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Survey on Bezout rings of p-adic analytic functions

Bertin Diarra and Alain Escassut

Abstract

Let K be a complete ultrametric algebraically closed field and let A(K) (resp. A(D)) be
the K-algebra of analytic functions in K (resp. inside an open disk D). Following results in
a paper by M. Lazard, we show that these algebras are Bezout rings, a property that is not
showed in that paper. Moreover, the main results leading to the Bezout property is based upon
a Mittag-Leffler theorem for meromorphic functions which is not proven in Lazard’s paper.
Furthermore, that Mittag-Leffler theorem (which is different from Krasner’s Mittag-Leffler
theorem for analytic elements) lets us find a shorter proof to show that the meromorphic
functions admitting primitives are those whose residues are null.

.

1 Introduction and main results

Let us recall that the ring of analytic functions on a region of the complex number field is well
known to be a Bezout ring. The two fondamental theorems necessary for a proof are the Weierstrass
factorization theorem and the Mittag-Leffler theorem, (see for instance [6]- Exercice 4 -Chapter 8).

According to results of the paper Les zéros des fonctions analytiques sur un corps valué complet
by Michel Lazard [7], it appears that in several hypotheses, rings of analytic functions on complete
ultrametric algebraically closed fields are Bezout rings. However, that interesting property is not
stated. Moreover, it derives from a Mittag-Leffler Theorem refered in general topology whose
justification is not relevant. Here we plan to give proofs of all these properties, using results on
quasi-invertible analytic elements [3], [4], [5] and on a Mittag-Leffler theorem for meromorphic
functions similar to this of complex analysis, but is quite different from Krasner’s Mittag-Leffler
theorem for analytic elements on an infraconnected subset of K.

Definitions and notation: Throughout the paper, we denote by K a complete alebraically
closed field of characteristic 0. Given a ∈ K and R > 0, we denote by d(a,R) the disk {x ∈
K | |x− a| ≤ R} and by d(a,R−) the disk {x ∈ K | |x− a| < R}.

We denote byA(K) the K-algebra of entire functions in K and given a ∈ K and R > 0, we denote
by A(d(a,R−)) the K-algebra of power series converging in the disk d(a,R−). The K-algebra A(K)
is provided with the topology of unifom convergence in all bounded subsets of K i.e. the topology
of unifom convergence in all disks d(0, R). The neighborhoods of a function f ∈ A(K) are the sets
W(f, r, ε) = {h ∈ {A(K) | |f−h|(r) ≤ ε}, with r > 0, ε > 0. Similarly, given a ∈ K and R > 0, the
K-algebraA(d(a,R−)) is provided with the following topology of K-algebra: given f ∈ A(d(a,R−)),
the neighborhoods of f are the sets W(f, r, ε) = {h ∈ {A(d(a,R−)) | |f − h|(r) ≤ ε}, with
0 < r < R, ε > 0.
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We denote by M(K) the field of fractions of A(K). The elements of M(K) are called mero-
morphic functions in K.

In the same way, given a ∈ K and r > 0, we denote by M(d(a, r−)) the field of fractions of
A(d(a, r−)). The elements of M(d(a, r−)) are called meromorphic functions in d(a, r−). Given a
pole b of order q of a meromorphic function f ∈ M(K) (resp. f ∈ M(d(a,R−))), there exists a
unique rational function g of the form Q(x)

(x−b)q with Q ∈ K[x], deg(Q) ≤ q − 1, called the singular
part of f at the pole b.

The topology defined on A(K) has expansion to M(K). The neighborhoods of a function
f ∈ M(K) are the sets W(f, r, ε) = {h ∈ {M(K) | |f − h|(r) ≤ ε}, with r > 0, ε > 0, which
implies that f and h have the same singular part at each pole in d(0, r). Similarly, given a ∈ K
and R > 0, the topology defined on A(d(a,R−)) has expansion to M(K): given f ∈ A(d(a,R−)),
the neighborhoods of f are the sets W(f, r, ε) = {h ∈ {A(d(a,R−)) | |f − h|(r) ≤ ε}, with
0 < r < R, ε > 0, which implies that f and h have the same singular part at each pole in d(0, r).

We shall define divisors of K or in a disk d(a,R−). We then shall define the divisor of an
analytic function and of an ideal of an algebra A(K) or A(d(a, r−)). Given a divisor T on K, there
is no problem to construct an entire function whose divisor is T . But given a divisor T on a disk
d(a, r−), it is not always possible to find an analytic function (in that disk) whose divisor is T .
This is Lazard’s problem that we will recall.

Definition: We call a divisor of K (resp. a divisor of a disk d(a,R−)) a mapping T from K
(resp. from d(a,R−)) to N whose support is countable and has a finite intersection with each disk
d(a, r), ∀r > 0 (resp. ∀r ∈]0, R[). Thus, a divisor of K (resp. of d(a,R−)) is characterized by a
sequence (an, qn)n∈N with an ∈ K, limn→∞ |an| =∞, (resp. an ∈ d(a,R−), limn→∞ |an−a| = R),
|an| ≤ |an+1| and qn ∈ N∗ ∀n ∈ N. So, we will frequently denote a divisor by the sequence
(an, qn)n∈N which characterizes it.

The set of divisors of K (resp. of d(a,R−)) is provided with a natural multplicative law that
makes it a semi-group. It is also provided with a natural order relation: given two divisors T and
T ′, we can set T ≤ T ′ when T (α) ≤ T ′(α) ∀α ∈ d(a,R−). Moreover, if T, T ′ are two divisors such

that T (α) ≥ T ′(α) ∀α ∈ d(0, R−), we can define the divisor
T

T ′
.

Given f ∈ A(K) (resp. f ∈ A(d(a,R−))), we can define the divisor of f , denoted by D(f) on
K (resp. of d(a,R−)) as D(f)(α) = 0 whenever f(α) 6= 0 and D(f)(α) = s when f has a zero of
order s at α.

Similarly, given an ideal I of A(K) (resp. of A(d(a,R−))) we will denote by D(I) the lower
bound of the the D(f) f ∈ I and D(I) will be called the divisor of I.

Remark: Let f ∈ A(d(a,R−)) and let (an, qn)n∈N = D(f). Then ωan(f) = qn ∀n ∈ N and
ωα(f) = 0 ∀α ∈ d(a,R−) \ {an | n ∈ N}.

Theorem 1 Let a ∈ K, R > 0. Let f, g ∈ A(K) (resp. f, g ∈ calA((.a,R
−))) be such that

D(f) ≥ D(g). Then there exists h ∈ A(K) (resp. h ∈ A(d(a,R−))) such that f = gh.

Corollary 1.1 Let a ∈ K, R > 0. Let I be an ideal of A(K) (resp. an ideal of A(d(a,R−))) and
suppose that there exists g ∈ I such that D(g) = D(I). Then I = gA(K) (resp. I = gA(d(a,R−))).

Theorem 2: Let T = (αn, qn)n∈N be a divisor of K. The infinite product
∞∏
n=1

(1− x

αn
)qn is
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uniformly convergent in all bounded subsets of K and defines an entire function f ∈ A(K) such
that D(f) = T . Moreover, given g ∈ A(K) such that D(g) = T , then g is of the form λf .

Recall the following theorem [5]:

Theorem 3: Suppose that K is spherically complete, let a ∈ K, let R > 0 and let T be a divisor
of d(a,R−). There exists f ∈ A(d(a,R−)) such that D(f) = T .

Notation: Given a divisor E of K, we will denote by T (E) the ideal of the f ∈ A(K) such that
D(f) ≥ E. Similarly, given a ∈ K and R > 0 and a divisor E of d(a,R−), we will denote by
Ta,R(E) the ideal of the f ∈ A(d(a,R−)) such that D(f) ≥ E.

Theorem 4: For every divisor E of K, T (E) is a closed ideal of A(K). Moreover, T is a
bijection from the set of divisors of K onto the set of closed ideals of A(K). Further, given a closed
ideal I of A(K), then I = T (D(I)).

Corollary 4.1: Every closed ideal of A(K) is principal.

Proof. Indeed, consider a closed ideal I and let E = D(I). By Theorem 4 I is of the form T (E)
with E = D(I). By Theorem 2 there exists g ∈ A(K) such that D(g) = E and of course, g belongs
to I. Hence gA(K) ⊂ I. Now, let f ∈ I. Then D(f) ≥ E, hence by Theorem 1, f factorizes in the
form gh with h ∈ A(K), hence I = gA(K).

Similarly, we have Theorem 5:

Theorem 5: Let a ∈ K and take R > 0. For every divisor E of d(a,R−), Ta,R(E) is a closed
ideal of A(d(a,R−)). Moreover Ta,R is a bijection from the set of divisors of d(a,R−) onto the set of
closed ideals of A(d(a,R−)). Further, given a closed ideal I of A(d(a,R−))), then I = Ta,R(D(I)).

Corollary 5.1: Suppose K is spherically complete. Then all closed ideals of A(d(a,R−)) are
principal.

Proof. Let I be a closed ideal of A(d(a,R−)) and let E = D(I). By Theorem 5 we have I =
Ta,R(E). Now, by Theorem 3 there exists g ∈ A(K) such that D(g) = E and of course g belongs
to Ta,R(E) hence to I. Consequently, gA(d(a,R−)) ⊂ I. Conversely, by Corollary 1.1, we have
I = gA(d(a,R−)).

The following Mittag-Leffler for meromorphic functions is similar to the classical Mittag-Leffler
theorem for complex meromorphic functions [2] and is quite different from the Mittag-Leffler the-
orem for analytic elements due to Mark Krasner [5], [3], [4]. The justification given in [6] does not
seem relevant.

Theorem 6 (Mittag-Leffler theorem for meromorphic functions): Let (am, qm)m∈N be
a divisor of K (resp. of d(a,R−)), a ∈ K, R > 0) and for every n ∈ N, let Qm ∈ K[x] be of degree
< qm. There exists f ∈ M(K) (resp. f ∈ M(d(a,R−))) admitting for poles each am of order qm

and no other pole and such that its singular part at am is
Qm

(x− am)qm
.
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Thanks to Theorem 6, we can derive an easy proof of the characterization of meromorphic
functions admitting primitives, a property proven in [1] with a longer proof.

Theorem 7: K is supposed to have characteristic 0. A function f ∈ M((K) (resp. f ∈
M((d(a,R−)), a ∈ K, R > 0) admits primitives in M(K) (resp. in M((d(a,R−))) if and only if
all residues of f are null.

Theorem 8: Every ideal of finite type of A(K) (resp. of A(d(a,R−)), a ∈ K, R > 0 ) is closed
and is of the form T (E) (resp. Ta,R(E)) with E a divisor of K (resp. of d(a,R−)).

Corollary 8.1: A(K) is a Bezout ring.

Proof. Indeed, consider an ideal of finite type I. By Theorem 8, it is closed and hence, by Corollary
4.1 it is principal.

And by Corollary 5.1, we have Corollary 8.2

Corollary 8.2: Let a ∈ K and let R > 0. If K is spherically complete, A(d(a,R−)) is a Bezout
ring.

Proof. Indeed, consider an ideal of finite type I. By Theorem 8, it is of the form Ta,R(E) with
E a divisor of d(a,R−) and hence, by Theorem 5, it is closed. But then, by Corollary 5.1, it is
principal.

2 The proofs

Recall that given a closed bounded subset D of K, we denote by R(D) the K-algebra of ratio-
nal function h ∈ K(x) with no pole in D. That algebra is provided with the norm of uniform
convergence ‖ . ‖D on D that makes it a normed K-algebra. We then denote by H(D) the Ba-
nach K-algebra completion of R(D) with respect to that norm, whose elements are called analytic
elements on D.

By Theorem 24.3 in [3], we can derinve the following (well known) lemma:

Lemma 1: Let α ∈
◦
D. Let q ∈ N∗ and let (gn) be a sequence of H(D) such that the sequence

(x− α)qgn converges in H(D). Then the sequence (gn)n∈N also converges in H(D).

Now, the proof of Theorem 1 is immediate:

Proof. Let T = D(g) = (an, qn)n∈N. Let us fix r > 0 (resp. r ∈]0, R[), let s ∈ N be such that

|an| ≤ r ∀n ≤ s and |an| > r ∀n > s. Let Pr(x) =
s∏

n=0

(1− x

an

qn

. We can factorise f in the form

Prf̂ and similarly, we can factorize g in the form Pr ĝ, hence
f

g
=
f̂

ĝ
. Since ĝ has no zero in d(0, r)

it is invertible in H(d(0, r)), hence
f

g
belongs to H(d(0, r)). This is true for all r > 0 (resp. for all

r ∈]0, R[) and hence
f

g
belongs to A(K) (resp. to A(d(a,R−))).
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We can now prove Theorem 4 and 5:

Proof. (Theorems 4 and 5) Let E be a divisor of K (resp. of d(a,R−)). First, let us check that
T (E) (resp. Ta,R(E)) is a closed ideal of A(K) (resp. of A(d(a,R−))). Let E = (an, qn)n∈N and
let (fm)m∈N be a sequence of elements of T (E) (resp. of Ta,R(E)) converging to a limit f in A(K)
(resp. in A(d(a,R−))). For every n ∈ N, each fm admits an as a zero of order at least qn, hence
by Lemma 1, so does f . Consequently, f belongs to T (E) (resp. f belongs to Ta,R(E)).

Now, let us show that T (resp. Ta,R) is injective Let E, F be two distinct divisors of K (resp. of
d(a,R−)). Without loss of generality, we can suppose that E admits a pair (b, s) with s > 0 and that
F either does not admit any pair (b,m) or admits a pair (b,m) with m < s. Let f ∈ T (F ) (resp. let
f ∈ Ta,R(F ) and suppose that ωb(f) ≥ s. Then by Lemma 1 f factorizes in the form (x− b)s−mg
with g ∈ A(K) (resp. g ∈ A(d(a,R−))) and of course g belongs to T (F )(resp.toTa,R(F )). But
by construction, g does not belong to T (E) (resp. to Ta,R(E)) because ωb(g) < s. Therefore
T (E) 6= T (F ) (resp. Ta,R(E) 6= Ta,R(F )). So, T (resp. Ta,R) is injective.

Let us show that it is also surjective. Let I be a closed ideal of A(K) (resp. of A(d(a,R−)))
and let E = D(I). Then E is of the form (an, qn)n∈N with |an| ≤ |an+1| and lim

n→+∞
|an| = +∞

(resp. lim
n→+∞

|an| = R), hence there is a unique s ∈ N such that an ∈ d(0, r) ∀n ≤ s and an /∈
d(0, r) ∀n > s.

Let J = T (E) (resp. J = Ta,R(E)). Then of course, I ⊂ J . Let us show that J ⊂ I.

Let f ∈ J and take r > 0. Denoting by Pr the polynomial
s∏
i=0

(X − ai)qi by Theorem 27.2,

I ∩ H(d(0, r)) = Pr(x)H(d(0, r)). But now all functions g ∈ J ∩ H(d(0, r)) also are of the form

Pr(x)h(x) with h ∈ H(d(0, r)). Consequently, in H(d(0, r)) we can write f in the form f =
m∑
j=1

gjhj

with gj ∈ I and hj ∈ H(d(0, r)). Let ε > 0 be fixed.
For each j = 1, ...,m, narrowing each hj by a polynomial `j in H(d(0, r)), we can find `j ∈ K[x]

such that |gj(hj − `j)|(r) ≤ ε. Now, let φr =
m∑
j=1

gj`j . Then φr belongs to I and satisfies

|φr − f |(r) ≤ ε. This is true for each r > 0 and for every ε > 0. Consequently, since I is closed, f
belongs to I. This finishes proving that T (rep. Ta,R) is surjective. Further, we have proven that
I = T (D(I)) (resp. I = Ta,R(D(I))).

We will now prove Theorem 6:

Proof. The proof is similar to that in the complex case [2]. Without loss of generality, we can
suppose that |am| ≤ |am+1|. Let (t(n))n∈N be the strictly increasing sequence such that at(n)| <
|at(n+1)| and let rn = |at(n)| n ∈ N.

For each m ∈ N, set Sm(x) =
Qm(x)

(x− am)qm
. Now, for each n ∈ N, we can set fn =

∑
m∈Ln

Sm(x).

So, by construction, fn belongs to H(d(0, rn−1)) hence there exists Pn ∈ K[x] such that

‖fn − Pn‖d(0;rn−1) ≤
(1

2

)n
.
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Consequently, the sequence (fn − Pn)n∈N converges to 0 with respect to the topology of M(K)

(resp. of M(d(a,R−))). Set f(x) = f1(x) +
∞∑
n=2

(fn(x)− Pn(x)). By construction, f belongs to

M(d(0, r−)) ∀r > 0, hence f belongs to M(K) (resp. to M(d(a,R−))). Moreover, the poles of f
are the points am, m ∈ N. Let us take q ≥ 1 and ρ > 0 such that |am − aq| ≥ ρ ∀m 6= q. Then
f − Sq belongs to H(d(a, ρ)), so Sq is the singular part of f at Sq.

Proof of Theorem 7:

Proof. Let a be a pole of f . According to the Laurent series of f at a, if f admits primitives then
f has no residue different from zero at a because the function 1

x−a has no primitive in M(d(a, r))
(whenever r > 0). Now let (am)m∈N be the sequence of poles of f , each of respective degree qm and
suppose that suppose that res(f, am) = 0.Since resam

(f) = 0, the singular part of f at am is of the

form
Qm(x− am))
(x− am)qm

with qm ≥ 2 and Qm(X) is a polynomial of degree ≤ qm−2. Consequently, the

singular part of f at am admits a primitive of the form
Pm(x− am)

(x− am)qm−1
with deg(Pm(X)) ≤ qm− 2.

Then by Theorem 6, there exists G ∈M(K) (resp. G ∈M(d(a,R−))) admitting the am for poles

with respective singular part
Pm

(x− am)qm−1
and no other pole. By construction, for each m ∈ N,

the singular part of G′ at am is
Qm(x− am))
(x− am)qm

hence G′−f has no pole at am and hence has no pole

in K (resp. in d(a,R−)). Consequently, G′ − f belongs to A(K) (resp. to A(d(a,R−))). But then
G′ − f admits a primitive L ∈ A(K) (resp. L ∈ A(d(a,R−))) and hence the function F = G − L
is a primitive of f that belongs to L ∈M(K) (resp. to L ∈M(d(a,R−))).

In the proof of Theorem 8 we will need the following lemma

Lemma 2: Let E be a divisor of K (resp. a divisor of d(a,R−), a ∈ K, R > 0) and for each
r > 0 (resp. r ∈]9, R[), let gr ∈ H(C(0, r)). There exists g ∈ A(K) (resp. g ∈ A(d(a,R−))), not
depending on r, such that D(g − gr) ≥ Er.

Proof. Let f ∈ A(K) (resp. f ∈ A(d(a,R−))) be such that D(f) ≥ E. By Theorem 6, there exists
F ∈M(K) whose principal parts at the poles located in C(0, r) are respectively the same as those
of grf−1 for each r > 0. Then fF belongs to A(K) (resp. to A(d(a,R−))). Putting g = fF , we
can see that D(g − gr) ≥ Er, which ends the proof.

We can now prove Theorem 8:

Proof. Let I be an ideal of finite type of A(K) (resp. of A(d(a,R−))) generated by f1, ..., fq and
let E = D(I). By Theorem 4 the closure J of I is T (E) (resp. by Theorem 5 the closure J of
I is Ta,R(E)). Consequently, we can see that E = min(D(f1), ...,D(fq)). Let us fix r > 0. In

H(C(0, r)), there exist g1,r, ..., gq,r ∈ H(C(0, r)) such that g =
q∑
j=1

gj,rfj . For each j = 2, ..., q, let

fj,r be the polynomial of the zeros of fj in C(0, r). By Lemma 2 there exists gj ∈ A(K) (resp.
gj ∈ A(d(a,R−)), not depending on r, such that gj,r − gj be divisible in H(C(0, r)) by D(f1,r).
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Now, set h = g −
q∑
j=2

gjfj . We have D(h) ≥ D(f1) hence h factorizes in the form g1f1 with

g1 ∈ A(K) (resp. g1 ∈ A(d(a,R−))) and then

g = h+
q∑
j=2

gjfj =
q∑
j=1

gjfj .
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