
i=2

Z(r, g − ai) + Z(r, g′) + 2N(r, g) + T (r, α) +O(1). (7)

Suppose now that ΨF,G is not identically zero. Now, by Lemma 11, we have

T (r, F ) ≤ Z[2](r, F ) +N[2](r, F ) + Z[2](r,G) +N[2](r,G)− 3 log r

hence by (2), we obtain

T (r, F̂ ) ≤ Z[2](r, F ) +N[2](r, F ) + Z[2](r,G) +N[2](r,G) + Z(r, f) + Z(r,Q(f))

−
l∑
i=2

kiZ(r, f − ai)− Z(r, f ′) + T (r, α)− 3 log r +O(1)

and hence by (4) and (5):

T (r, F̂ ) ≤ 2Z(r, f)+2
l∑
i=2

Z(r, f−ai)+Z(r, f ′)+2N(r, f)+2Z(r, g)+2
l∑
i=2

Z(r, g−ai)+Z(r, g′)+

2N(r, g) + Z(r, f) + Z(r,Q(f))−
l∑
i=2

kiZ(r, f − ai)− Z(r, f ′) + 2T (r, α)− 3 log r +O(1) (8)

and similarly,

T (r, Ĝ) ≤ 2Z(r, g)+2
l∑
i=2

Z(r, g−ai)+Z(r, g′)+2N(r, g)+2Z(r, f)+2
l∑
i=2

Z(r, f−ai)+Z(r, f ′)+2N(r, f)

+Z(r, g) + Z(r,Q(g))−
l∑
i=2

kiZ(r, g − ai)− Z(r, g′) + 2T (r, α)− 3 log r +O(1). (9)
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Consequently,

T (r, F̂ )+T (r, Ĝ) ≤ 5(Z(r, f)+Z(r, g))+
l∑
i=2

(4−ki)(Z(r, f−ai)+Z(r, g−ai))+(Z(r, f ′)+Z(r, g′))+

4(N(r, f) +N(r, g)) + (Z(r,Q(f)) + Z(r,Q(g))) + 4T (r, α)− 6 log r +O(1). (10)

Moreover, if ki = 1, ∀i ∈ {2, .., l}, then by (6) and (7) we have

T (r, F̂ ) ≤ 2Z(r, f) +
l∑
i=2

Z(r, f − ai) + Z(r, f ′) + 2N(r, f) + 2Z(r, g) +
l∑
i=2

Z(r, g − ai)+

Z(r, g′) + 2N(r, g) + Z(r, f) + Z(r,Q(f))−
l∑
i=2

Z(r, f − ai)− Z(r, f ′) + 2T (r, α)− 3 log r +O(1)

and similarly,

T (r, Ĝ) ≤ 2Z(r, g) +
l∑
i=2

Z(r, g − ai) + Z(r, g′) + 2N(r, g) + 2Z(r, f) +
l∑
i=2

Z(r, f − ai)+

Z(r, f ′) + 2N(r, f) + Z(r, g) + Z(r,Q(g)))−
l∑
i=2

Z(r, g − ai)− Z(r, g′) + 2T (r, α)− 3 log r +O(1).

Consequently,

T (r, F̂ )+T (r, Ĝ) ≤ 5(Z(r, f)+Z(r, g))+
l∑
i=2

(Z(r, f−ai)+Z(r, g−ai))+Z(r,Q(f))+Z(r,Q(g))+

(Z(r, f ′) + Z(r, g′)) + 4(N(r, f) +N(r, g)) + 4T (r, α)− 6 log r +O(1) (11)

Now, let us go back to the general case. By Lemma 2, we can write Z(r, f ′) + Z(r, g′) ≤
Z(r, f − a2) + Z(r, g − a2) +N(r, f) +N(r, g)− 2 log r. Hence, in general, by (10) we obtain

T (r, F̂ ) + T (r, Ĝ) ≤

5(Z(r, f)+Z(r, g))+
l∑
i=3

(4−ki)
(
(Z(r, f−ai)+Z(r, g−ai))

)
+(5−k2)

(
(Z(r, f−a2)+Z(r, g−a2))

+5(N(r, f) +N(r, g)) + (Z(r,Q(f)) + Z(r,Q(g))) + 4T (r, α)− 8 log r +O(1)

and hence, since T (r,Q(f)) = kT (r, f) +O(1) and T (r,Q(g)) = kT (r, g) +O(1),

T (r, F̂ ) + T (r, Ĝ) ≤

5(T (r, f)+T (r, g))+
l∑
i=3

(4−ki)
(
(Z(r, f−ai)+Z(r, g−ai))

)
+(5−k2)

(
(Z(r, f−a2)+Z(r, g−a2))

+5(N(r, f) +N(r, g)) + k(T (r, f) + T (r, g)) + 4T (r, α)− 8 log r +O(1). (12)

And if ki = 1, ∀i ∈ {2, .., l}, by (11) and Lemma 2 we have
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T (r, F̂ ) +T (r, Ĝ) ≤ 5(Z(r, f) +Z(r, g)) +
l∑
i=2

(Z(r, f −ai) +Z(r, g−ai)) + (l− 1)(T (r, f) +T (r, g))

+(Z(r, f − a2) + Z(r, g − a2)) + 5(N(r, f) +N(r, g)) + 4T (r, α)− 8 log r +O(1)

hence

T (r, F̂ ) + T (r, Ĝ) ≤

5(T (r, f)+T (r, g))+
l∑
i=2

(T (r, f−ai)+T (r, g−ai))+(l−1)(T (r, f)+T (r, g))+(T (r, f−a2)+T (r, g−a2))

+5(N(r, f) +N(r, g)) + 4T (r, α)− 8 log r +O(1)

and hence

T (r, F̂ ) + T (r, Ĝ) ≤ (9 + 2l)(T (r, f) + T (r, g)) + +4T (r, α)− 8 log r +O(1) (13)

Now, let us go back to the general case. Since F̂ is a polynomial in f of degree n + k + 1, we
have T (r, F̂ ) = (n+ k+ 1)T (r, f) +O(1) and similarly, T (r, Ĝ) = (n+ k+ 1)T (r, g) +O(1), hence
by (12) we can derive

(n+ k + 1)(T (r, f) + T (r, g)) ≤

5(T (r, f) +T (r, g)) + (5−k2)(Z(r, f −a2) +Z(r, g−a2)) +
l∑
i=3

(4−ki)
(
(Z(r, f −ai) +Z(r, g−ai))

)
+5(N(r, f) +N(r, g)) + k(T (r, f) + T (r, g)) + 4T (r, α)− 8 log r +O(1). (14)

Hence

(n+k+ 1)(T (r, f) +T (r, g)) ≤ (10 +k)(T (r, f) +T (r, g) +
l∑
i=3

(4−ki)
(
(Z(r, f −ai) +Z(r, g−ai))

)
+(5− k2)(Z(r, f − a2) + Z(r, g − a2)) + 4T (r, α)− 8 log r +O(1).

and hence

n(T (r, f) + T (r, g)) ≤ 9(T (r, f) + T (r, g)) +
l∑
i=3

(4− ki)
(
(Z(r, f − ai) + Z(r, g − ai))

)
+(5− k2)(Z(r, f − a2) + Z(r, g − a2)) + 4T (r, α)− 8 log r +O(1). (15)

Then at least, for each i = 3, .., l we have

(4− ki)(Z(r, f − ai) + Z(r, g − ai)) ≤ max(0, 4− ki)(T (r, f) + T (r, g)) +O(1) and

(5− k2)(Z(r, f − a2) + Z(r, g − a2)) ≤ max(0, 5− k2)(T (r, f) + T (r, g)) +O(1).
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Consequently, by (15) we have

n(T (r, f) + T (r, g)) ≤ 9(T (r, f) + T (r, g))

+
l∑
i=3

max(0, 4− ki)(T (r, f) + T (r, g)) + max(0, 5− k2)(T (r, f) + T (r, g)) +O(1)

and hence,

n ≤ 9 +
l∑
i=3

max(0, 4− ki) + max(0, 5− k2). (16)

Moreover, if f, g belong to M(K) and α is a constant or a Moebius function, then T (r, α) ≤
log r +O(1) and hence by (15 )we have

n ≤ 8 +
l∑
i=3

max(0, 4− ki) + max(0, 5− k2) (17)

Now, if ki = 1, ∀i ∈ {2, .., l}, by (13) we have n+ k + 1 ≤ 9 + 2l, hence

n ≤ 9 + l. (18)

Particularly, if f, g ∈M(K) and if α is a constant or a Moebius function, then

n ≤ 8 + l (19)

Consequently, in the general case, if

n ≥ 10 +
l∑
i=3

max(0, 4− ki) + max(0, 5− k2)

we have ΨF,G = 0 which concerns Theorems 1 and 4.
Now, if f, g belong to M(K) and α is a constant or a Moebius function and if

n ≥ 9 +
l∑
i=3

max(0, 4− ki) + max(0, 5− k2)

we have ΨF,G = 0 again, which concerns Theorem 2 and 3.
Further, if ki = 1, ∀i ∈ {2, .., l}, when n ≥ l + 10 we have ΨF,G = 0 which concerns Theorems

5, 6, 10 and 9 when α is an ordinary small function.
In the same context, if f, g belong toM(K), and if α is a constant or a Moebius function, then

ΨF,G = 0 as soon as n ≥ l + 9 Theorems 7, 8 and 9 when α is a constant or a Moebius function.

Thus, henceforth, we can assume that ΨF,G = 0 in each hypothesis of all theorems.

Note that ΨF,G =
φ′

φ
with φ =

( F ′

(F − 1)2
)( (G− 1)2

G′

)
. Since φ = 0, there exist A,B ∈ K

such that
1

G− 1
=

A

F − 1
+B (20)
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and A 6= 0.
Now, we will consider the following two cases: B = 0 and B 6= 0.

Case 1: B = 0.
Suppose A 6= 1. Then, by (20), we have F =

1
A
G+

(
1− 1

A

)
. Applying Theorem N to F , we

obtain

T (r, F ) ≤ Z(r, F ) + Z
(
r, F −

(
1− 1

A

))
+N(r, F )− log r +O(1) ≤ Z(r, f) +

l∑
i=2

Z(r, f − ai)

+Z(r, f ′) + Z(r, g) +
l∑
i=2

Z(r, g − ai) + Z(r, g′) +N(r, f) + 3T (r, α)− log r +O(1). (21)

But Z(r, f) ≤ T (r, f), N(r, f) ≤ T (r, f), Z(r, f − 1) ≤ T (r, f − 1) ≤ T (r, f) +O(1) and
Z(r, f ′) ≤ T (r, f ′) ≤ 2T (r, f) +O(1). Moreover, by Lemma 1, T (r, F ) ≥ (n+ k)T (r, f)− T (r, α).
Then, considering all the previous inequalities in (12), we deduce that

(n+ k)T (r, f) ≤ (l + 3)T (r, f) + (l + 2)T (r, g) + 4T (r, α)− log r +O(1). (22)

Since f and g satisfy the same hypothesis, we also have

(n+ k)T (r, g) ≤ (l + 3)T (r, g) + (l + 2)T (r, f) + 4T (r, α)− log r +O(1). (23)

Hence, adding (22) and (23), we have

(n+ k)
[
T (r, f) + T (r, g)

]
≤ (2l + 5)

[
T (r, f) + T (r, g)

]
+ 4T (r, α) +O(1),

which leads to a contradiction whenever n+ k ≥ (2l + 6).
In the hypotheses of all theorems we have

n ≥ 9 +
l∑
i=3

max(0, 4− ki) + max(0, 5− k2).

That implies

n+k ≥ 9+k+
l∑
i=3

max(0, 4− ki) + max(0, 5− k2) = 9+
l∑
i=2

ki+
l∑
i=3

max(0, 4− ki) + max(0, 5− k2)

= 9 +
l∑
i=3

max(4, ki) + max(5, k2) ≥ 9 + 4(l − 2) + 5 ≥ 4l + 6.

Consequently, the inequality n+ k ≥ (2l + 6) is satisfied in Theorems 1, 2, 3, 4.
Next, if all ki are equal to 1, we assume that n ≥ l+9, hence n+k ≥ l+k+9 = 2l+8 (because

l = k+ 1) and hence the inequality n+ k ≥ (2l+ 6) is satisfied again in Theorems 5, 6, 7, 8, 9, 10.
Hence, we have A = 1 and this implies that F = G. Now, αF = αG, i.e. (F̂ )′ = (Ĝ)′. We

assume n ≥ k + 2 in Theorems 1, 2, 3 and this is automatically satisfied in Theorems 5, 7, 8, 9.
And we assume n ≥ k + 3 in Theorem 4 and this is automatically satisfied in Theorems 6 and 10.
Consequently, by Lemma 7, we have F̂ = Ĝ, i.e. P (f) = P (g). But in Theorems 1, 2, 3, 4, 5, 6, 7,
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8 P is a polynomial of uniqueness for the family of meromorphic functions we consider, hence we
have f = g. And in Theorems 9 and 10, the conclusion comes from Lemma 10.

Case 2: B 6= 0.
We have Z(r, F ) ≤ Z(r, f) +

∑l
i=2 Z(r, f − ai) + Z(r, f ′) + T (r, α) and

N(r, F ) ≤ N(r, f) + T (r, α) +O(1) and similarly for G, so we can derive

Z(r, F ) + Z(r,G) +N(r, F ) +N(r,G) ≤ Z(r, f) +
l∑
i=2

Z(r, f − ai) + Z(r, f ′) + Z(r, g)

+
l∑
i=2

Z(r, g − ai) + Z(r, g′) +N(r, f) +N(r, g) + 4T (r, α) +O(1)

≤ 5
[
T (r, f) + T (r, g)

]
+ 4T (r, α) +O(1). (24)

Moreover, by (20), T (r, F ) = T (r,G) +O(1) and, by Lemma 1, we have

T (r, f) ≤ 1
n+ k

(T (r, F ) + T (r, α)) +O(1)

and T (r, g) ≤ 1
n+ k

(T (r,G) + T (r, α)) +O(1). Consequently,

T (r, f) + T (r, g) ≤ 2
[ 1
n+ k

(T (r, F ) + T (r, α))
]

+O(1).

Thus, (24) is equivalent to

Z(r, F ) + Z(r,G) +N(r, F ) +N(r,G) ≤ 10
n+ k

T (r, F ) + (
10

n+ k
+ 4)T (r, α) +O(1).

Now, we can check that n + k ≥ 12 in all theorems. Consequently, the previous inequality
implies

Z(r, F ) + Z(r,G) +N(r, F ) +N(r,G) ≤ 10
12
T (r, F ) + (

10
12

+ 4)T (r, α) +O(1). (25)

Consequently, by (25) we can see that the hypotheses of Lemma 8 are satisfied and hence,
either F = G, or FG = 1.

If FG = 1, then f ′P ′(f)g′P ′(g) = α2. In Theorems 1,2, 4 we have assumed that n ≥ k + 2
and if l = 2, then n 6= 2k, 2k + 1, 3k + 1 and if l = 3 then n 6= 3k2 − k, 3k3 − k. Moreover, these
conditions are automatically satisfied in Theorems 5, 6, 7, 8, 9, 10, so we have a contradiction
to Lemma 9. In Theorem 3, we have assumed that n ≥ k + 2 hence by Lemma 9, we have a
contradiction again. Consequently, F = G, hence (F̂ )′ = (Ĝ)′ and therefore we can conclude as in
the case B = 0.
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