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HAL is a

Introduction and Main Results

Let f, g be two meromorphic functions in a p-adic field. Here we study polynomials P such that, when f P (f ) and g P (g) share a small function α, then f = g. Problems of uniqueness on meromorphic functions were examined first in C [START_REF] Fang | Entire functions that share one value[END_REF], [START_REF] Fang | A unicity theorem for entire functions concerning differential polynomials[END_REF], [START_REF] Fujimoto | On uniqueness of Meromorphic Functions sharing finite sets[END_REF], [START_REF] Hua | Uniqueness and value-sharing of meromorphic functions[END_REF], [START_REF] Khoai | On uniqueness polynomials and bi-URs for p-adic meromorphic functions[END_REF], [START_REF] Lahiri | Uniqueness of nonlinear differential polynomials sharing simple and double 1-points[END_REF], [START_REF] Li | Some further results on the unique range sets of meromorphic functions[END_REF], [START_REF] Lin | Uniqueness theorems for meromorphic functions concerning fixed-points[END_REF], [START_REF] Xu | Entire functions sharing one value I[END_REF], [START_REF] Yang | Unique polynomials of entire and meromorphic functions[END_REF] and next in a p-adic field [START_REF] An | Unique range sets and uniqueness polynomials in positive characteristic II[END_REF], [START_REF] Boutabaa | URS and URSIMS for p-adic meromorphic functions inside a disc[END_REF], [4], [START_REF] Escassut | Meromorphic functions of uniqueness[END_REF], [START_REF] Hoa | On the functional equation P (f ) = Q(g) in non-archimedean field[END_REF], [START_REF] Hu | Meromorphic functions over non archimedean fields[END_REF], [START_REF] Ojeda | Applications of the p-adic Nevanlinna theory to problems of uniqueness, Advances in p-adic and Non-Archimedean analysis[END_REF], [START_REF] Ojeda | Uniqueness for ultrametric analytic functions[END_REF], [START_REF] Wang | Uniqueness polynomials and bi-unique range sets[END_REF]. After examining problems of the form P (f ) = P (g), several studies were made on the equality f P (f ) = g P (g), or value sharing questions: if f P (f ) and g P (g) share a value, or a small function, do we have f = g? Here we will try to generalize results previously obtained no matter what the number of zeroes of P . Moreover results also apply to meromorphic functions inside an open disk.

Let K be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value denoted by | . |. We denote by A(K) the K-algebra of entire functions in K, by M(K) the field of meromorphic functions in K, i.e. the field of fractions of A(K) and by K(x) the field of rational functions.

Let a ∈ K and R ∈]0, +∞[. We denote by d(a, R) the closed disk {x ∈ K : |x -a| ≤ R} and by d(a, R -) the "open" disk {x ∈ K : |x -a| < R}. We denote by A(d(a, R -)) the set of analytic functions in d(a, R -), i.e. the K-algebra of power series The problem of value sharing a small function by functions of the form f P (f ) was examined first when P was just of the form x n [START_REF] Fang | Entire functions that share one value[END_REF], [START_REF] Ojeda | Applications of the p-adic Nevanlinna theory to problems of uniqueness, Advances in p-adic and Non-Archimedean analysis[END_REF], [START_REF] Yi | Uniqueness theorems of meromorphic functions[END_REF]. More recently it was examined when P was a polynomial such that P had exactly two distinct zeroes [START_REF] Lahiri | Uniqueness of nonlinear differential polynomials sharing simple and double 1-points[END_REF], [START_REF] Lin | Uniqueness theorems for meromorphic functions concerning fixed-points[END_REF], [START_REF] Ojeda | Uniqueness for ultrametric analytic functions[END_REF], both in complex analysis and in p-adic analysis. In [START_REF] Lahiri | Uniqueness of nonlinear differential polynomials sharing simple and double 1-points[END_REF], [START_REF] Lin | Uniqueness theorems for meromorphic functions concerning fixed-points[END_REF] the functions where meromorphic on C, with a small function that was a constant or the identity. In [START_REF] Ojeda | Uniqueness for ultrametric analytic functions[END_REF], the problem was considered for analytic functions in the field K: on one hand for entire functions and on the other hand for unbounded analytic functions in an open disk.

Actually solving a value sharing problem involving f P (f ), g P (g) requires to know polynomials of uniqueness P for meromorphic functions.

In [START_REF] Ojeda | Uniqueness for ultrametric analytic functions[END_REF] the third author studied several problems of uniqueness and particularly the following: Let f, g ∈ A(K) be transcendental resp. Let f, g ∈ A u (d(0, R -)) and α ∈ A(K) resp. α ∈ A u (d(0, R -)) be a small function, such that f n (f -a) k f and g n (g -a) k g share α, counting multiplicity, with n, k ∈ N and a ∈ K \ {0} (see Theorems D and E below).

Here we consider functions f, g ∈ M(K) or f, g ∈ M(d(a, R -)) and ordinary polynomials P : we must only assume certain hypotheses on the multiplicity order of the zeroes of P . The method for the various theorems we will show is the following: assuming that f P (f ) and g P (g) share a small function, we first prove that f P (f ) = g P (g). Next, we derive P (f ) = P (g). And then, when P is a polynomial of uniqueness for the functions we consider, we can conclude f = g. Now, in order to define small functions, we have to briefly recall the definitions of the classical Nevanlinna theory in the field K and a few specific properties of ultrametric analytic or meromorphic functions.

Let log be a real logarithm function of base b > 1 and let f ∈ M(K) resp. f ∈ M(d(0, R -)) having no zero and no pole at 0. Let r ∈]0, +∞[ resp. r ∈]0, R[ and let γ ∈ d(0, r). If f has a zero of order n at γ, we put ω γ (f ) = n. If f has a pole of order n at γ, we put ω γ (f ) = -n and finally, if f (γ) = 0, ∞, we set ω γ (f ) = 0

We denote by Z(r, f ) the counting function of zeroes of f in d(0, r), counting multiplicity, i.e. we set

Z(r, f ) = ωγ (f )>0, |γ|≤r ω γ (f )(log r -log |γ|).
Similarly, we denote by Z(r, f ) the counting function of zeroes of f in d(0, r), ignoring multiplicity, and set

Z(r, f ) = ωγ (f )>0, |γ|≤r (log r -log |γ|).
In the same way, we set

N (r, f ) = Z r, 1 f resp. N (r, f ) = Z r, 1 f
to denote the counting function of poles of f in d(0, r), counting multiplicity (resp. ignoring multiplicity).

For f ∈ M(d(0, R -)) having no zero and no pole at 0, the Nevanlinna function is defined by

T (r, f ) = max Z(r, f ) + log |f (0)|, N (r, f ) .
Now, we must recall the definition of a small function with respect to a meromorphic function and some pertinent properties.

Definition. Let f ∈ M(K) resp. let f ∈ M(d(0, R -)) such that f (0) = 0, ∞. A function α ∈ M(K) resp. α ∈ M(d(0, R -))
having no zero and no pole at 0 is called a small function

with respect to f , if it satisfies lim r→+∞ T (r, α) T (r, f ) = 0 resp. lim r→R - T (r, α) T (r, f ) = 0 .
If 0 is a zero or a pole of f or α, we can make a change of variable such that the new origin is not a zero or a pole for both f and α. Thus it is easily seen that the last relation does not really depend on the origin.

We denote by M f (K) resp. M f (d(0, R -)) the set of small meromorphic functions with respect to f in K resp. in d(0, R -) .

Remark 1. Thanks to classical properties of the Nevanlinna function T (r, f ) with respect to the operations in a field of meromorphic functions, such as

T (r, f + g) ≤ T (r, f ) + T (r, g) and T (r, f g) ≤ T (r, f ) + T (r, g), for f, g ∈ M(K) and r > 0, it is easily proved that M f (K) resp. M f (d(0, R -)) is a subfield of M(K) resp. M(d(0, R -)) and that M(K) resp. M(d(0, R)) is a transcendental extension of M f (K) resp. of M f (d(0, R -)) [6].
Let us remember the following definition.

Definition. Let f, g, α ∈ M(K) resp. let f, g, α ∈ M(d(0, R -)) .
We say that f and g share the function α C.M., if f -α and g -α have the same zeroes with the same multiplicity in K resp. in d(0, R -) .

Recall that a polynomial P ∈ K[x] is called a polynomial of uniqueness for a class of functions F if for any two functions f, g ∈ F the property P (f ) = P (g) implies f = g.

The definition of polynomials of uniqueness was introduced in [START_REF] Li | Some further results on the unique range sets of meromorphic functions[END_REF] by P. Li and C. C. Yang and was studied in many papers [START_REF] Frank | A unique range set for meromorphic functions with 11 elements[END_REF], [START_REF] Fujimoto | On uniqueness of Meromorphic Functions sharing finite sets[END_REF] for complex functions and [START_REF] An | Unique range sets and uniqueness polynomials in positive characteristic II[END_REF], [4], [START_REF] Escassut | Meromorphic functions of uniqueness[END_REF], [START_REF] Hoa | On the functional equation P (f ) = Q(g) in non-archimedean field[END_REF], [START_REF] Hu | Meromorphic functions over non archimedean fields[END_REF], [START_REF] Khoai | On uniqueness polynomials and bi-URs for p-adic meromorphic functions[END_REF], [START_REF] Wang | Uniqueness polynomials and bi-unique range sets[END_REF], for p-adic functions.

Actually, in a p-adic field, we can obtain various results, not only for functions defined in the whole field K but also for functions defined inside an open disk because the p-adic Nevanlinna Theory works inside a disk, for functions of M u (d(0, R -)).

Let us recall Theorem A [5], [21]:

Theorem A. Let P ∈ K[x] be such that P has exactly two distinct zeroes γ 1 of order c 1 and γ 2 of order c 2 . Then P is a polynomial of uniqueness for A(K). Moreover, if min{c 1 , c 2 } ≥ 2, then P is a polynomial of uniqueness for M(K).

Theorem A was first proved in [START_REF] Wang | Uniqueness polynomials and bi-unique range sets[END_REF] with the addiditional hypothesis P (c 1 ) = P (c 2 ). Actually this hypothesis is useless because, as showed in Lemma 10 [5], the equality P (c 1 ) = P (c 2 ) is impossible since P only has two distinct zeroes.

Notation: Let P ∈ K[x] \ K and let Ξ(P ) be the set of zeroes c of P such that P (c) = P (d) for every zero d of P other than c. We denote by Φ(P ) the cardinal of Ξ(P ).

Remark 2. If deg(P ) = q then Φ(P ) ≤ q -1.

From [START_REF] Escassut | Meromorphic functions of uniqueness[END_REF] we have the following results:

Theorem B. Let d(a, R -) be an open disk in K and P ∈ K[x].
If Φ(P ) ≥ 2 then P is a polynomial of uniqueness for A(K). If Φ(P ) ≥ 3 then P is a polynomial of uniqueness for both A u (d(a, R -)) and M(K). If Φ(P ) ≥ 4 then P is a polynomial of uniqueness for M u (d(a, R -)).

And from [START_REF] Ojeda | Uniqueness for ultrametric analytic functions[END_REF] we have: Theorem C. Let P ∈ K[x] be of degree n ≥ 6 be such that P only has two distinct zeroes, one of them being of order 2. Then P is a polynomial of uniqueness for M u (d(0, R -)).

In [START_REF] Ojeda | zeros of ultrametric meromorphic functions f f n (f -a) k -α[END_REF], the third author proved the following theorems concerning entire functions and analytic functions in a disk: We can now state our main theorems.

Theorem D. Let f, g ∈ A(K) be transcendental such that f n (f -a) k f and g n (g -a) k g share the function α ∈ A f (K) ∩ A g (K) C.M. with n, k ∈ N and a ∈ K \ {0}. If n ≥ max{6 -k, k + 1}, then f = g. Moreover, if α ∈ K \ {0} and n ≥ max{5 -k, k + 1}, then f = g. Theorem E. Let f, g ∈ A u (d(0, R -)), let α ∈ A f (d(0, R -)) ∩ A g (d(0, R -)) and let a ∈ K \ {0}. If f n (f -a) 2
Theorem 1. Let P be a polynomial of uniqueness for M(K), let

P = b(x -a 1 ) n l i=2 (x -a i ) ki with b ∈ K * , l ≥ 2, k i ≥ k i+1 , 2 ≤ i ≤ l -1 and let k = l i=2 k i . Suppose P satisfies the following conditions: n ≥ 10 + l i=3 max(0, 4 -k i ) + max(0, 5 -k 2 ), n ≥ k + 2, if l = 2, then n = 2k, 2k + 1, 3k + 1, if l = 3, then n = 2k + 1, 3k i -k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α ∈ M f (K) ∩ M g (K) be non-identically zero. If f P (f ) and g P (g) share α C.M., then f = g.

By Theorem B, we have Corollary 1.1:

Corollary 1.1 Let P ∈ K[x] satisfy Φ(P ) ≥ 3, let P = b(x -a 1 ) n l i=2 (x -a i ) ki with b ∈ K * , l ≥ 3, k i ≥ k i+1 , 2 ≤ i ≤ l -1 and let k = l i=2 k i . Suppose P satisfies the following conditions: n ≥ 10 + l i=3 max(0, 4 -k i ) + max(0, 5 -k 2 ), n ≥ k + 2, if l = 3, then n = 2k + 1, 3k i -k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α ∈ M f (K) ∩ M g (K) be non-identically zero. If f P (f ) and g P (g) share α C.M., then f = g.

And by Theorem A we also have Corollary 1.2.

Corollary 1.2 Let P ∈ K[x] be such that P is of the form b(x -a 1 ) n (x -a 2 ) k with min(k, n) ≥ 2.
Suppose P satisfies the following conditions: n ≥ 10 + max(0, 5 -k), n ≥ k + 2, n = 2k, 2k + 1, 3k + 1. Let f, g ∈ M(K) be transcendental and let α ∈ M f (K) ∩ M g (K) be non-identically zero. If f P (f ) and g P (g) share α C.M., then f = g. Theorem 2. Let P be a polynomial of uniqueness for M(K), let

P = b(x -a 1 ) n l i=2 (x -a i ) ki with b ∈ K * , l ≥ 2, k i ≥ k i+1 , 2 ≤ i ≤ l -1 and let k = l i=2 k i .
Suppose P satisfies the following conditions:

n ≥ 9 + l i=3 max(0, 4 -k i ) + max(0, 5 -k 2 ), n ≥ k + 2, if l = 2, then n = 2k, 2k + 1, 3k + 1, if l = 3, then n = 2k + 1, 3k i -k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f P (f ) and g P (g) share α C.M., then f = g.

By Theorem B, we have Corollary 2.1.

Corollary 2.1 Let P ∈ K[x] satisfy Φ(P ) ≥ 3, let P = b(x -a 1 ) n l i=2 (x -a i ) ki with b ∈ K * , l ≥ 3, k i ≥ k i+1 , 2 ≤ i ≤ l -1 and let k = l i=2 k i .
Suppose P satisfies the following conditions:

n ≥ 9 + l i=3 max(0, 4 -k i ) + max(0, 5 -k 2 ), n ≥ k + 2, if l = 3, then n = 2k + 1, 3k i -k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f P (f ) and g P (g) share α C.M., then f = g.

And by

Theorem A, we have Corollary 2.2.

Corollary 2.2 Let P ∈ K[x] be such that P is of the form b(x -a 1 ) n (x -a 2 ) k with min(k, n) ≥ 2
and with b ∈ K * . Suppose P satisfies the following conditions:

n ≥ 9 + max(0, 5 -k), n ≥ k + 2, n = 2k, 2k + 1, 3k + 1, Let f, g ∈ M(K)
be transcendental and let α be a Moebius function. If f P (f ) and g P (g) share α C.M., then f = g. Theorem 3. Let P be a polynomial of uniqueness for M(K), let

P = b(x -a 1 ) n l i=2 (x -a i ) ki with b ∈ K * , l ≥ 2, k i ≥ k i+1 , 2 ≤ i ≤ l -1 and let k = l i=2 k i . Suppose P satisfies the following conditions: n ≥ k + 2, n ≥ 9 + l i=3 max(0, 4 -k i ) + max(0, 5 -k 2 ).
Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f P (f ) and g P (g) share α C.M., then f = g.

By Theorem B, we have Corollary 3.1.

Corollary 3.1 Let P ∈ K[x] satisfy Φ(P ) ≥ 3, let P = b(x -a 1 ) n l i=2 (x -a i ) ki with b ∈ K * , l ≥ 3, k i ≥ k i+1 , 2 ≤ i ≤ l -1 and let k = l i=2 k i . Suppose P satisfies the following conditions: n ≥ k + 2, n ≥ 9 + l i=3 max(0, 4 -k i ) + max(0, 5 -k 2 ).
Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f P (f ) and g P (g) share α C.M., then f = g.

And by

Theorem A, we have Corollary 3.2

Corollary 3.2 Let P ∈ K[x] be such that P is of the form b(x -a 1 ) n (x -a 2 ) k with k ≥ 2 and with b ∈ K * . Suppose P satisfies the following conditions: n ≥ 9 + max(0, 5 -k), n ≥ k + 2, n = 2k, 2k + 1, 3k + 1.
Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f P (f ) and g P (g) share α C.M., then f = g. Theorem 4. Let a ∈ K and R > 0. Let P be a polynomial of uniqueness for M u (d(a, R -)) and

let P = b(x -a 1 ) n l i=2 (x -a i ) ki with b ∈ K * , l ≥ 2, k i ≥ k i+1 , 2 ≤ i ≤ l -1 and let k = l i=2 k i .
Suppose P satisfies the following conditions:

n ≥ 10 + l i=3 max(0, 4 -k i ) + max(0, 5 -k 2 ), n ≥ k + 3, if l = 2, then n = 2k, 2k + 1, 3k + 1, if l = 3, then n = 2k + 1, 3k i -k ∀i = 2, 3. Let f, g ∈ M u (d(a, R -)) and let α ∈ M f (d(a, R -)) ∩ M g (d(a, R -)) be non-identically zero. If f P (f ) and g P (g) share α C.M., then f = g.
By Theorem B we can state Corollary 4.1.

Corollary 4.1 Let a ∈ K and R > 0. Let P ∈ K[x] satisfy Φ(P ) ≥ 4, let P = b(x -a 1 ) n l i=2 (x -a i ) ki with b ∈ K * , l ≥ 4, k i ≥ k i+1 , 2 ≤ i ≤ l -1 and let k = l i=2 k i . Suppose P satisfies the following conditions: n ≥ 10 + l i=3 max(0, 4 -k i ) + max(0, 5 -k 2 ), n ≥ k + 3, Let f, g ∈ M u (d(a, R -)) and let α ∈ M f (d(a, R -)) ∩ M g (d(a, R -)) be non-identically zero. If f P (f ) and g P (g) share α C.M., then f = g.
And by Theorem C we have Corollary 4.2:

Corollary 4.2 Let a ∈ K and R > 0. Let P ∈ K[x] be such that P is of the form b(x -a 1 ) n (x -a 2 ) 2 with b ∈ K * . Suppose P satisfies n ≥ 10 + max(0, 5 -k). Let f, g ∈ M u (d(a, R -)) and let α ∈ M f (d(a, R -)) ∩ M f (d(a, R -)) be non-identically zero. If f P (f ) and g P (g) share α C.M., then f = g. Theorem 5. Let P be a polynomial of uniqueness for M(K) such that P is of the form b(x -a 1 ) n l i=2 (x -a i ) with l ≥ 3 , b ∈ K * , satisfying: n ≥ l + 10. Let f, g ∈ M(K) be transcendental and let α ∈ M f (K) ∩ M g (K) be non-identically zero. If f P (f ) and g P (g) share α C.M., then f = g.
By Theorem B, we have Corollary 5.1:

Corollary 5.1 Let P ∈ K[x] satisfy Φ(P ) ≥ 3 and be such that P is of the form b(x -a 1 ) n l i=2 (x -a i ) with l ≥ 3, b ∈ K * satisfying: n ≥ l + 10.
Let f, g ∈ M(K) be transcendental and let α ∈ M f (K) ∩ M g (K) be non-identically zero. If f P (f ) and g P (g) share α C.M., then f = g. Theorem 6. Let a ∈ K and R > 0. Let P be a polynomial of uniqueness for

M u (d(a, R -)) such that P is of the form P = b(x -a 1 ) n l i=2 (x -a i ) with l ≥ 3, b ∈ K * satisfying: n ≥ l + 10. Let f, g ∈ M u (d(a, R -)) and let α ∈ M f (d(a, R -)) ∩ M g (d(a, R -)) be non-identically zero. If f P (f ) and g P (g) share α C.M., then f = g.
By Theorem B, we have Corollary 6.1:

Corollary 6.1 Let a ∈ K and R > 0. Let P ∈ K[x] satisfy Φ(P ) ≥ 4 and be such that P is of the form P = b(x -a 1 ) n l i=2 (x -a i ) with l ≥ 4, b ∈ K * and n ≥ l + 10. Let f, g ∈ M u (d(a, R -)) and let α ∈ M f (d(a, R -)) ∩ M g (d(a, R -)) be non-identically zero. If f P (f ) and g P (g) share α C.M., then f = g. Example: Let P (x) =
x 18 18 -2x 17 17 -x 16 16 + 2x 15 15 . Then P (x) = x 17 -2x 16 -x 15 + 2x 14 =

x 14 (x -1)(x + 1)(x -2). We check that: 16 15 = 0, P (1), P (-1).

P (0) = 0, P (1) 
Then Φ(P ) = 4. So, P is a polynomial of uniqueness for both M(K) and M(d(0, R -)). Moreover, we have n = 14, l = 4, hence we can apply Corollaries 5.1 and 6.1. Given f, g ∈ M(K) transcendental or f, g ∈ M u (d(0, R -)) such that f P (f ) and g P (g) share a small function α C.M., we have f = g. Theorem 7. Let P be a polynomial of uniqueness for M(K) such that P is of the form

P = b(x -a 1 ) n l i=2 (x -a i ) with l ≥ 3, b ∈ K * satisfying n ≥ l + 9.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f P (f ) and g P (g) share α C.M., then f = g. Theorem 8. Let P be a polynomial of uniqueness for M(K) such that P is of the form

P = b(x -a 1 ) n l i=2 (x -a i ) with l ≥ 3, b ∈ K * satisfying n ≥ l + 9.
Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f P (f ) and g P (g) share α C.M., then f = g.

Example: Let P (x) = x q -ax q-2 + b with a ∈ K * , b ∈ K, with q ≥ 5 an odd integer. Then q and q -2 are relatively prime and hence by Theorem 3.21 [START_REF] Hu | Meromorphic functions over non archimedean fields[END_REF] P is a uniqueness polynomial for M(K) and P admits 0 as a zero of order n = q -3 and two other zeroes of order 1.

Let f, g ∈ M(K) be transcendental and let α ∈ M(K) be a small function such that f P (f ), g P (g) share α C.M.

Suppose first q ≥ 17. By Theorem 5 we have f = g. Now suppose q ≥ 15 and suppose α is a Moebius function or a non-zero constant. Then by Theorem 7 and 8, we have f = g. Inside an open disk, we have a version similar to the general case in the whole field. 

Theorem 9. Let f, g ∈ M(K) be transcendental and let α ∈ M f (K) ∩ M g (K) be non-identically zero. Let a ∈ K \ {0}. If f f n (f -a) and g g n (g -a) share the function α C.M. and if n ≥ 12, then either f = g or there exists h ∈ M(K) such that f = a(n + 2) n + 1 h n+1 -1 h n+2 -1 h and g = a(n + 2) n + 1 h n+1 -1 h n+2 -1 . Moreover, if α is a constant
Theorem 10. Let f, g ∈ M u (d(0, R -)), and let α ∈ M f (d(0, R -)) ∩ M g (d(0, R -)) be non- identically zero. Let a ∈ K \ {0}. If f f n (f -a)
∈ M(d(0, R -)) such that f = a(n + 2) n + 1 h n+1 -1 h n+2 -1 h and g = a(n + 2) n + 1 h n+1 -1 h n+2 -1 .
Remark 3. In Theorems 9 and 10, the second conclusion does occur. Indeed, let h ∈ M(K) (resp.

let h ∈ M u (d(0, R -)))
. Now, let us precisely define f and g as:

g = ( n + 2 n + 1 ) h n+1) -1 h n+2 -1 and f = hg.
Then we can see that the polynomial

P (y) = 1 n + 2 y n+2 - 1 n + 1 y n+1 satisfies P (f ) = P (g),
hence f P (f ) = g P (g), therefore f P (f ) and g P (g) trivially share any function.

Basic Results

Let us recall a few classical lemmas [START_REF] Boutabaa | URS and URSIMS for p-adic meromorphic functions inside a disc[END_REF], [4], [START_REF] Hu | Meromorphic functions over non archimedean fields[END_REF]:

Lemma 1. Let f ∈ M(K) (resp. Let f ∈ M(d(0, R -))), let a ∈ K, let Q(x) ∈ K[x] of degree s. Then T (r, Q(f )) = sT (r, f ) + O(1) and T (r, f Q(f )) ≥ sT (r, f ) + O(1). Lemma 2. Let f ∈ M(K) (resp. Let f ∈ M(d(0, R -))). Then N (r, f ) = N (r, f )+N (r, f ), Z(r, f ) ≤ Z(r, f ) + N (r, f ) -log r + O(1). Moreover, T (r, f ) -Z(r, f ) ≤ T (r, f ) -Z(r, f ) + O(1)
.

Notation: Given two meromorphic functions f, g ∈ M(K) (resp. f, g ∈ M(d(0, R -))), we will denote by Ψ f,g the function

f f - 2f f -1 - g g + 2g g -1 . Lemma 3. Let f ∈ M(K) (resp. Let f ∈ M(d(0, R -))) and let ψ = f f . Then Z(r, ψ) ≤ N (r, ψ) -log r + O(1).
The following Lemma 4 is an immediate consequence of Lemma 3:

Lemma 4. The function Ψ f,g satisfies Z(r, Ψ f,g ) ≤ N (r, Ψ f,g ) -log r. Lemma 5. Let f, g ∈ M(K) (resp. Let f, g ∈ M(d(0, R -))). If a is a simple zero of f -1 and g -1, it is a zero of Ψ f,g .
In order to state the following lemma, we must recall the definition of quasi-eceptional values [START_REF] Ojeda | zeros of ultrametric meromorphic functions f f n (f -a) k -α[END_REF].

(i) Let f ∈ M(K) \ K. (resp. let f ∈ M u (d(0, R -)))
. Then b will be said to be a Picard exceptional value of f (or just an exceptional value

) if f (x) = b ∀x ∈ K (resp f (x) = b ∀x ∈ d(0, R -)). (ii) Let f ∈ M(K) \ K(x). (resp. let f ∈ M u (d(0, R -))
) and let b ∈ K. Then b will be said to be a quasi-exceptional value of f if the function f -b has a finite number of zeroes in K (resp. in d(0, R -)).

The following results are then immediate [START_REF] Ojeda | zeros of ultrametric meromorphic functions f f n (f -a) k -α[END_REF]:

Lemma 6. Let f ∈ A(K)\K resp. let f ∈ A u (d(0, R -)) . Then f has no exceptional value. If f is transcendental, it has no quasi-exceptional value. Let f ∈ M(K) \ K resp. let f ∈ M u (d(0, R -)) .
Then f has at most one exceptional value in

K. Let f ∈ M(K) be transcendental resp. let f ∈ M u (d(0, R -))
. Then f has at most one quasi-exceptional value in K.

We now have to recall the ultrametric Nevanlinna Second Main Theorem in a basic form which we will frequently use.

Let f ∈ MK resp. f ∈ M(d(0, R -)) satisfy f (0) = 0, ∞.
Let S be a finite subset of K and r ∈]0, +∞[ resp. r ∈]0, R[ . We denote by Z S 0 (r, f ) the counting function of zeroes of f in d(0, r) which are not zeroes of any f -s for s ∈ S. This is, if (γ n ) n∈N is the finite or infinite sequence of zeroes of f in d(0, r) that are not zeroes of f -s for s ∈ S, with multiplicy order q n respectively, we set

Z S 0 (r, f ) = |γn|≤r q n (log r -log |γ n |). Theorem N. [2], [3] Let a 1 , ..., a q ∈ K with q ≥ 2, q ∈ N, and let f ∈ M(K) (resp. let f ∈ M(d(0, R -)))
. Let S = {a 1 , ..., a q }. Assume that none of f, f and f -a j with 1 ≤ j ≤ q, equals 0 or ∞ at the origin. Then, for r > 0 resp. for r ∈]0, R[ , we have

(q -1)T (r, f ) ≤ q j=1 Z(r, f -a j ) + N (r, f ) -Z S 0 (r, f ) -log r + O(1).

Specific Lemmas

We will need the following Lemma 7:

Lemma 7. Let f, g ∈ M(K) be transcendental (resp. f, g ∈ M u (d(0, R -))). Let P (x) = x n+1 Q(x) be a polynomial such that n ≥ deg(Q) + 2 (resp. n ≥ deg(Q) + 3). If P (f )f = P (g)g then P (f ) = P (g).
Proof : Put k = deg(Q). Since P (f )f = P (g)g there exists c ∈ K such that P (f ) = P (g) + c. Suppose that c = 0. Then by Theorem N, we have

T (r, P (f )) ≤ Z(r, P (f )) + Z(r, P (f ) -c) + N (r, P (f )) -log r + O(1). (1) 
Obviously we see that Z(r, P (f 1) and then Z(r, P (f )) ≤ (k +1)T (r, f )+O [START_REF] An | Unique range sets and uniqueness polynomials in positive characteristic II[END_REF]. We also have Z(r, P (f ) -c) = Z(r, P (g)) ≤ Z(r, g) + Z(r, Q(g)) ≤ T (r, g) + T (r, Q(g)). Then by Lemma 1, Z(r, P (f ) -c) ≤ (k + 1)T (r, g) + O(1). Notice that N (r, P (f )) = N (r, f ) ≤ T (r, f ) + O(1) then by ( 1) we obtain T (r, P (f )) ≤ (k + 2)T (r, f ) + (k + 1)T (r, g) -log r + O(1).

)) = Z(r, f n+1 Q(f )) = Z(r, f Q(f )) ≤ T (r, f Q(f )). By Lemma 1 we have T (r, f Q(f )) = (k +1)T (r, f )+O(
(

) 2 
According to Lemma 1 we have T (r, P (f )) = (n + k + 1)T (r, f ) + O(1). Then by (2) we have

nT (r, f ) ≤ T (r, f ) + (k + 1)T (r, g) -log r + O(1). (3) 
We similarly we obtain nT (r, g) ≤ T (r, g)

+ (k + 1)T (r, f ) -log r + O(1). (4) 
Hence adding ( 3) and ( 4) we have

n(T (r, f ) + T (r, g)) ≤ (k + 2) T (r, f ) + T (r, g) -2 log r + O(1)
and then

0 ≤ (k + 2 -n) T (r, f ) + T (r, g) -2 log r + O(1).
That leads to a contradiction because n ≥ k + 2 (resp. n ≥ k + 3) and lim r→+∞ (T (r, f ) + T (r, g)) = +∞ (resp. lim r→R (T (r, f ) + T (r, g)) = +∞). Thus c = 0 and consequently P (f ) = P (g). 

lim r→R -T (r, F ) -[Z(r, F ) + N (r, F ) + Z(r, G) + N (r, G)] = +∞) then either F = G or F G = 1.
Proof. Suppose Ψ F,G = 0 and that the above limit is +∞ in the situation we consider:

F, G ∈ M(K) or F, G ∈ M(d(0, R -)). Since Ψ F,G = φ φ with φ = F (F -1) 2 (G -1) 2 G , there exist a, b ∈ K with a = 0, such that 1 F -1 = a G -1 + b, this is, F = (1 + b)G + a -(1 + b) bG + (a -b) . Hence F = AG + B CG + D (1) 
with A, B, C, D ∈ K.

Let r > 0 resp. Let r ∈]0, R[ . Consider the following three cases:

• Case 1: A = 0 and C = 0.

By (1), we have

F - B D = A D G. Suppose B = 0. Then Z r, F - B D = Z(r, G).
So, applying Theorem N to F , we obtain 

T (r, F ) ≤ Z(r, F ) + Z r, F - B D + N (r, F ) -log r + O(1) = Z(r, F ) + Z(r, G) + N (r, F ) -log r + O(1) < Z(r, F ) + N (r, F ) + Z(r, G) + N (r, G) + O(
F (x) = B C . Then, it is necessary that F (x) = B C
. Hence, as in Case 1, F omits two values in K which is impossible (Lemma 6), F is a constant, a contradiction again. Consequently B C = 1 and, hence F G = 1.

• Case 3: AC = 0.

By (1), we have

F - A C = B -AD C CG + D and hence Z r, F - A C = N (r, G). Applying Theorem N
to F , we have

T (r, F ) ≤ Z(r, F ) + Z r, F - A C + N (r, F ) -log r + O(1) = Z(r, F ) + N (r, G) + N (r, F ) -log r + O(1) < Z(r, F ) + N (r, F ) + Z(r, G) + N (r, G) + O(1),
a contradiction to our hypothesis, again.

Lemma 9. Let Q(x) = (x -a 1 ) n l i=2 (x -a i ) ki ∈ K[x] (a i = a j , ∀i = j) with l ≥ 2 and n ≥ max{k 2 , .., k l } and let k = l i=2 k i . Let f, g ∈ M(K) be transcendental (resp. f, g ∈ M u (d(0, R -))) such that θ = Q(f )f Q(g)
g is a small function with respect to f and g. We have the following :

If l = 2 then n belongs to {k, k + 1, 2k, 2k + 1, 3k + 1}.

If l = 3 then n belongs to { k 2 , k + 1, 2k + 1, 3k 2 -k, .., 3k l -k}. If l ≥ 4 then n = k + 1. If θ is a constant and f, g ∈ M(K) then n = k + 1.

Proof. Without loss of generality, we can assume a

1 = 0. Suppose f, g ∈ M(K) (resp. f, g ∈ M u (d(0, R -))) satisfy f n ( l i=2 (f -a i ) ki )f g n ( l i=2 (g -a i ) ki )g = θ (1)
Let Σ be the set of zeroes and poles of θ. We will denote by S(r) any function ϕ defined in ]0, +∞[ (resp. in ]0, R[) such that lim r→+∞ ϕ(r) T (r, f ) = 0 and lim r→+∞ ϕ(r) T (r, g) = 0.

Let γ ∈ K \ Σ (resp. γ ∈ d(0, R -) \ Σ) be a zero of g of order s. Clearly, by (1), γ is a pole of f of order, for example, t. And since γ is neither a zero nor a pole of θ we can derive the following relation

s(n + 1) = t(n + k + 1) + 2 (2)
Now, suppose that for i ∈ {2, .., l}, g -a i has a zero γ ∈ K \ Σ (resp. γ ∈ d(0, R -) \ Σ) of order s i . It is a pole of f of order t i . So, by (2), we obtain

s i (k i + 1) = t i (n + k + 1) + 2 (3)
By ( 2) and ( 3) it is obvious that s > t and s i > t i and hence, s ≥ 2,

s i ≥ 2. Consider now a pole γ ∈ K \ Σ (resp. γ ∈ d(0, R -) \ Σ) of f .
Either it is a zero of g, or it is a zero of g -a i for some i ∈ {2, .., l}, or it is a zero of g that is neither a zero of g nor a zero of g -a i (∀i ∈ {2, .., l}). Let Z 0 (r, g ) be the counting function of zeroes of g that are neither a zero of g nor a zero of g -a i for all i ∈ {2, .., l} (counting multiplicity) and let Z 0 (r, g ) be the counting function of zeroes of g that are neither a zero of g nor a zero of g -a i for all i ∈ {2, .., l}, ignoring multiplicity. Since T (r, θ) = S(r), we have Without loss of generality, we can assume a 2 = 1. Relation (10) now becomes

T (r, f ) + T (r, g) ≤ 2 Z(r, g) + Z(r, g -1) + Z(r, f ) + Z(r, f -1) + S(r) (10 -a)
Suppose now that all zeroes of f, f -1, g, g -1 are at least of order 5, except maybe those lying in Σ: then

Z(r, f ) ≤ 1 5 T (r, f ) + S(r), Z(r, f -1) ≤ 1 5 T (r, f ) + S(r), Z(r, g) ≤ 1 5 T (r, g) + S(r), Z(r, g -1) ≤ 1 5 T (r, g -1) + S(r)
a contradiction to (10-a), proving the statement of the Lemma.

Consequently, we will examine all situations leading to zeroes of order ≤ 4 for f, f -1, g, g -1 out of Σ. Actually, since f and g play the same role with respect to n and k, it is sufficient to examine the situation, for instance, when g or g -1 has a zero out of Σ of order s ≤ 4. In each case we denote by t the order of the pole of f which is a zero of g or g -1. Since s > t, we only have to examine zeroes of g or g -1 that are poles of f of order 1, 2, 3.

Supppose first g has a zero γ / ∈ Σ of order s = 2. Then

2(n + 1) = t(k + n + 1) + 2 (12) 
By ( 12) if t = 1 we find a solution:

n = k + 1 (13) 
Next, if t ≥ 2, we check that 2n + 2 < t(k + n + 1) + 2, hence ( 13) is the only solution.

Suppose now g has a zero γ / ∈ Σ of order s = 3. Then 3(n + 1) = t(k + n + 1) + 2 ( 14)

By ( 14) if t = 1 we find no solution because k ≤ n.

If t = 2 we find n = 2k + 1 [START_REF] Lahiri | Uniqueness of nonlinear differential polynomials sharing simple and double 1-points[END_REF] If t ≥ 3 we have 3(n + 3) < 3(k + n + 1) + 2 hence ( 15) is the only solution.

Supppose now g has a zero of order s = 4. Then

4(n + 1) = t(k + n + 1) + 2 ( 16 
) If t = 1, since k ≤ n, we have 4(n + 1) > t(k + n + 1) + 2.
If t = 2, by ( 16) we have a solution

n = k ( 17 
)
If t = 3, we have another solution

n = 3k + 1 (18)
Consequently, by ( 13), ( 15), ( 16), [START_REF] Ojeda | Applications of the p-adic Nevanlinna theory to problems of uniqueness, Advances in p-adic and Non-Archimedean analysis[END_REF], all possibilities for g to have a zero of order s ≤ 4 are as follows:

And finally, suppose that all zeroes of f and g are at least of order 3 and all zeroes of f -1 and g -1 are at least of order 6. Then we have Z(r, f

) ≤ 1 3 T (r, f ), Z(r, f -1) ≤ 1 6 T (r, f ), Z(r, g) ≤ 1 3
T (r, g), Z(r, g -1) ≤ 1 6 T (r, g -1), a contradiction to (11-a) again.

Recall that when f has a pole of order 4, g or g -1, if it has a zero, must have a zero of order ≥ 5. Consequently, we only have to examine zeroes of g or g -1 that are poles of f of order 1, 2, 3.

For each pair (n, k) leading to an order s > 2 of zero of g, we will precisely examine the possible order of zeroes of g -1 and vice-versa.

First we have to consider the case n = 2k + 1. We know that if g has a zero, it is at least of order 3. If g -1 has a zero, by (3) its order s satisfies

s(k + 1) = t(3k + 2) + 2 (26) 
We can check that no solution (s, t) exists with s ≤ 4. Suppose now s = 5. If t = 1, we check that 5(k + 1) > 3k + 4 If t ≥ 2, we have 5k + 5 < t(3k + 2) + 2. Hence, if n = 2k + 1, a zero of g -1 has order ≥ 6. Indeed, such a possibility exists with s = 6 and t = 2. Consequently, we have

Z(r, g) + Z(r, g -1) ≤ 1 2 T (r, g) (27) 
Suppose now n = 3k + 1. We have seen that all zeroes of g and g -1 have order at least 4. Consequently, we have

Z(r, g) + Z(r, g -1) ≤ 1 2 T (r, g) + O(1) (28) 
Suppose now n = k, then g and g -1 play the same role. All zeroes of g and g -1 are at least of order ≥ 4 hence we have again:

Z(r, g) + Z(r, g -1) ≤ 1 2 T (r, g) + O(1). (29) 
Finally, suppose n = 2k. We have seen that g admits no zero of order s < 5. So we must examine the case s = 5. By (2) we have 5(2k + 1) = t(2k + k + 1) + 2. Then t = 1 is impossible.

If t = 2, we have 10k + 5 = 6k + 4, impossible. If t = 3, we have 10k + 5 = 9k + 5. And if t > 3, then 5(2k + 1) < t(3k + 1) + 2 for all k ≥ 2. Consequently, all zeroes of g have order at least 6 and hence we have again

Z(r, g) + Z(r, g -1) ≤ 1 2 T (r, g). (30) 
Thus, since n = k + 1, by ( 27), (28), (29), (30) and the symmetric inequalities for f instead of g, we have proved a contradiction to (11-a).

Case l=3 : Suppose that all zeroes of f, g, f -a i , g -a i ∀i ∈ {2, 3} are at least of order 4, except maybe those lying in Σ: then

Z(r, f ) ≤ 1 4 T (r, f ) + S(r) and ∀i ∈ {2, 3}, Z(r, f -a i ) ≤ 1 4 T (r, f ) + S(r), n = k + 1.
As in the case l = 2, we now have to consider the situation l ≥ 3 when θ ∈ K and f, g belong to M(K).

Obviously Σ = ∅ and we have seen that zeroes of order 2 for f , g, f -a i , g -a i (∀i ∈ {2, .., l}) only occur when n = k + 1. Consequently, excluding this case, all zeroes of f , g, f -a i , g -a i (∀i ∈ {2, .., l}) are of order ≥ 3.

Thus suppose n = k + 1. Then,

Z(r, f ) ≤ 1 3 T (r, f ) and ∀i ∈ {2, .., l}, Z(r, f -a i ) ≤ 1 3 T (r, f ) + O(1), Z(r, g) ≤ 1 3 T (r, g) and ∀i ∈ {2, .., l}, Z(r, g -a i ) ≤ 1 3 T (r, g) + O(1)
By [START_REF] Hoa | On the functional equation P (f ) = Q(g) in non-archimedean field[END_REF], we obtain (l -1)(T (r, f ) + T (r, g)) ≤ 2l 3 (T (r, f ) + T (r, g)) -2 log(r) + O(1). Hence l < 3 a contradiction. This finishes the proof of the Lemma.

Lemma 10 is known and easily checked [4], [START_REF] Yang | Unique polynomials of entire and meromorphic functions[END_REF]:

Lemma 10. Let f, g ∈ M(K) be transcendental (resp. let f, g ∈ M u (d(0, R -))) satisfy (f - a)f n = (g -a)g n with a ∈ K and let h = f g . If h is not identically 1, then g = h n -1 h n+1 -1 , f = h n+1 -h h n+1 -1 . Notation: Let f, g ∈ M(K) resp. Let f ∈ M(d(0, R -)) be such that f (0) = 0, ∞
We denote by Z 1) (r, f ) the counting function of simple zeroes of f and by N 1) (r, f ) the counting function of simple poles of f . We denote by Z (2 (r, f ) the counting function of multple zeroes of f , each counted without multiplcity, and we denote by N (2 (r, f ) the counting function of multple poles of f , each counted without multiplcity, Consequently, by definition, one has Z(r, f

) = Z 1) (r, f ) + Z (2 (r, f ), N (r, f ) = N 1) (r, f ) + N (2 (r, f )
Finally we denote by Z [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF] (r, f ) the counting fiunction of thev zeroes of f each counted multiplicity when it is at most 2 and with multiplicity 2 when it is bigger.

And here we denote by Z 0 (r, f ) the counting function of the zeroes of f that are not zeroes of f (f -1).

We will now prove the following Lemma 11 in a similar way as in [START_REF] Hua | Uniqueness and value-sharing of meromorphic functions[END_REF], with however some special properties due to p-adic analytic functions: Lemma 11. Let f, g ∈ M(K) resp. Let f ∈ M(d(0, R -)) be such that f (0) = 0, ∞, and share the value 1 C.M. If Ψ f,g is not identically zero, then, max(T (r, f ), T (r, g)) ≤ N [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF] (r, f ) + Z [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF] (r, f ) + N [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF] (r, g) + Z [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF] (r, g) -3 log r Proof. Since f and g share 1 CM, each simple zero of f -1 is a simple zero of g -1 and is a zero of Ψ f,g . Consequently, we have

Z (2 (r, f -1) = Z (2 (r, g -1) (1) 
and

Z 1) (r, f -1) = Z 1) (r, g -1) ≤ Z(r, Ψ f,g ) (2) 
Now, by Lemma 4 we have Z(r, Ψ f,g ) ≤ N (r, Ψ f,g ) -log r. Hence by ( 2) we obtain

Z 1) (r, f -1) = Z 1) (r, g -1) ≤ N (r, Ψ f,g ) -log r (3) 
On the other hand, all poles of Ψ f,g are simple and only occur at zeroes of f and g and at multiple poles of f and g. Consequently, we have

N (r, Ψ f,g ) ≤ Z 0 (r, f ) + Z 0 (r, g ) + Z (2 (r, f ) + Z (2 (r, g) (4) 
By ( 3) and ( 4), we have

Z 1) (r, f -1) ≤ Z 0 (r, f ) + Z 0 (r, g ) + Z (2 (r, f ) + Z (2 (r, g) -log r, therefore Z 1) (r, f -1) ≤ N (2 (r, f ) + N (2 (r, g) + Z 0 (r, f ) + Z 0 (r, g ) + Z (2 (r, f ) + Z (2 (r, g) -log r (5) 
Recall that by Lemma 2 we have Z(r, g ) ≤ Z(r, g) + N (r, g) -log r

and from the definition of Z 0 (r, g ) we have Z 0 (r, g ) + Z (2 (r, g -1) + Z (2 (r, g) -Z (2 (r, g) ≤ Z(r, g )),

consequently, we obtain

Z 0 (r, g ) + Z (2 (r, g -1) ≤ Z(r, g ) + Z (2 (r, g) -Z (2 (r, g) (7) 
But by ( 6) and [START_REF] Fang | Entire functions that share one value[END_REF] we have

Z 0 (r, g ) + Z (2 (r, g -1) ≤ Z(r, g) + Z (2 (r, g) -Z (2 (r, g) + N (r, g) -log r
and Z(r, g) + Z (2 (r, g) -Z (2 (r, g) is just Z(r, g). Consequently, by the last inequality, we have

Z 0 (r, g ) + Z (2 (r, g -1) ≤ N (r, g) + Z(r, g) -log r (8) 
Now, Theorem N lets us write

T (r, f ) ≤ N (r, f ) + Z(r, f ) + Z(r, f -1) -Z 0 (r, f ) -log r (9) 
By [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF] we notice that Z(r, f -1) = Z 1) (r, f -1) + Z (2 (r, f -1) = Z 1) (r, f -1) + Z (2 (r, g -1). So, by [START_REF] Frank | A unique range set for meromorphic functions with 11 elements[END_REF] we have

T (r, f ) ≤ N (r, f ) + Z(r, f ) + Z 1) (r, f -1) + Z (2 (r, g -1) -Z 0 (r, f ) -log r
and hence, by [START_REF] Fang | A unicity theorem for entire functions concerning differential polynomials[END_REF], we derive

T (r, f ) ≤ N (r, f ) + Z(r, f ) + Z 1) (r, f -1) + N (r, g) + Z(r, g) -Z 0 (r, g ) -Z 0 (r, f ) -2 log r.
And now, by ( 5) we obtain

T (r, f ) ≤ N (r, f ) + Z(r, f ) + N (2 (r, f ) + N (2 (r, g) + Z (2 (r, f ) + Z (2 (r, g) +Z 0 (r, g ) + Z 0 (r, f ) + N (r, g) + Z(r, g) -Z 0 (r, g ) -Z 0 (r, f ) -3 log r.
But now, we notice that Z(r, f

) + Z (2 (r, f ) = Z [2] (r, f ), Z(r, g) + Z (2 (r, g) = Z [2] (r, g), N (r, f ) + N (2 (r, f ) = N [2] (r, f ), N (r, g) + N (2 (r, g) = N [2]
(r, g). We then obtain the conclusion of Lemma 11.

Proof of Theorems

Proof of the Theorems. The polynomial P is considered in theorems 1, 2, 3, 4, 5, 6, 7 and we can assume a 1 = 0. In Theorems 8, and 9, we call P the polynomial such that P (x) = x n (x -a) k and P (0

) = 0. Set F = f P (f ) α and G = g P (g) α .
Clearly F and G share the value 1 C.M. Since f, g are transcendental (resp. unbounded), we notice that so are F and G. Recall that

Ψ F,G = F F - 2F F -1 - G G + 2G G -1
We will prove that under the hypotheses of each theorem, Ψ F,G is identically zero. Set F = P (f ), G = P (g). We notice that P (x) is of the form x n+1 Q(x) with Q ∈ K[x] of degree k. Now, with help of Lemma 2, we can check that we have

T (r, F ) -Z(r, F ) ≤ T (r, F ) -Z(r, F ) + O(1)
Consequently, since ( F ) = αF , we have

T (r, F ) ≤ T (r, F ) + Z(r, F ) -Z(r, F ) + T (r, α) + O(1), (1) 
hence, by (1), we obtain

T (r, F ) ≤ T (r, F )+(n+1)Z(r, f )+Z r, Q(f ) -nZ(r, f )- l i=2 k i Z(r, f -a i )-Z(r, f )+T (r, α)+O(1). i.e. T (r, F ) ≤ T (r, F ) + Z(r, f ) + Z r, Q(f ) - l i=2 k i Z(r, f -a i ) -Z(r, f ) + T (r, α) + O(1). (2) 
and similarly,

T (r, G) ≤ T (r, G) + Z(r, g) + Z r, Q(g) - l i=2 k i Z(r, g -a i ) -Z(r, g ) + T (r, α) + O(1). (3) 
Now, it follows from the definition of F and G that

Z [2] (r, F ) + N [2] (r, F ) ≤ 2Z(r, f ) + 2 l i=2 Z(r, f -a i ) + Z(r, f ) + 2N (r, f ) + T (r, α) + O(1) (4) 
and similarly

Z [2] (r, G) + N [2] (r, G) ≤ 2Z(r, g) + 2 l i=2 Z(r, g -a i ) + Z(r, g ) + 2N (r, g) + T (r, α) + O(1) (5) 
And particularly, if k i = 1, ∀i ∈ {2, .., l}, then

Z [2] (r, F ) + N [2] (r, F ) ≤ 2Z(r, f ) + l i=2 Z(r, f -a i ) + Z(r, f ) + 2N (r, f ) + T (r, α) + O(1) (6) 
and similarly

Z [2] (r, G) + N [2] (r, G) ≤ 2Z(r, g) + l i=2 Z(r, g -a i ) + Z(r, g ) + 2N (r, g) + T (r, α) + O(1). (7) 
Suppose now that Ψ F,G is not identically zero. Now, by Lemma 11, we have

T (r, F ) ≤ Z [2] (r, F ) + N [2] (r, F ) + Z [2] (r, G) + N [2] (r, G) -3 log r
hence by (2), we obtain

T (r, F ) ≤ Z [2] (r, F ) + N [2] (r, F ) + Z [2] (r, G) + N [2] (r, G) + Z(r, f ) + Z(r, Q(f )) - l i=2 k i Z(r, f -a i ) -Z(r, f ) + T (r, α) -3 log r + O(1)
and hence by ( 4) and (5):

T (r, F ) ≤ 2Z(r, f ) + 2 l i=2 Z(r, f -a i ) + Z(r, f ) + 2N (r, f ) + 2Z(r, g) + 2 l i=2 Z(r, g -a i ) + Z(r, g )+ 2N (r, g) + Z(r, f ) + Z(r, Q(f )) - l i=2 k i Z(r, f -a i ) -Z(r, f ) + 2T (r, α) -3 log r + O(1) (8) 
and similarly,

T (r, G) ≤ 2Z(r, g)+2 l i=2 Z(r, g-a i )+Z(r, g )+2N (r, g)+2Z(r, f )+2 l i=2 Z(r, f -a i )+Z(r, f )+2N (r, f ) +Z(r, g) + Z(r, Q(g)) - l i=2 k i Z(r, g -a i ) -Z(r, g ) + 2T (r, α) -3 log r + O(1). (9) 
T (r, F ) + T (r, G) ≤ 5(Z(r, f ) + Z(r, g))

+ l i=2 (Z(r, f -a i ) + Z(r, g -a i )) + (l -1)(T (r, f ) + T (r, g)) +(Z(r, f -a 2 ) + Z(r, g -a 2 )) + 5(N (r, f ) + N (r, g)) + 4T (r, α) -8 log r + O(1) hence T (r, F ) + T (r, G) ≤ 5(T (r, f )+T (r, g))+ l i=2 (T (r, f -a i )+T (r, g-a i ))+(l-1)(T (r, f )+T (r, g))+(T (r, f -a 2 )+T (r, g-a 2 )) +5(N (r, f ) + N (r, g)) + 4T (r, α) -8 log r + O(1)
and hence

T (r, F ) + T (r, G) ≤ (9 + 2l)(T (r, f ) + T (r, g)) + +4T (r, α) -8 log r + O(1) (13) 
Now, let us go back to the general case. Since F is a polynomial in f of degree n + k + 1, we have T (r, F ) = (n + k + 1)T (r, f ) + O(1) and similarly, T (r, G) = (n + k + 1)T (r, g) + O(1), hence by [START_REF] Hu | Meromorphic functions over non archimedean fields[END_REF] we can derive

(n + k + 1)(T (r, f ) + T (r, g)) ≤ 5(T (r, f ) + T (r, g)) + (5 -k 2 )(Z(r, f -a 2 ) + Z(r, g -a 2 )) + l i=3 (4 -k i ) (Z(r, f -a i ) + Z(r, g -a i )) +5(N (r, f ) + N (r, g)) + k(T (r, f ) + T (r, g)) + 4T (r, α) -8 log r + O(1). (14) 
Hence

(n + k + 1)(T (r, f ) + T (r, g)) ≤ (10 + k)(T (r, f ) + T (r, g) + l i=3 (4 -k i ) (Z(r, f -a i ) + Z(r, g -a i )) +(5 -k 2 )(Z(r, f -a 2 ) + Z(r, g -a 2 )) + 4T (r, α) -8 log r + O(1).
and hence

n(T (r, f ) + T (r, g)) ≤ 9(T (r, f ) + T (r, g)) + l i=3 (4 -k i ) (Z(r, f -a i ) + Z(r, g -a i )) +(5 -k 2 )(Z(r, f -a 2 ) + Z(r, g -a 2 )) + 4T (r, α) -8 log r + O(1). (15) 
Then at least, for each i = 3, .., l we have

(4 -k i )(Z(r, f -a i ) + Z(r, g -a i )) ≤ max(0, 4 -k i )(T (r, f ) + T (r, g)) + O(1) and
(5 -k 2 )(Z(r, f -a 2 ) + Z(r, g -a 2 )) ≤ max(0, 5 -k 2 )(T (r, f ) + T (r, g)) + O(1).

Consequently, by [START_REF] Lahiri | Uniqueness of nonlinear differential polynomials sharing simple and double 1-points[END_REF] we have n(T (r, f ) + T (r, g)) ≤ 9(T (r, f ) + T (r, g)) 

Particularly, if f, g ∈ M(K) and if α is a constant or a Moebius function, then

n ≤ 8 + l (19) 
Consequently, in the general case, if n ≥ 10 + we have Ψ F,G = 0 again, which concerns Theorem 2 and 3. Further, if k i = 1, ∀i ∈ {2, .., l}, when n ≥ l + 10 we have Ψ F,G = 0 which concerns Theorems 5, 6, 10 and 9 when α is an ordinary small function.

In the same context, if f, g belong to M(K), and if α is a constant or a Moebius function, then Ψ F,G = 0 as soon as n ≥ l + 9 Theorems 7, 8 and 9 when α is a constant or a Moebius function.

Thus, henceforth, we can assume that Ψ F,G = 0 in each hypothesis of all theorems. 

But Z(r, f ) ≤ T (r, f ), N (r, f ) ≤ T (r, f ), Z(r, f -1) ≤ T (r, f -1) ≤ T (r, f ) + O(1) and Z(r, f ) ≤ T (r, f ) ≤ 2T (r, f ) + O(1). Moreover, by Lemma 1, T (r, F ) ≥ (n + k)T (r, f ) -T (r, α). Then, considering all the previous inequalities in [START_REF] Hu | Meromorphic functions over non archimedean fields[END_REF], we deduce that (n + k)T (r, f ) ≤ (l + 3)T (r, f ) + (l + 2)T (r, g) + 4T (r, α) -log r + O(1).

(

) 22 
Since f and g satisfy the same hypothesis, we also have (n + k)T (r, g) ≤ (l + 3)T (r, g) + (l + 2)T (r, f ) + 4T (r, α) -log r + O(1).

Hence, adding ( 22) and ( 23 Consequently, the inequality n + k ≥ (2l + 6) is satisfied in Theorems 1, 2, 3, 4. Next, if all k i are equal to 1, we assume that n ≥ l + 9, hence n + k ≥ l + k + 9 = 2l + 8 (because l = k + 1) and hence the inequality n + k ≥ (2l + 6) is satisfied again in Theorems 5, 6, 7, 8, 9, 10.

Hence, we have A = 1 and this implies that F = G. Now, αF = αG, i.e. ( F ) = ( G) . We assume n ≥ k + 2 in Theorems 1, 2, 3 and this is automatically satisfied in Theorems 5, 7, 8, 9. And we assume n ≥ k + 3 in Theorem 4 and this is automatically satisfied in Theorems 6 and 10. Consequently, by Lemma 7, we have F = G, i.e. P (f ) = P (g). But in Theorems 1,[START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF][START_REF] Boutabaa | URS and URSIMS for p-adic meromorphic functions inside a disc[END_REF]4,[START_REF] Escassut | Meromorphic functions of uniqueness[END_REF][START_REF] Escassut | Functional equations in a p-adic context[END_REF][START_REF] Fang | Entire functions that share one value[END_REF] 
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  n=0 a n (x -a) n converging in d(a, R -) and by M(d(a, R -)) the field of meromorphic functions inside d(a, R -), i.e. the field of fractions of A(d(a, R -)). Moreover, we denote by A b (d(a, R -)) the K -subalgebra of A(d(a, R -)) consisting of the bounded analytic functions in d(a, R -), i.e. which satisfy sup n∈N |a n |R n < +∞ . And we denote by M b (d(a, R -)) the field of fractions of A b (d(a, R -)). Finally, we denote by A u (d(a, R -)) the set of unbounded analytic functions in d(a, R -), i.e. A(d(a, R -)) \ A b (d(a, R -)). Similarly, we set M u (d(a, R -)) = M(d(a, R -)) \ M b (d(a, R -)).

  f and g n (g -a) 2 g share the function α C.M. and n ≥ 4, then f = g. Moreover, if f n (f -a)f and g n (g -a)g share the function α C.M. and n ≥ 5, then again f = g.

  or a Moebius function, then the conclusion holds whenever n ≥ 11.

  and g g n (g -a) share the function α C.M. and n ≥ 12, then either f = g or there exists h

Lemma 8 .

 8 Let F, G ∈ M(K) resp. Let F, G ∈ M(d(0, R -)) be non-constant,having no zero and no pole at 0 and sharing the value 1 C.M. If Ψ F,G = 0 and if lim r→+∞ T (r, F ) -[Z(r, F ) + N (r, F ) + Z(r, G) + N (r, G)] = +∞ ( resp.

1 . 1 F 1 .

 111 [START_REF] An | Unique range sets and uniqueness polynomials in positive characteristic II[END_REF], a contradiction to our hypothesis. Thus B = 0 and, so F = Since F and G share 1 C.M. andF = A D G, we have F (x), G(x) = (1, 1) ∀x ∈ K resp. ∀x ∈ d(0, R -) , because if F (x) = 1, then G(x) = 1 and hence A D = 1, a contradiction. But G(x) = 1 if and only if F (x) = A D . Thus F cannottake values 1 and A D and hence F has two exceptional values. Consequently, by Lemma 6, F is a constant, a contradiction. Thereby A D = 1, and hence F = G. • Case 2: A = 0 and C = 0. By (2), we have G = B CF -D C . Suppose D = 0. Since T (r, F ) = T r, r, G), applying Theorem N to F , we have T (r, F ) ≤ Z r, -log r + O(1) = Z(r, F ) + Z(r, G) + N (r, F ) -log r + O(1) < Z(r, F ) + N (r, F ) + Z(r, G) + N (r, G) + O(1), a contradiction to our hypothesis, again. Thus D = 0 and, so F = B CG . Using the same argument as in Case 1, we conclude that F (x) -1 = 0 and G(x) -1 = 0 ∀x ∈ K resp. ∀x ∈ d(0, R -) . Moreover, G(x) = 1 if and only if

4 - 4 -

 44 k i )(T (r, f ) + T (r, g)) + max(0, 5 -k 2 )(T (r, f ) + T (r, g)) + O(1) k i ) + max(0, 5 -k 2 ). (16)Moreover, if f, g belong to M(K) and α is a constant or a Moebius function, then T (r, α) ≤ log r + O(1) and hence by[START_REF] Lahiri | Uniqueness of nonlinear differential polynomials sharing simple and double 1-points[END_REF]we haven ≤ 8 + l i=3 max(0, 4 -k i ) + max(0, 5 -k 2 )(17)Now, if k i = 1, ∀i ∈ {2, .., l}, by (13) we have n + k + 1 ≤ 9 + 2l, hence n ≤ 9 + l.

4 -

 4 k i ) + max(0, 5 -k 2 )we have Ψ F,G = 0 which concerns Theorems 1 and 4. Now, if f, g belong to M(K) and α is a constant or a Moebius function and ifn ≥ 9 + l i=3 max(0, 4 -k i ) + max(0, 5 -k 2 )

1 A G + 1 - 1 A

 111 will consider the following two cases: B = 0 and B = 0. Case 1: B = 0.Suppose A = 1. Then, by[START_REF] Ojeda | Uniqueness for ultrametric analytic functions[END_REF], we have F = . Applying Theorem N to F , we obtainT (r, F ) ≤ Z(r, F ) + Z r, F -1 -1 A + N (r, F ) -log r + O(1) ≤ Z(r, f ) + l i=2 Z(r, f -a i ) +Z(r, f ) + Z(r, g) + l i=2Z(r, g -a i ) + Z(r, g ) + N (r, f ) + 3T (r, α) -log r + O(1).

4 -max( 4 ,

 44 ), we have (n + k) T (r, f ) + T (r, g) ≤ (2l + 5) T (r, f ) + T (r, g) + 4T (r, α) + O(1), which leads to a contradiction whenever n + k ≥ (2l + 6).In the hypotheses of all theorems we haven ≥ 9 + l i=3 max(0, 4 -k i ) + max(0, 5 -k 2 ). That implies n+k ≥ 9+k+ l i=3 max(0, 4 -k i ) + max(0, 5 -k 2 ) = 9+ k i ) + max(0, 5 -k 2 ) k i ) + max(5,k2 ) ≥ 9 + 4(l -2) + 5 ≥ 4l + 6.
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p-adic meromorphic functions

N (r, f ) ≤ Z(r, g) + l i=2 Z(r, g -a i ) + Z 0 (r, g ) + S(r)

And if θ is a constant, we have

Z(r, g -a i ) + Z 0 (r, g )

Now, by Theorem N, we have (l -1)T (r, f ) ≤ Z(r, f ) + l i=2 Z(r, f -a i ) + N (r, f ) -Z 0 (r, f )log r + O(1), hence by (4), we obtain (l -1)T (r, f ) ≤ Z(r, f )+ l i=2 Z(r, f -a i )+Z(r, g)+ l i=2 Z(r, g -a i )+Z 0 (r, g )-Z 0 (r, f )+S(r) [START_REF] Escassut | Functional equations in a p-adic context[END_REF] and if θ is a constant, by [START_REF] Escassut | Meromorphic functions of uniqueness[END_REF] we have (l-1)T (r, f ) ≤ Z(r, f )+ l i=2 Z(r, f -a i )+Z(r, g)+ l i=2 Z(r, g-a i )+Z 0 (r, g )-Z 0 (r, f )-log r+O(1) [START_REF] Fang | Entire functions that share one value[END_REF] And similarly, with f , in the general case we have (l -1)T (r, g) ≤ Z(r, g)+ l i=2 Z(r, g -a i )+Z(r, f )+ l i=2 Z(r, f -a i )+Z 0 (r, f )-Z 0 (r, g )+S(r) [START_REF] Fang | A unicity theorem for entire functions concerning differential polynomials[END_REF] and if θ is a constant, we have (l-1)T (r, g) ≤ Z(r, g)+

Hence, adding [START_REF] Escassut | Functional equations in a p-adic context[END_REF] and [START_REF] Fang | A unicity theorem for entire functions concerning differential polynomials[END_REF], in the general case we obtain [START_REF] Fujimoto | On uniqueness of Meromorphic Functions sharing finite sets[END_REF] and if θ is a constant, by [START_REF] Fang | Entire functions that share one value[END_REF] and [START_REF] Frank | A unique range set for meromorphic functions with 11 elements[END_REF] we have

Case l=2 :

Now, we will examine zeroes of g -1 γ out of Σ of order ≤ 4. So, the order s of g -1 satisfies

Supppose first g -1 has a zero γ / ∈ Σ of order s = 2. Then by [START_REF] Ojeda | Uniqueness for ultrametric analytic functions[END_REF], we have

Since k ≤ n, we find no solution neither when t = 1 that would lead to k = n + 

If t = 2 we find another solution:

If t ≥ 3, we find no solution with k ≤ n because 4(k + 1) < t(k + n + 1) + 2 Consequently, by [START_REF] Xu | Entire functions sharing one value I[END_REF], [START_REF] Yang | Unique polynomials of entire and meromorphic functions[END_REF], [START_REF] Yi | Uniqueness theorems of meromorphic functions[END_REF], all possibilities for g -1 to have a zero γ / ∈ Σ of order s ≤ 4 are as follows:

Thus, we have proved that when n = k, k + 1, 2k, 2k + 1, 3k + 1, none of the zeroes of f , f -1, g, g -1 out of Σ is of order ≤ 4 and therefore the general statement of the Lemma is proved in the case l = 2. Now, suppose that θ is a constant and f, g belong to M(K) and suppose that n = k + 1. We notice that Σ is now empty. Now [START_REF] Hoa | On the functional equation P (f ) = Q(g) in non-archimedean field[END_REF] gets

First, we have seen that zeroes of order 2 for g or g -1 (hence also for f and f -1) only occur when n = k + 1. Consequently, excluding this case, all zeroes of f, f -1, g, g -1 are of order ≥ 3. We will examine each case.

Suppose first that all zeroes of f, f -1, g, g -1 are at least of order 4. Then Z(r, f

Then using [START_REF] Fujimoto | On uniqueness of Meromorphic Functions sharing finite sets[END_REF] we obtain l ≤ 2 a contradiction.

Consequently, we will examine all n and k i (i ∈ {2, 3}) leading to zeroes out of Σ of order ≤ 3 for f, g, f -a i , g -a i for all i ∈ {2, 3}. And since f and g play the same role, it is sufficient to examine the situation, for instance, when g or some g -a i has a zero of order less than 3. In each case we denote by t the order of the pole of f which is a zero of g or g -a i for some i. Recall that when f has a pole of order 3, g or g -a i , if it has a zero, must have a zero of order ≥ 4. Consequently, we only have to examine zeroes of g or g -a i (∀i ∈ {2, 3}) that are poles of f of order 1, 2.

Supppose first g has a zero γ / ∈ Σ of order s = 2. Then by (2) we have

By (31) if t = 1 we find a solution:

Next, if t = 2, we check that 2n + 2 < 2(k + n + 1) + 2, hence (32) is the only solution.

Supppose now g has a zero γ / ∈ Σ of order s = 3. Then

By (33) if t = 1 we find a solution :

If t = 2 we find

Consequently, by (32), (34), (35) all possibilities for g to have a zero of order s ≤ 3 are as follows:

Now, let i ∈ {2, 3} and examine zeroes of g -a i , γ / ∈ Σ of order s i ≤ 3. So, by (3), the order s i of g -a i satisfies

Supppose first g -a i has a zero γ / ∈ Σ of order s i = 2. Then by (36), we have

Since k i ≤ n and k i ≤ k we have 2(k i + 1) < t(k + n + 1) + 2. Hence we find no solution for (37).

Suppose now s i = 3.

If t = 1 we find a solution:

If t = 2, we have no solution because 3k i < 2(n + k).

Consequently, the unique possibility for g -a i to have a zero γ / ∈ Σ of order s i ≤ 3 is :

Thus, we have proved that when

) out of Σ is of order ≤ 3 and therefore the statement of the Lemma is proved in the case l = 3.

Case l ≥ 4 :

Suppose now that all zeroes of f, g, f -a i , g -a i ∀i ∈ {2, .., l} are at least of order 3, except maybe those lying in Σ: then

T (r, g) + S(r) and ∀i ∈ {2, .., l}, Z(r, g -a i ) ≤ 1 3 T (r, g) + S(r).

Then using [START_REF] Fujimoto | On uniqueness of Meromorphic Functions sharing finite sets[END_REF] we obtain l ≤ 3, a contradiction.

Consequently, we will examine all n and k i (i ∈ {2, .., l}) leading to zeroes out of Σ of order ≤ 2 for f, g, f -a i , g -a i for all i ∈ {2, .., l}. Actually, since f and g play the same role, it is sufficient to examine the situation, for instance, when g or some g -a i has a zero of order less than 2. In each case we denote by t the order of the pole of f which is a zero of g or g -a i for some i. Recall that when f has a pole of order 2, g or g -a i , if it has a zero, must have a zero of order ≥ 3. And then, we only have to examine zeroes of g or g -a i (∀i ∈ {2, .., l}) that are poles of f of order 1.

Supppose first g has a zero γ / ∈ Σ of order s = 2. Then γ is a pole of f of order t = 1. Then by (2) we have

We find a solution :

Now, let i ∈ {2, .., l} and suppose g -a i has a zero γ / ∈ Σ of order s i = 2. Then γ is a pole of f of order t = 1. So by (3) we have :

That means 2k i = n + k + 1. Since k i ≤ n and k i ≤ k, we find no solution when s i = 2 and t = 1.

Consequently, by (40), the only possibility for g or some g -a i to have a zero γ / ∈ Σ of order ≤ 2 is : Consequently,

Moreover, if k i = 1, ∀i ∈ {2, .., l}, then by ( 6) and ( 7) we have

and similarly,

Consequently,

Now, let us go back to the general case. By Lemma 2, we can write Z(r, f ) + Z(r, g ) ≤ Z(r, f -a 2 ) + Z(r, g -a 2 ) + N (r, f ) + N (r, g) -2 log r. Hence, in general, by [START_REF] Fujimoto | On uniqueness of Meromorphic Functions sharing finite sets[END_REF] we obtain

and hence, since

And if k i = 1, ∀i ∈ {2, .., l}, by [START_REF] Hoa | On the functional equation P (f ) = Q(g) in non-archimedean field[END_REF] and Lemma 2 we have 8 P is a polynomial of uniqueness for the family of meromorphic functions we consider, hence we have f = g. And in Theorems 9 and 10, the conclusion comes from Lemma 10.

Case 2: B = 0. We have Z(r, F ) ≤ Z(r, f ) + l i=2 Z(r, f -a i ) + Z(r, f ) + T (r, α) and N (r, F ) ≤ N (r, f ) + T (r, α) + O(1) and similarly for G, so we can derive

Moreover, by [START_REF] Ojeda | Uniqueness for ultrametric analytic functions[END_REF], T (r, F ) = T (r, G) + O(1) and, by Lemma 1, we have

and T (r, g) ≤ 

Consequently, by (25) we can see that the hypotheses of Lemma 8 are satisfied and hence, either F = G, or F G = 1.

If F G = 1, then f P (f )g P (g) = α 2 . In Theorems 1,2, 4 we have assumed that n ≥ k + 2 and if l = 2, then n = 2k, 2k + 1, 3k + 1 and if l = 3 then n = 3k 2 -k, 3k 3 -k. Moreover, these conditions are automatically satisfied in Theorems 5, 6, 7, 8, 9, 10, so we have a contradiction to Lemma 9. In Theorem 3, we have assumed that n ≥ k + 2 hence by Lemma 9, we have a contradiction again. Consequently, F = G, hence ( F ) = ( G) and therefore we can conclude as in the case B = 0.