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Survey and additional properties on p-adic meromorphic functions f ' P ' (f ), g ' P ' (g) sharing a small function

Introduction and Main Results

Let f, g be two meromorphic functions in a p-adic field. Here we study polynomials P such that, when f ′ P ′ (f ) and g ′ P ′ (g) share a small function α, then f = g. Problems of uniqueness on meromorphic functions were examined first in C [START_REF] Fang | Entire functions that share one value[END_REF], [START_REF] Fang | A unicity theorem for entire functions concerning differential polynomials[END_REF], [START_REF] Fujimoto | On uniqueness of Meromorphic Functions sharing finite sets[END_REF], [START_REF] Hua | Uniqueness and value-sharing of meromorphic functions[END_REF], [START_REF] Khoai | On uniqueness polynomials and bi-URs for p-adic meromorphic functions[END_REF], [START_REF] Lahiri | Uniqueness of nonlinear differential polynomials sharing simple and double 1-points[END_REF], [START_REF] Li | Some further results on the unique range sets of meromorphic functions[END_REF], [START_REF] Lin | Uniqueness theorems for meromorphic functions concerning fixed-points[END_REF], [START_REF] Xu | Entire functions sharing one value I[END_REF], [START_REF] Yang | Unique polynomials of entire and meromorphic functions[END_REF], [START_REF] Yi | Uniqueness theorems of meromorphic functions[END_REF] and next in a p-adic field [START_REF] An | Unique range sets and uniqueness polynomials in positive characteristic II[END_REF], [START_REF] Boutabaa | URS and URSIMS for p-adic meromorphic functions inside a disc[END_REF], [6], [START_REF] Escassut | Meromorphic functions of uniqueness[END_REF], [START_REF] Hoa | On the functional equation P (f ) = Q(g) in non-archimedean field[END_REF], [START_REF] Hu | Meromorphic functions over non archimedean fields[END_REF], [START_REF] Ojeda | Applications of the p-adic Nevanlinna theory to problems of uniqueness, Advances in p-adic and Non-Archimedean analysis[END_REF], [START_REF] Ojeda | zeros of ultrametric meromorphic functions f ′ f n (f -a) k -α[END_REF], [START_REF] Ojeda | Uniqueness for ultrametric analytic functions[END_REF], [START_REF] Wang | Uniqueness polynomials and bi-unique range sets[END_REF]. After examining problems of the form P (f ) = P (g), several studies were made on the equality f ′ P ′ (f ) = g ′ P ′ (g), or value sharing questions: if f ′ P ′ (f ) and g ′ P ′ (g) share a value, or a small function, do we have f = g? Here we recall results previously obtained no matter what the number of zeros of P ′ . Results also apply to meromorphic functions inside an open disk. They were published in [START_REF] Boussaf | p-adic meromorphic functions f ′ P ′ (f ), g ′ P ′ (g) sharing a small function[END_REF]. Moreover, here we will examine the particular case of analytic functions and will improve results of [START_REF] Ojeda | Uniqueness for ultrametric analytic functions[END_REF].

Let K be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value denoted by | . |. We denote by A(K) the K-algebra of entire functions in K, by M(K) the field of meromorphic functions in K, i.e. the field of fractions of A(K) and by K(x) the field of rational functions.

Let a ∈ K and R ∈]0, +∞[. We denote by d(a, R) the closed disk {x ∈ K : |x -a| ≤ R} and by d(a, R -) the "open" disk {x ∈ K : |x -a| < R}. We denote by A(d(a, R -)) the set of analytic functions in d(a, R -), i.e. the K-algebra of power series 

A u (d(a, R -)) the set of unbounded analytic functions in d(a, R -), i.e. A(d(a, R -)) \ A b (d(a, R -)). Similarly, we set M u (d(a, R -)) = M(d(a, R -)) \ M b (d(a, R -)).
The problem of value sharing a small function by functions of the form f ′ P ′ (f ) was examined first when P was just of the form x n [10], [START_REF] Ojeda | Applications of the p-adic Nevanlinna theory to problems of uniqueness, Advances in p-adic and Non-Archimedean analysis[END_REF], [START_REF] Yi | Uniqueness theorems of meromorphic functions[END_REF]. More recently it was examined when P was a polynomial such that P ′ had exactly two distinct zeros [START_REF] Lahiri | Uniqueness of nonlinear differential polynomials sharing simple and double 1-points[END_REF], [START_REF] Lin | Uniqueness theorems for meromorphic functions concerning fixed-points[END_REF], [START_REF] Ojeda | Uniqueness for ultrametric analytic functions[END_REF], both in complex analysis and in p-adic analysis. In [START_REF] Lahiri | Uniqueness of nonlinear differential polynomials sharing simple and double 1-points[END_REF], [START_REF] Lin | Uniqueness theorems for meromorphic functions concerning fixed-points[END_REF] the functions where meromorphic on C, with a small function that was a constant or the identity. In [START_REF] Ojeda | Uniqueness for ultrametric analytic functions[END_REF], the problem was considered for analytic functions in the field K: on one hand for entire functions and on the other hand for unbounded analytic functions in an open disk.

Actually solving a value sharing problem involving f ′ P ′ (f ), g ′ P ′ (g) requires to know polynomials of uniqueness P for meromorphic functions.

In [START_REF] Ojeda | Uniqueness for ultrametric analytic functions[END_REF] the third author studied several problems of uniqueness and particularly the following:

Let f, g ∈ A(K) be transcendental resp. Let f, g ∈ A u (d(0, R -)) and α ∈ A(K) resp. α ∈ A u (d(0, R -)) be a small function, such that f n (f -a) k f ′ and g n (g -a) k g ′ share α, counting multiplicity, with n, k ∈ N and a ∈ K \ {0} (see Theorems D and E below).
Here we consider functions f, g ∈ M(K) or f, g ∈ M(d(a, R -)) and ordinary polynomials P : we must only assume certain hypotheses on the multiplicity order of the zeros of P ′ . The method for the various theorems we will show is the following: assuming that f ′ P ′ (f ) and g ′ P ′ (g) share a small function, we first prove that f ′ P ′ (f ) = g ′ P ′ (g). Next, we derive P (f ) = P (g). And then, when P is a polynomial of uniqueness for the functions we consider, we can conclude f = g. Now, in order to define small functions, we have to briefly recall the definitions of the classical Nevanlinna theory in the field K and a few specific properties of ultrametric analytic or meromorphic functions [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF].

Let log be a real logarithm function of base b > 1 and let f ∈ M(K) resp. f ∈ M(d(0, R -)) having no zero and no pole at 0. Let r ∈]0, +∞[ resp. r ∈]0, R[ and let γ ∈ d(0, r). If f has a zero of order n at γ, we put ω γ (h) = n. If f has a pole of order n at γ, we put ω γ (f ) = -n and finally, if f (γ) = 0, ∞, we set ω γ (f ) = 0

We denote by Z(r, f ) the counting function of zeros of f in d(0, r), counting multiplicity, i.e.

Z(r, f ) = max(ω 0 , 0) log r + ωγ (f )>0, 0<|γ|≤r ω γ (f )(log r -log |γ|).
Similarly, we denote by Z(r, f ) the counting function of zeros of f in d(0, r), ignoring multiplicity, and set

Z(r, f ) = u log r + ωγ (f )>0, 0<|γ|≤r
(log r -log |γ|)

with u = 1 when ω 0 (f ) > 0 and u = 0 else.

In the same way, we set N (r, f ) = Z r,

1 f resp. N (r, f ) = Z r, 1 f
to denote the counting function of poles of f in d(0, r), counting multiplicity (resp. ignoring multiplicity).

For f ∈ M(d(0, R -)) having no zero and no pole at 0, the Nevanlinna function is defined by T (r, f ) = max Z(r, f ), N (r, f ) . Now, we must recall the definition of a small function with respect to a meromorphic function and some pertinent properties.

Definition. Let f ∈ M(K) resp. let f ∈ M(d(0, R -)) such that f (0) = 0, ∞. A function α ∈ M(K) resp. α ∈ M(d(0, R -))
having no zero and no pole at 0 is called a small function

with respect to f , if it satisfies lim r→+∞ T (r, α) T (r, f ) = 0 resp. lim r→R - T (r, α) T (r, f ) = 0 .
If 0 is a zero or a pole of f or α, we can make a change of variable such that the new origin is not a zero or a pole for both f and α. Thus it is easily seen that the last relation does not really depend on the origin.

We denote by M f (K) resp. M f (d(0, R -)) the set of small meromorphic functions with respect to f in K resp. in d(0, R -) .

Remark 1. Thanks to classical properties of the Nevanlinna function T (r, f ) with respect to the operations in a field of meromorphic functions, such as

T (r, f + g) ≤ T (r, f ) + T (r, g) + O(1) and T (r, f g) ≤ T (r, f ) + T (r, g) + O(1), for f, g ∈ M(K) and r > 0, it is easily proved that M f (K) resp. M f (d(0, R -)) is a subfield of M(K) resp. M(d(0, R -)) and that M(K) resp. M(d(0, R)) is a transcendental extension of M f (K) resp. of M f (d(0, R -)) [9].
Let us remember the following definition.

Definition. Let f, g, α ∈ M(K) resp. let f, g, α ∈ M(d(0, R -)) . We say that f and g share the function α C.M., if fα and gα have the same zeros with the same multiplicity in K resp. in d(0, R -) .

Recall that a polynomial P ∈ K[x] is called a polynomial of uniqueness for a class of functions F if for any two functions f, g ∈ F the property P (f ) = P (g) implies f = g.

The definition of polynomials of uniqueness was introduced in [START_REF] Li | Some further results on the unique range sets of meromorphic functions[END_REF] by P. Li and C. C. Yang and was studied in many papers [START_REF] Frank | A unique range set for meromorphic functions with 11 elements[END_REF], [START_REF] Fujimoto | On uniqueness of Meromorphic Functions sharing finite sets[END_REF] for complex functions and [START_REF] An | Unique range sets and uniqueness polynomials in positive characteristic II[END_REF], [6], [START_REF] Escassut | Meromorphic functions of uniqueness[END_REF], [START_REF] Hoa | On the functional equation P (f ) = Q(g) in non-archimedean field[END_REF], [START_REF] Hu | Meromorphic functions over non archimedean fields[END_REF], [START_REF] Khoai | On uniqueness polynomials and bi-URs for p-adic meromorphic functions[END_REF], [START_REF] Wang | Uniqueness polynomials and bi-unique range sets[END_REF], for p-adic functions.

Actually, in a p-adic field, we can obtain various results, not only for functions defined in the whole field K but also for functions defined inside an open disk because the p-adic Nevanlinna Theory works inside a disk, for functions of M u (d(0, R -)).

The following theorem is classical for analytic functions [START_REF] Yang | Unique polynomials of entire and meromorphic functions[END_REF] and was proved for meromorphic functions in [START_REF] Escassut | Meromorphic functions of uniqueness[END_REF] and in [START_REF] Hoa | On the functional equation P (f ) = Q(g) in non-archimedean field[END_REF] but it is also a consequence of Theorem 1 in [START_REF] Wang | Uniqueness polynomials and bi-unique range sets[END_REF].

Theorem A: Let P ∈ K[x] be such that P ′ has exactly two distinct zeros γ 1 of order c 1 and γ 2 of order c 2 . Then P is a polynomial of uniqueness for A(K). Moreover, if min{c 1 , c 2 } ≥ 2, then P is a polynomial of uniqueness for M(K).

Another way to obtain polynomials of uniqueness was given in [START_REF] Escassut | Meromorphic functions of uniqueness[END_REF]. It also applies to meromorphic functions inside an open disk.

Notation: Let P ∈ K[x] \ K and let Ξ(P ) be the set of zeros c of P ′ such that P (c) = P (d) for every zero d of P ′ other than c. We denote by Φ(P ) the cardinal of Ξ(P ).

Remark 2. If deg(P ) = q then Φ(P ) ≤ q -1.

From [START_REF] Escassut | Meromorphic functions of uniqueness[END_REF] we have the following results:

Theorem B: Let d(a, R -) be an open disk in K and P ∈ K[x]. If Φ(P ) ≥ 2 then P is a polynomial of uniqueness for A(K). If Φ(P ) ≥ 3 then P is a polynomial of uniqueness for both A u (d(a, R -)) and M(K). If Φ(P ) ≥ 4 then P is a polynomial of uniqueness for M u (d(a, R -)).
We can find the statements of Theorem C in [START_REF] Ojeda | Uniqueness for ultrametric analytic functions[END_REF]:

Theorem C: Let P ∈ K[x]
such that P ′ admits exactly 2 distinct zeros of respective order n and k.

i

) Suppose k = 2, n ≥ 3. Then P is a polynomial of uniqueness for M u (d(0, R -)). ii) Suppose k = 1, n ≥ 1. Then P is a polynomial of uniqueness for A u (d(0, R -)).
In [START_REF] Ojeda | Uniqueness for ultrametric analytic functions[END_REF], the third author proved the following theorems D and E concerning entire functions and analytic functions in a disk when the polynomial P has only two distinct zeros: We acn now state our main results and we will givea proof for those that are not published Theorem F: Let P be a polynomial of uniqueness for M(K), let

Theorem D: Let f, g ∈ A(K) be transcendental such that f n (f -a) k f ′ and g n (g -a) k g ′ share the function α ∈ A f (K) ∩ A g (K) C.M. with n, k ∈ N and a ∈ K \ {0}. If n ≥ max{6 -k, k + 1}, then f = g. Moreover, if α ∈ K \ {0} and n ≥ max{5 -k, k + 1}, then f = g. Theorem E : Let f, g ∈ A u (d(0, R -)), let α ∈ A f (d(0, R -)) ∩ A g (d(0, R -)) and let a ∈ K\{0}. If f n (f -a) 2 f ′ and g n (g -a) 2 g ′ share the function α C.M. and n ≥ 4, then f = g. Moreover, if f n (f -a)f
P ′ = b(x -a 1 ) n l i=2 (x -a i ) ki with b ∈ K * , l ≥ 2, k i ≥ k i+1 , 2 ≤ i ≤ l -1 and let k = l i=2 k i . Suppose P satisfies the following conditions: n ≥ 10 + l i=3 max(0, 4 -k i ) + max(0, 5 -k 2 ), n ≥ k + 2, if l = 2, then n = 2k, 2k + 1, 3k + 1, if l = 3, then n = 2k + 1, 3k i -k ∀i = 2, 3. Let f, g ∈ M(K) be transcendental and let α ∈ M f (K) ∩ M g (K) be non-identically zero. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g.
By Theorem B, we have Corollary F.1:

Corollary F.1: Let P ∈ K[x] satisfy Φ(P ) ≥ 3, let P ′ = b(x -a 1 ) n l i=2 (x -a i ) ki with b ∈ K * , l ≥ 3, k i ≥ k i+1 , 2 ≤ i ≤ l -1 and let k = l i=2 k i . Suppose P satisfies the following conditions: n ≥ 10 + l i=3 max(0, 4 -k i ) + max(0, 5 -k 2 ), n ≥ k + 2, if l = 3, then n = 2k + 1, 3k i -k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α ∈ M f (K) ∩ M g (K) be non-identically zero. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g.

And by Theorem A we also have Corollary F.2.

Corollary F.2: Let P ∈ K[x] be such that P ′ is of the form b(xa 1 ) n (xa 2 ) k with min(k, n) ≥ 2.

Suppose P satisfies the following conditions:

n ≥ 10 + max(0, 5 -k), n ≥ k + 2, n = 2k, 2k + 1, 3k + 1.
Let f, g ∈ M(K) be transcendental and let α ∈ M f (K) ∩ M g (K) be non-identically zero. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g.

Theorem G: Let P be a polynomial of uniqueness for M(K), let

P ′ = b(x -a 1 ) n l i=2 (x -a i ) ki with b ∈ K * , l ≥ 2, k i ≥ k i+1 , 2 ≤ i ≤ l -1 and let k = l i=2 k i . Suppose P satisfies the following conditions: n ≥ 9 + l i=3 max(0, 4 -k i ) + max(0, 5 -k 2 ), n ≥ k + 2, if l = 2, then n = 2k, 2k + 1, 3k + 1, if l = 3, then n = 2k + 1, 3k i -k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g. By Theorem B, we have Corollary G.1.

Corollary G.1:

Let P ∈ K[x] satisfy Φ(P ) ≥ 3, let P ′ = b(x -a 1 ) n l i=2 (x -a i ) ki with b ∈ K * , l ≥ 3, k i ≥ k i+1 , 2 ≤ i ≤ l -1 and let k = l i=2 k i . Suppose P satisfies the following conditions: n ≥ 9 + l i=3 max(0, 4 -k i ) + max(0, 5 -k 2 ), n ≥ k + 2, if l = 3, then n = 2k + 1, 3k i -k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g.

And by Theorem A, we have Corollary G.2.

Corollary G.2: Let P ∈ K[x] be such that P ′ is of the form b(xa 1 ) n (xa 2 ) k with min(k, n) ≥ 2 and with b ∈ K * . Suppose P satisfies the following conditions:

n ≥ 9 + max(0, 5 -k), n ≥ k + 2, n = 2k, 2k + 1, 3k + 1,
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g.

Theorem H: Let P be a polynomial of uniqueness for M(K), let

P ′ = b(x -a 1 ) n l i=2 (x -a i ) ki with b ∈ K * , l ≥ 2, k i ≥ k i+1 , 2 ≤ i ≤ l -1 and let k = l i=2 k i . Suppose P satisfies the following conditions: n ≥ k + 2, n ≥ 9 + l i=3 max(0, 4 -k i ) + max(0, 5 -k 2 ).
Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g.

By Theorem B, we have Corollary H.1.

Corollary H.1:

Let P ∈ K[x] satisfy Φ(P ) ≥ 3, let P ′ = b(x -a 1 ) n l i=2 (x -a i ) ki with b ∈ K * , l ≥ 3, k i ≥ k i+1 , 2 ≤ i ≤ l -1 and let k = l i=2 k i . Suppose P satisfies the following conditions: n ≥ k + 2, n ≥ 9 + l i=3 max(0, 4 -k i ) + max(0, 5 -k 2 ).
Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g.

And by Theorem A, we have Corollary H.2

Corollary H.2: Let P ∈ K[x] be such that P ′ is of the form b(xa 1 ) n (xa 2 ) k with k ≥ 2 and with b ∈ K * . Suppose P satisfies the following conditions:

n ≥ 9 + max(0, 5 -k), n ≥ k + 2, n = 2k, 2k + 1, 3k + 1.
Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g.

Theorem I: Let a ∈ K and R > 0. Let P be a polynomial of uniqueness for M u (d(a, R -)) and

let P ′ = b(x -a 1 ) n l i=2 (x -a i ) ki with b ∈ K * , l ≥ 2, k i ≥ k i+1 , 2 ≤ i ≤ l -1 and let k = l i=2 k i .
Suppose P satisfies the following conditions:

n ≥ 10 + l i=3 max(0, 4 -k i ) + max(0, 5 -k 2 ), n ≥ k + 3, if l = 2, then n = 2k, 2k + 1, 3k + 1, if l = 3, then n = 2k + 1, 3k i -k ∀i = 2, 3. Let f, g ∈ M u (d(a, R -)) and let α ∈ M f (d(a, R -)) ∩ M g (d(a, R -)) be non-identically zero. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g.
By Theorem B we can state Corollary I.1.

Let f, g ∈ M u (d(a, R -)) and let α ∈ M f (d(a, R -)) ∩ M g (d(a, R -)) be non-identically zero. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g. Example: Let P (x) =
x 18 18 -2x 17 17 -x 16 16 + 2x 15 15 . Then P ′ (x) = x 17 -2x 16x 15 + 2x 14 =

x 14 (x -1)(x + 1)(x -2). We check that: 16 15 = 0, P (1), P (-1).

P (0) = 0, P (1) 
Then Φ(P ) = 4. So, P is a polynomial of uniqueness for both M(K) and M(d(0, R -)). Moreover, we have n = 14, l = 4, hence we can apply Corollaries J.1 and K.1. Given f, g ∈ M(K) transcendental or f, g ∈ M u (d(0, R -)) such that f ′ P ′ (f ) and g ′ P ′ (g) share a small function α C.M., we have f = g.

Theorem L: Let P be a polynomial of uniqueness for M(K) such that P ′ is of the form

P ′ = b(x -a 1 ) n l i=2 (x -a i ) with l ≥ 3, b ∈ K * satisfying n ≥ l + 9, if l = 3, then n = 2l -1.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g.

Theorem M: Let P be a polynomial of uniqueness for M(K) such that P ′ is of the form

P ′ = b(x -a 1 ) n l i=2 (x -a i ) with l ≥ 3, b ∈ K * satisfying n ≥ l + 9.
Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g.

Example: Let P (x) = x qax q-2 + b with a ∈ K * , b ∈ K, with q ≥ 5 an odd integer. Then q and q -2 are relatively prime and hence by Theorem 3.21 [START_REF] Hu | Meromorphic functions over non archimedean fields[END_REF] P is a uniqueness polynomial for M(K) and P ′ admits 0 as a zero of order n = q -3 and two other zeros of order 1.

Let f, g ∈ M(K) be transcendental and let α ∈ M(K) be a small function such that f, g share α C.M.

Suppose first q ≥ 17. By Theorem J we have f = g. Now suppose q ≥ 15 and suppose α is a Moebius function or a non-zero constant. Then by Theorem L and M, we have f = g. Inside an open disk, we have a version similar to the general case in the whole field.

Theorem N: Let f, g ∈ M(K) be transcendental and let α ∈ M f (K)∩M g (K) be non-identically zero. Let a ∈ K \ {0}. If f ′ f n (f -a) and g ′ g n (g -a) share the function α C.M. and if n ≥ 12, then either f = g or there exists h ∈ M(K) such that f = a(n + 2) n + 1 h n+1 -1 h n+2 -1 h and g = a(n + 2) n + 1 h n+1 -1 h n+2 -1 . Moreover, if α is a constant
Theorem O: Let f, g ∈ M u (d(0, R -)), and let α ∈ M f (d(0, R -)) ∩ M g (d(0, R -)) be nonidentically zero. Let a ∈ K \ {0}. If f ′ f n (fa) and g ′ g n (ga) share the function α C.M. and n ≥ 12, then either f = g or there exists h ∈ M(d(0, R -)) such that f = a(n + 2) n + 1

h n+1 -1 h n+2 -1 h and g = a(n + 2) n + 1 h n+1 -1 h n+2 -1 .
Remark 3. In Theorems N and O, the second conclusion does occur. Indeed, let h ∈ M(K)

(resp. let h ∈ M u (d(0, R -)))
. Now, let us precisely define f and g as:

g = ( n + 2 n + 1 ) h n+1) -1 h n+2 -1 and f = hg.
Then by Remark 1 we can see that the polynomial

P (y) = 1 n + 2 y n+2 - 1 n + 1 y n+1
satisfies P (f ) = P (g), hence f ′ P ′ (f ) = g ′ P ′ (g), therefore f ′ P ′ (f ) and g ′ P ′ (g) trivially share any function.

Remark 4. All theorems above have suggested results on complex meromorhic functions, with figures that are just slightly less fine [START_REF] Boussaf | complex meromorphic functions f ′ P ′ (f ), g ′ P ′ (g) sharing a small function[END_REF].

In order to prove Theorem P, we wiil prove the following three lemmas:

Lemma 1: Let R ∈ R * + and let f, g ∈ A(d(a, R -)). Then f g belongs to A b (d(a, R -))
if and only if so do both f, g. Lemma 3 is known in the Nevanlinna Theory [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF], [START_REF] Escassut | p-adic Value Distribution. Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF].

Lemma 2: Let f ∈ M(K) (resp. f ∈ M(d(0, R -))) have no zero and no pole at 0. Let G(Y ) ∈ M f (K)(Y ), (resp. G ∈ M f (d(0, R -))(Y )), let n = deg(G). Then T (r, G(f )) = nT (r, f )+ o(T (r, f )).
Lemma 3: Let P ∈ K[x] with deg(P ) > 1 and let f, g ∈ A(K) \ K (resp. f, g ∈ A u (d(a, R -))) be such that P (f ) = P (g) + c, c ∈ K. Then c = 0.

Proof: Let P (x) = n k=0 a k x k with a n = 0. For each k = 1, ..., n-1, let Q k (x, y) = a k k j=0 x j y k-j . Then P (x)-P (y) = (x-y)( n-1 k=1 Q k (x, y)). Suppose first f, g ∈ A(K). Since (f -g)( n-1 k=1 Q k (f, g)) is a constant, we know that both f -g, n-1 k=1 Q k (f, g)) are constants. Thus we have g = f + b with b ∈ K. Let G(x) = n-1 k=1 Q k (x, x + b)). We can check that G is a polynomial of degree n -1.
And since G(f ) is a constant, we have n -1 = 0, a contradiction. Thus, f = g.

Similarly, suppose now f, g ∈ A u (d(a, R -)). By Lemma 1 both f -g, n-1 k=1 Q k (f, g)) are bounded, so we have g = f + h, with h ∈ A b (d(a, R -)). Consider the polynomial B(x) = n-1 k=1 Q k (x, x + h)) ∈ M b (d(a, R -))(x). Then B(x) is a polynomial with coefficients in M b (d(a, R -))
and deg(B)) is n -1 hence by Lemma 2 we have T (r, B(f )) = (n -1)T (r, f ) + S f (r). But since B(f ) is bounded, it belongs to M b (d(a, R -))(x), hence n = 1, a contradiction again.

Theorem P: Let P (x) ∈ K[x] be a polynomial of uniqueness for A(K) (resp. for A(d(a, R -))), let P ′ (x) = l i=1 (xa i ) ki and let f, g ∈ A(K) be transcendental (resp. let f, g ∈ A u (d(a, R -)))

Theorem Q: Let f, g ∈ A(K) be transcendental such that (fa) n (fb) k f ′ and (ga) n (gb) k g ′ share the function α ∈ A f (K) ∩ A g (K) C.M. with n, k ∈ N * and a ∈ K * \ {0}. Then f = g.

Proof: Without loss of generality, we can assume a = 0 and b = 1. Let P be the primitive of x n (x -1) k that admits 0 as a zero of order n + 1. By Lemma 3, we have P (f ) = P (g). Now, we can check that P (1) = 0. Indeed, if 1 is a zero of P , then it is a zero of order k + 1 and hence deg(P ) = n + k + 2, a contradiction. Consequently, Φ(P ) = 2 and therefore, by Theorem B, P is a polynomial of uniqueness for A(K). Hence f = g. Proof: Without loss of generality, we can assume a = 0 and b = 1. Let P be the primitive of x n (x -1) k such that P (0) = 0. If k = 2 and n ≥ 3, we can apply Theorem C showing that P is a polynomial of uniqueness for A u (d(0, R -)) and then, by Theorem P we have f = g.

And now suppose k = 1. Then P ′ (x) has two distinct zeros, one of order 1 and hence by Theorem C, P is a polynomial of uniqueness for A u (d(0, R -)). Consequently, by Theorem P, we have f = g.

∞

  n=0 a n (xa) n converging in d(a, R -) and by M(d(a, R -)) the field of meromorphic functions inside d(a, R -), i.e. the field of fractions of A(d(a, R -)). Moreover, we denote by A b (d(a, R -)) the K -subalgebra of A(d(a, R -)) consisting of the bounded analytic functions in d(a, R -), i.e. which satisfy sup n∈N |a n |R n < +∞ . And we denote by M b (d(a, R -)) the field of fractions of A b (d(a, R -)). Finally, we denote by

  ′ and g n (ga)g ′ share the function α C.M. and n ≥ 5, then again f = g.

  or a Moebius function, then the conclusion holds whenever n ≥ 11.

Theorem R :

 : Let f, g ∈ A u (d(0, R -)), let α ∈ A f (d(0, R -)) ∩ A g (d(0, R -)) and let a, b ∈ K \ {0}, a = b. If (fa) n (fb) 2 f ′ and (ga) n (gb) 2 g ′ share the function α C.M. and n ≥ 3, then f = g. Moreover, if (fa) n (fb)f ′ and (ga) n (gb)g ′ (with n ≥ 1)share the function α C.M. and if n ≥ 1, then again f = g.
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Theorem J: Let P be a polynomial of uniqueness for M(K) such that

Let f, g ∈ M(K) be transcendental and let α ∈ M f (K) ∩ M g (K) be non-identically zero. If f ′ P ′ (f ) and g ′ P ′ (g) share α C.M., then f = g.

By Theorem B, we have Corollary J.1:

Corollary J.1: Let P ∈ K[x] satisfy Φ(P ) ≥ 3 and be such that

By Theorem B, we have Corollary K.1:

such that f ′ P ′ (f ) and g ′ P ′ (g) share a small function α

Proof:

Set

has no zero and no pole, hence it is a constant φ ∈ K * (resp.

. Now applying the Second main Theorem to F we have:

Now, let m = l i=1 k i . By Lemma 2 we have T (r,

Consequently, since f, g are transcendental (resp. unbounded), so are F and G.

On the other hand, since

Consequently, by [START_REF] An | Unique range sets and uniqueness polynomials in positive characteristic II[END_REF], we obtain mT (r, f ) ≤ l(T (r, f + T (r, g)) + o(T (r, f ) and similarly, mT (r, g) ≤ l(T (r, f ) + T (r, g)) + o(T (r, g). So, m(T (r, f ) + T (r, g)) ≤ (2l + 1)(T (r, f ) + T (r, g)) + o(T (r, f ) + T (r, g)).

(

Thus, by [START_REF] Boussaf | p-adic meromorphic functions f ′ P ′ (f ), g ′ P ′ (g) sharing a small function[END_REF] we have m ≤ 2l + 2. Moreover, we notice that if f, g ∈ A(K) and if α is a constant, (1) gets

hence m ≤ 2l. Thus, if m ≥ 2l + 2, or if f, g ∈ A(K) and if α is a constant and m ≥ 2l + 1, we have φ = 1. We can then assume that φ = 1, therefore f ′ P ′ (f ) = g ′ P ′ (g) and hence P (f ) -P (g) is a constant b ∈ K. But then, by Lemma 3, b = 0. Finally, since P is a polynomial of uniqueness for A(K) (resp. A(d(0, R -)), we can conclude f = g.