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Abstract

Let K be a complete algebraically closed p-adic field of characteristic zero. Let f, g be
two transcendental meromorphic functions in the whole field K or meromorphic functions in
an open disk that are not quotients of bounded analytic functions. Let P be a polynomial of
uniqueness for meromorphic functions in K or in an open disk and let α be a small meromorphic
function with regards to f and g. Here we present the following results: if f ′P ′(f) and g′P ′(g)
share α counting multiplicity, then we show that f = g provided that the multiplicity order
of zeros of P ′ satisfy certain inequalities. If α is a Moebius function or a non-zero constant,
we can obtain more general results on P . Further, when f, g are entire analytic functions or
analytic functions inside an open disk, we can obtain a new result improving that published
by the third author

1 Introduction and Main Results

Let f, g be two meromorphic functions in a p-adic field. Here we study polynomials P such
that, when f ′P ′(f) and g′P ′(g) share a small function α, then f = g. Problems of uniqueness
on meromorphic functions were examined first in C [10], [11], [13], [16], [17], [18], [19], [20], [25],
[26], [27] and next in a p-adic field [1], [5], [6], [7], [14], [15], [21], [22], [23], [24]. After examining
problems of the form P (f) = P (g), several studies were made on the equality f ′P ′(f) = g′P ′(g),
or value sharing questions: if f ′P ′(f) and g′P ′(g) share a value, or a small function, do we have
f = g? Here we recall results previously obtained no matter what the number of zeros of P ′.
Results also apply to meromorphic functions inside an open disk. They were published in [2].
Moreover, here we will examine the particular case of analytic functions and will improve results
of [23].

Let K be an algebraically closed field of characteristic zero, complete for an ultrametric absolute
value denoted by | . |. We denote by A(K) the K-algebra of entire functions in K, by M(K) the
field of meromorphic functions in K, i.e. the field of fractions of A(K) and by K(x) the field of
rational functions.
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Let a ∈ K and R ∈]0, +∞[. We denote by d(a, R) the closed disk {x ∈ K : |x − a| ≤ R} and
by d(a, R−) the ”open” disk {x ∈ K : |x − a| < R}. We denote by A(d(a, R−)) the set of analytic

functions in d(a, R−), i.e. the K-algebra of power series

∞
∑

n=0

an(x− a)n converging in d(a, R−) and

by M(d(a, R−)) the field of meromorphic functions inside d(a, R−), i.e. the field of fractions of
A(d(a, R−)). Moreover, we denote by Ab(d(a, R−)) the K - subalgebra of A(d(a, R−)) consisting of
the bounded analytic functions in d(a, R−), i.e. which satisfy sup

n∈N

|an|R
n < +∞ . And we denote

by Mb(d(a, R−)) the field of fractions of Ab(d(a, R−)). Finally, we denote by Au(d(a, R−)) the
set of unbounded analytic functions in d(a, R−), i.e. A(d(a, R−)) \ Ab(d(a, R−)). Similarly, we set
Mu(d(a, R−)) = M(d(a, R−)) \Mb(d(a, R−)).

The problem of value sharing a small function by functions of the form f ′P ′(f) was examined
first when P was just of the form xn [10], [21], [27]. More recently it was examined when P was a
polynomial such that P ′ had exactly two distinct zeros [18], [20], [23], both in complex analysis and
in p-adic analysis. In [18], [20] the functions where meromorphic on C, with a small function that
was a constant or the identity. In [23], the problem was considered for analytic functions in the
field K: on one hand for entire functions and on the other hand for unbounded analytic functions
in an open disk.

Actually solving a value sharing problem involving f ′P ′(f), g′P ′(g) requires to know polyno-
mials of uniqueness P for meromorphic functions.

In [23] the third author studied several problems of uniqueness and particularly the following:
Let f, g ∈ A(K) be transcendental

(

resp. Let f, g ∈ Au(d(0, R−))
)

and α ∈ A(K)
(

resp.

α ∈ Au(d(0, R−))
)

be a small function, such that fn(f − a)kf ′ and gn(g − a)kg′ share α, counting
multiplicity, with n, k ∈ N and a ∈ K \ {0} (see Theorems D and E below).

Here we consider functions f, g ∈ M(K) or f, g ∈ M(d(a, R−)) and ordinary polynomials P :
we must only assume certain hypotheses on the multiplicity order of the zeros of P ′. The method
for the various theorems we will show is the following: assuming that f ′P ′(f) and g′P ′(g) share a
small function, we first prove that f ′P ′(f) = g′P ′(g). Next, we derive P (f) = P (g). And then,
when P is a polynomial of uniqueness for the functions we consider, we can conclude f = g.

Now, in order to define small functions, we have to briefly recall the definitions of the clas-
sical Nevanlinna theory in the field K and a few specific properties of ultrametric analytic or
meromorphic functions [4].

Let log be a real logarithm function of base b > 1 and let f ∈ M(K)
(

resp. f ∈ M(d(0, R−))
)

having no zero and no pole at 0. Let r ∈]0, +∞[
(

resp. r ∈]0, R[
)

and let γ ∈ d(0, r). If f has a
zero of order n at γ, we put ωγ(h) = n. If f has a pole of order n at γ, we put ωγ(f) = −n and
finally, if f(γ) 6= 0,∞, we set ωγ(f) = 0

We denote by Z(r, f) the counting function of zeros of f in d(0, r), counting multiplicity, i.e.

Z(r, f) = max(ω0, 0) log r +
∑

ωγ(f)>0, 0<|γ|≤r

ωγ(f)(log r − log |γ|).

Similarly, we denote by Z(r, f) the counting function of zeros of f in d(0, r), ignoring multi-
plicity, and set

Z(r, f) = u log r +
∑

ωγ(f)>0, 0<|γ|≤r

(log r − log |γ|)

with u = 1 when ω0(f) > 0 and u = 0 else.
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In the same way, we set N(r, f) = Z
(

r,
1

f

) (

resp. N(r, f) = Z
(

r,
1

f

))

to denote the counting

function of poles of f in d(0, r), counting multiplicity (resp. ignoring multiplicity).

For f ∈ M(d(0, R−)) having no zero and no pole at 0, the Nevanlinna function is defined by
T (r, f) = max

{

Z(r, f), N(r, f)
}

.

Now, we must recall the definition of a small function with respect to a meromorphic function
and some pertinent properties.

Definition. Let f ∈ M(K)
(

resp. let f ∈ M(d(0, R−))
)

such that f(0) 6= 0,∞. A function

α ∈ M(K)
(

resp. α ∈ M(d(0, R−))
)

having no zero and no pole at 0 is called a small function

with respect to f , if it satisfies lim
r→+∞

T (r, α)

T (r, f)
= 0

(

resp. lim
r→R−

T (r, α)

T (r, f)
= 0

)

.

If 0 is a zero or a pole of f or α, we can make a change of variable such that the new origin is
not a zero or a pole for both f and α. Thus it is easily seen that the last relation does not really
depend on the origin.

We denote by Mf(K)
(

resp. Mf(d(0, R−))
)

the set of small meromorphic functions with

respect to f in K
(

resp. in d(0, R−)
)

.

Remark 1. Thanks to classical properties of the Nevanlinna function T (r, f) with respect to the
operations in a field of meromorphic functions, such as T (r, f + g) ≤ T (r, f) + T (r, g) + O(1)
and T (r, fg) ≤ T (r, f) + T (r, g) + O(1), for f, g ∈ M(K) and r > 0, it is easily proved that
Mf (K)

(

resp. Mf(d(0, R−))
)

is a subfield of M(K)
(

resp. M(d(0, R−))
)

and that M(K)
(

resp.

M(d(0, R))
)

is a transcendental extension of Mf (K)
(

resp. of Mf(d(0, R−))
)

[9].

Let us remember the following definition.

Definition. Let f, g, α ∈ M(K)
(

resp. let f, g, α ∈ M(d(0, R−))
)

. We say that f and g share the

function α C.M., if f −α and g −α have the same zeros with the same multiplicity in K
(

resp. in

d(0, R−)
)

.
Recall that a polynomial P ∈ K[x] is called a polynomial of uniqueness for a class of functions

F if for any two functions f, g ∈ F the property P (f) = P (g) implies f = g.
The definition of polynomials of uniqueness was introduced in [19] by P. Li and C. C. Yang and

was studied in many papers [12], [13] for complex functions and [1], [6], [7], [14], [15], [17], [24], for
p-adic functions.

Actually, in a p-adic field, we can obtain various results, not only for functions defined in the
whole field K but also for functions defined inside an open disk because the p-adic Nevanlinna
Theory works inside a disk, for functions of Mu(d(0, R−)).

The following theorem is classical for analytic functions [26] and was proved for meromorphic
functions in [7] and in [14] but it is also a consequence of Theorem 1 in [24].

Theorem A: Let P ∈ K[x] be such that P ′ has exactly two distinct zeros γ1 of order c1 and γ2

of order c2. Then P is a polynomial of uniqueness for A(K). Moreover, if min{c1, c2} ≥ 2, then
P is a polynomial of uniqueness for M(K).

Another way to obtain polynomials of uniqueness was given in [7]. It also applies to meromor-
phic functions inside an open disk.

Notation: Let P ∈ K[x] \ K and let Ξ(P ) be the set of zeros c of P ′ such that P (c) 6= P (d) for
every zero d of P ′ other than c. We denote by Φ(P ) the cardinal of Ξ(P ).
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Remark 2. If deg(P ) = q then Φ(P ) ≤ q − 1.

From [7] we have the following results:

Theorem B: Let d(a, R−) be an open disk in K and P ∈ K[x]. If Φ(P ) ≥ 2 then P is a

polynomial of uniqueness for A(K). If Φ(P ) ≥ 3 then P is a polynomial of uniqueness for both

Au(d(a, R−)) and M(K). If Φ(P ) ≥ 4 then P is a polynomial of uniqueness for Mu(d(a, R−)).

We can find the statements of Theorem C in [23]:

Theorem C: Let P ∈ K[x] such that P ′ admits exactly 2 distinct zeros of respective order n

and k.
i) Suppose k = 2, n ≥ 3. Then P is a polynomial of uniqueness for Mu(d(0, R−)).
ii) Suppose k = 1, n ≥ 1. Then P is a polynomial of uniqueness for Au(d(0, R−)).

In [23], the third author proved the following theorems D and E concerning entire functions
and analytic functions in a disk when the polynomial P has only two distinct zeros:

Theorem D: Let f, g ∈ A(K) be transcendental such that fn(f − a)kf ′ and gn(g − a)kg′ share
the function α ∈ Af (K) ∩ Ag(K) C.M. with n, k ∈ N and a ∈ K \ {0}. If n ≥ max{6− k, k + 1},
then f = g. Moreover, if α ∈ K \ {0} and n ≥ max{5 − k, k + 1}, then f = g.

Theorem E : Let f, g ∈ Au(d(0, R−)), let α ∈ Af (d(0, R−)) ∩ Ag(d(0, R−)) and let a ∈ K\{0}.
If fn(f − a)2f ′ and gn(g − a)2g′ share the function α C.M. and n ≥ 4, then f = g. Moreover, if
fn(f − a)f ′ and gn(g − a)g′ share the function α C.M. and n ≥ 5, then again f = g.

We acn now state our main results and we will givea proof for those that are not published

Theorem F: Let P be a polynomial of uniqueness for M(K), let P ′ = b(x − a1)
n

l
∏

i=2

(x − ai)
ki

with b ∈ K∗, l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l− 1 and let k =
∑l

i=2 ki. Suppose P satisfies the following
conditions:

n ≥ 10 +

l
∑

i=3

max(0, 4 − ki) + max(0, 5 − k2),

n ≥ k + 2,

if l = 2, then n 6= 2k, 2k + 1, 3k + 1,
if l = 3, then n 6= 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α ∈ Mf (K) ∩ Mg(K) be non-identically zero. If

f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

By Theorem B, we have Corollary F.1:

Corollary F.1: Let P ∈ K[x] satisfy Φ(P ) ≥ 3, let P ′ = b(x − a1)
n

l
∏

i=2

(x − ai)
ki with b ∈ K∗,

l ≥ 3, ki ≥ ki+1, 2 ≤ i ≤ l − 1 and let k =
∑l

i=2 ki. Suppose P satisfies the following conditions:

n ≥ 10 +
l

∑

i=3

max(0, 4 − ki) + max(0, 5 − k2),

n ≥ k + 2,
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if l = 3, then n 6= 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α ∈ Mf (K) ∩ Mg(K) be non-identically zero. If

f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

And by Theorem A we also have Corollary F.2.

Corollary F.2: Let P ∈ K[x] be such that P ′ is of the form b(x − a1)
n(x − a2)

k with min(k, n) ≥
2.

Suppose P satisfies the following conditions:
n ≥ 10 + max(0, 5 − k),
n ≥ k + 2,

n 6= 2k, 2k + 1, 3k + 1.
Let f, g ∈ M(K) be transcendental and let α ∈ Mf (K) ∩ Mg(K) be non-identically zero. If

f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

Theorem G: Let P be a polynomial of uniqueness for M(K), let P ′ = b(x − a1)
n

l
∏

i=2

(x − ai)
ki

with b ∈ K∗, l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l− 1 and let k =
∑l

i=2 ki. Suppose P satisfies the following
conditions:

n ≥ 9 +

l
∑

i=3

max(0, 4 − ki) + max(0, 5 − k2),

n ≥ k + 2,

if l = 2, then n 6= 2k, 2k + 1, 3k + 1,
if l = 3, then n 6= 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.

By Theorem B, we have Corollary G.1.

Corollary G.1: Let P ∈ K[x] satisfy Φ(P ) ≥ 3, let P ′ = b(x − a1)
n

l
∏

i=2

(x − ai)
ki with b ∈ K∗,

l ≥ 3, ki ≥ ki+1, 2 ≤ i ≤ l − 1 and let k =
∑l

i=2 ki. Suppose P satisfies the following conditions:

n ≥ 9 +

l
∑

i=3

max(0, 4 − ki) + max(0, 5 − k2),

n ≥ k + 2,

if l = 3, then n 6= 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.

And by Theorem A, we have Corollary G.2.

Corollary G.2: Let P ∈ K[x] be such that P ′ is of the form b(x − a1)
n(x − a2)

k with min(k, n) ≥
2 and with b ∈ K∗. Suppose P satisfies the following conditions:

n ≥ 9 + max(0, 5 − k),
n ≥ k + 2,

n 6= 2k, 2k + 1, 3k + 1,
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.
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Theorem H: Let P be a polynomial of uniqueness for M(K), let P ′ = b(x − a1)
n

l
∏

i=2

(x − ai)
ki

with b ∈ K∗, l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l− 1 and let k =
∑l

i=2 ki. Suppose P satisfies the following
conditions:

n ≥ k + 2,

n ≥ 9 +

l
∑

i=3

max(0, 4 − ki) + max(0, 5 − k2).

Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′P ′(f) and g′P ′(g)
share α C.M., then f = g.

By Theorem B, we have Corollary H.1.

Corollary H.1: Let P ∈ K[x] satisfy Φ(P ) ≥ 3, let P ′ = b(x − a1)
n

l
∏

i=2

(x − ai)
ki with b ∈ K∗,

l ≥ 3, ki ≥ ki+1, 2 ≤ i ≤ l − 1 and let k =
∑l

i=2 ki. Suppose P satisfies the following conditions:
n ≥ k + 2,

n ≥ 9 +

l
∑

i=3

max(0, 4 − ki) + max(0, 5 − k2).

Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′P ′(f) and g′P ′(g)
share α C.M., then f = g.

And by Theorem A, we have Corollary H.2

Corollary H.2: Let P ∈ K[x] be such that P ′ is of the form b(x − a1)
n(x − a2)

k with k ≥ 2 and
with b ∈ K∗. Suppose P satisfies the following conditions:

n ≥ 9 + max(0, 5 − k),
n ≥ k + 2,

n 6= 2k, 2k + 1, 3k + 1.
Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.

Theorem I: Let a ∈ K and R > 0. Let P be a polynomial of uniqueness for Mu(d(a, R−)) and

let P ′ = b(x − a1)
n

l
∏

i=2

(x − ai)
ki with b ∈ K∗, l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l− 1 and let k =

∑l

i=2 ki.

Suppose P satisfies the following conditions:

n ≥ 10 +

l
∑

i=3

max(0, 4 − ki) + max(0, 5 − k2),

n ≥ k + 3,

if l = 2, then n 6= 2k, 2k + 1, 3k + 1,

if l = 3, then n 6= 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈ Mu(d(a, R−)) and let α ∈ Mf(d(a, R−)) ∩Mg(d(a, R−)) be non-identically zero. If

f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

By Theorem B we can state Corollary I.1.
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Corollary I.1: Let a ∈ K and R > 0. Let P ∈ K[x] satisfy Φ(P ) ≥ 4, let P ′ = b(x − a1)
n

l
∏

i=2

(x − ai)
ki

with b ∈ K∗, l ≥ 4, ki ≥ ki+1, 2 ≤ i ≤ l−1 and let k =
∑l

i=2 ki. Suppose P satisfies the following
conditions:

n ≥ 10 +
l

∑

i=3

max(0, 4 − ki) + max(0, 5 − k2),

n ≥ k + 3,

Let f, g ∈ Mu(d(a, R−)) and let α ∈ Mf(d(a, R−)) ∩Mg(d(a, R−)) be non-identically zero. If
f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

And by Theorem C we have Corollary I.2:

Corollary I.2: Let a ∈ K and R > 0. Let P ∈ K[x] be such that P ′ is of the form b(x − a1)
n(x − a2)

2

with b ∈ K∗. Suppose P satisfies
n ≥ 10 + max(0, 5 − k).
Let f, g ∈ Mu(d(a, R−)) and let α ∈ Mf (d(a, R−))∩Mf (d(a, R−)) be non-identically zero. If

f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

Theorem J: Let P be a polynomial of uniqueness for M(K) such that P ′ is of the form

b(x − a1)
n

l
∏

i=2

(x − ai) with l ≥ 3 , b ∈ K∗, satisfying:

n ≥ l + 10,
if l = 3, then n 6= 2l − 1.

Let f, g ∈ M(K) be transcendental and let α ∈ Mf(K)∩Mg(K) be non-identically zero. If f ′P ′(f)
and g′P ′(g) share α C.M., then f = g.

By Theorem B, we have Corollary J.1:

Corollary J.1: Let P ∈ K[x] satisfy Φ(P ) ≥ 3 and be such that P ′ is of the form

b(x − a1)
n

l
∏

i=2

(x − ai) with l ≥ 3, b ∈ K∗ satisfying:

n ≥ l + 10,
if l = 3, then n 6= 2l − 1.

Let f, g ∈ M(K) be transcendental and let α ∈ Mf(K)∩Mg(K) be non-identically zero. If f ′P ′(f)
and g′P ′(g) share α C.M., then f = g.

Theorem K: Let a ∈ K and R > 0. Let P be a polynomial of uniqueness for Mu(d(a, R−))

such that P ′ is of the form P ′ = b(x − a1)
n

l
∏

i=2

(x − ai) with l ≥ 3, b ∈ K∗ satisfying:

n ≥ l + 10,
if l = 3, then n 6= 2l − 1.

Let f, g ∈ Mu(d(a, R−)) and let α ∈ Mf (d(a, R−)) ∩ Mg(d(a, R−)) be non-identically zero. If
f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

By Theorem B, we have Corollary K.1:

Corollary K.1: Let a ∈ K and R > 0. Let P ∈ K[x] satisfy Φ(P ) ≥ 4 and be such that P ′ is of

the form P ′ = b(x − a1)
n

l
∏

i=2

(x − ai) with l ≥ 4, b ∈ K∗ and n ≥ l + 10.
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Let f, g ∈ Mu(d(a, R−)) and let α ∈ Mf(d(a, R−)) ∩Mg(d(a, R−)) be non-identically zero. If
f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

Example: Let P (x) =
x18

18
−

2x17

17
−

x16

16
+

2x15

15
. Then P ′(x) = x17 − 2x16 − x15 + 2x14 =

x14(x − 1)(x + 1)(x − 2). We check that:
P (0) = 0,

P (1) =
1

18
−

2

17
−

1

16
+

2

15
,

P (−1) =
1

18
+

2

17
−

1

16
−

2

15
6= 0, P (1), and P (2) =

218

18
−

218

17
−

216

16
+

216

15
6= 0, P (1), P (−1).

Then Φ(P ) = 4. So, P is a polynomial of uniqueness for both M(K) and M(d(0, R−)). Moreover,
we have n = 14, l = 4, hence we can apply Corollaries J.1 and K.1.

Given f, g ∈ M(K) transcendental or f, g ∈ Mu(d(0, R−)) such that f ′P ′(f) and g′P ′(g)
share a small function α C.M., we have f = g.

Theorem L: Let P be a polynomial of uniqueness for M(K) such that P ′ is of the form

P ′ = b(x − a1)
n

l
∏

i=2

(x − ai) with l ≥ 3, b ∈ K∗ satisfying

n ≥ l + 9,
if l = 3, then n 6= 2l − 1.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.

Theorem M: Let P be a polynomial of uniqueness for M(K) such that P ′ is of the form

P ′ = b(x − a1)
n

l
∏

i=2

(x − ai) with l ≥ 3, b ∈ K∗ satisfying n ≥ l + 9.

Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′P ′(f) and g′P ′(g)
share α C.M., then f = g.

Example: Let P (x) = xq − axq−2 + b with a ∈ K∗, b ∈ K, with q ≥ 5 an odd integer. Then q

and q − 2 are relatively prime and hence by Theorem 3.21 [15] P is a uniqueness polynomial for
M(K) and P ′ admits 0 as a zero of order n = q − 3 and two other zeros of order 1.

Let f, g ∈ M(K) be transcendental and let α ∈ M(K) be a small function such that f, g share
α C.M.

Suppose first q ≥ 17. By Theorem J we have f = g. Now suppose q ≥ 15 and suppose α is a
Moebius function or a non-zero constant. Then by Theorem L and M, we have f = g.

Theorem N: Let f, g ∈ M(K) be transcendental and let α ∈ Mf (K)∩Mg(K) be non-identically
zero. Let a ∈ K \ {0}. If f ′fn(f − a) and g′gn(g − a) share the function α C.M. and if n ≥ 12,

then either f = g or there exists h ∈ M(K) such that f =
a(n + 2)

n + 1

(hn+1 − 1

hn+2 − 1

)

h and g =

a(n + 2)

n + 1

(hn+1 − 1

hn+2 − 1

)

. Moreover, if α is a constant or a Moebius function, then the conclusion

holds whenever n ≥ 11.

Inside an open disk, we have a version similar to the general case in the whole field.
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Theorem O: Let f, g ∈ Mu(d(0, R−)), and let α ∈ Mf(d(0, R−)) ∩ Mg(d(0, R−)) be non-
identically zero. Let a ∈ K \ {0}. If f ′fn(f − a) and g′gn(g − a) share the function α C.M. and

n ≥ 12, then either f = g or there exists h ∈ M(d(0, R−)) such that f =
a(n + 2)

n + 1

(hn+1 − 1

hn+2 − 1

)

h

and g =
a(n + 2)

n + 1

(hn+1 − 1

hn+2 − 1

)

.

Remark 3. In Theorems N and O, the second conclusion does occur. Indeed, let h ∈ M(K)

(resp. let h ∈ Mu(d(0, R−))). Now, let us precisely define f and g as: g = (
n + 2

n + 1
)
(hn+1) − 1

hn+2 − 1

)

and f = hg. Then by Remark 1 we can see that the polynomial P (y) =
1

n + 2
yn+2 −

1

n + 1
yn+1

satisfies P (f) = P (g), hence f ′P ′(f) = g′P ′(g), therefore f ′P ′(f) and g′P ′(g) trivially share any
function.

Remark 4. All theorems above have suggested results on complex meromorhic functions, with
figures that are just slightly less fine [3].

In order to prove Theorem P, we wiil prove the following three lemmas:

Lemma 1: Let R ∈ R
∗
+ and let f, g ∈ A(d(a, R−)). Then fg belongs to Ab(d(a, R−)) if and

only if so do both f, g.

Lemma 3 is known in the Nevanlinna Theory [4], [8].

Lemma 2: Let f ∈ M(K) (resp. f ∈ M(d(0, R−))) have no zero and no pole at 0. Let
G(Y ) ∈ Mf (K)(Y ), (resp. G ∈ Mf (d(0, R−))(Y )), let n = deg(G). Then T (r, G(f)) = nT (r, f)+
o(T (r, f)).

Lemma 3: Let P ∈ K[x] with deg(P ) > 1 and let f, g ∈ A(K)\K (resp. f, g ∈ Au(d(a, R−)))
be such that P (f) = P (g) + c, c ∈ K. Then c = 0.

Proof: Let P (x) =
∑n

k=0 akxk with an 6= 0. For each k = 1, ..., n−1, let Qk(x, y) = ak

∑k
j=0 xjyk−j .

Then P (x)−P (y) = (x−y)(
∑n−1

k=1 Qk(x, y)). Suppose first f, g ∈ A(K). Since (f−g)(
∑n−1

k=1 Qk(f, g))

is a constant, we know that both f − g,
∑n−1

k=1 Qk(f, g)) are constants. Thus we have g = f + b

with b ∈ K. Let G(x) =
∑n−1

k=1 Qk(x, x+ b)). We can check that G is a polynomial of degree n−1.
And since G(f) is a constant, we have n − 1 = 0, a contradiction. Thus, f = g.

Similarly, suppose now f, g ∈ Au(d(a, R−)). By Lemma 1 both f − g,

n−1
∑

k=1

Qk(f, g)) are

bounded, so we have g = f + h, with h ∈ Ab(d(a, R−)). Consider the polynomial B(x) =
n−1
∑

k=1

Qk(x, x + h)) ∈ Mb(d(a, R−))(x). Then B(x) is a polynomial with coefficients in Mb(d(a, R−))

and deg(B)) is n − 1 hence by Lemma 2 we have T (r, B(f)) = (n − 1)T (r, f) + Sf (r). But since
B(f) is bounded, it belongs to Mb(d(a, R−))(x), hence n = 1, a contradiction again.

Theorem P: Let P (x) ∈ K[x] be a polynomial of uniqueness for A(K) (resp. for A(d(a, R−))),

let P ′(x) =
l

∏

i=1

(x − ai)
ki and let f, g ∈ A(K) be transcendental (resp. let f, g ∈ Au(d(a, R−)))
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such that f ′P ′(f) and g′P ′(g) share a small function α ∈ Af (K)∩Ag(K) (resp. α ∈ Af (d(, R−))∩

Ag(d(a, R−))). If

l
∑

i=1

ki ≥ 2l + 2 then f = g. Moreover, if f, g belong to A(K), if α is a constant

and if

l
∑

i=1

ki ≥ 2l + 1 then f = g.

Proof: Set F =
f ′P ′(f)

α
and G =

g′P ′(g)

α
, so F and G share the value 1 C.M. Since F, G

share α C.M., the function
F − α

G − α
has no zero and no pole, hence it is a constant φ ∈ K∗ (resp.

an invertible function φ ∈ A(d(a, R−))) . Suppose φ 6= 1 We have F − α = φ(G − α), hence
F = φG + α(1 − φ). Now applying the Second main Theorem to F we have:

T (r, F ) ≤ Z(r, F ) + Z(r, G) + o(T (r, F )). (1)

Now, let m =

l
∑

i=1

ki. By Lemma 2 we have T (r, F ) ≥ mT (r, f) + o(T (r, f)), T (r, G) ≥

mT (r, g) + o(T (r, g)). Consequently, since f, g are transcendental (resp. unbounded), so are F

and G.
On the other hand, since T (r, f ′) ≤ T (r, f) − log r + O(1), T (r, g′) ≤ T (r, g) − log r + O(1),

we have Z(r, F ) + G(r, F ) ≤ (l + 1)(T (r, f) + T (r, g)) − 2 log r + o(T (r, f)). We also notice that
o(T (r, F )) = o(T (r, f)), o(T (r, G)) = o(T (r, g)). Consequently, by (1), we obtain mT (r, f) ≤
l(T (r, f + T (r, g)) + o(T (r, f) and similarly, mT (r, g) ≤ l(T (r, f) + T (r, g)) + o(T (r, g). So,

m(T (r, f) + T (r, g)) ≤ (2l + 1)(T (r, f) + T (r, g)) + o(T (r, f) + T (r, g)). (2)

Thus, by (2) we have m ≤ 2l + 2. Moreover, we notice that if f, g ∈ A(K) and if α is a constant,
(1) gets

T (r, F ) ≤ Z(r, F ) + Z(r, G) − 2 log r + O(1)

hence m ≤ 2l.
Thus, if m ≥ 2l + 2, or if f, g ∈ A(K) and if α is a constant and m ≥ 2l + 1, we have φ = 1.

We can then assume that φ = 1, therefore f ′P ′(f) = g′P ′(g) and hence P (f)− P (g) is a constant
b ∈ K. But then, by Lemma 3, b = 0. Finally, since P is a polynomial of uniqueness for A(K)
(resp. A(d(0, R−)), we can conclude f = g.

Corollary P.1: Let P (x) ∈ K[x] be such that Υ(P ) ≥ 2, let P ′(x) =
l

∏

i=1

(x − ai)
ki and let f, g ∈

A(K) be transcendental such that f ′P ′(f) and g′P ′(g) share a small function α ∈ Af (K)∩Ag(K).

If

l
∑

i=1

ki ≥ 2l + 2 then f = g. Moreover, if α is a constant and if

l
∑

i=1

ki ≥ 2l + 1 then f = g.

Corollary P.2: Let P (x) ∈ K[x] be such that Υ(P ) ≥ 3, let P ′(x) =

l
∏

i=1

(x − ai)
ki and let

f, g ∈ Au(d(a, R−)) be such that f ′P ′(f) and g′P ′(g) share a small function α ∈ Af (d(a, R−)) ∩

Ag(d(a, R−)). If

l
∑

i=1

ki ≥ 2l + 2 then f = g.
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Theorem Q: Let f, g ∈ A(K) be transcendental such that (f − a)n(f − b)kf ′ and (g − a)n(g −
b)kg′ share the function α ∈ Af (K) ∩ Ag(K) C.M. with n, k ∈ N∗ and a ∈ K∗ \ {0}. Then f = g.

Proof: Without loss of generality, we can assume a = 0 and b = 1. Let P be the primitive of
xn(x − 1)k that admits 0 as a zero of order n + 1. By Lemma 3, we have P (f) = P (g). Now, we
can check that P (1) 6= 0. Indeed, if 1 is a zero of P , then it is a zero of order k + 1 and hence
deg(P ) = n + k + 2, a contradiction. Consequently, Φ(P ) = 2 and therefore, by Theorem B, P is
a polynomial of uniqueness for A(K). Hence f = g.

Theorem R: Let f, g ∈ Au(d(0, R−)), let α ∈ Af (d(0, R−)) ∩ Ag(d(0, R−)) and let a, b ∈
K \ {0}, a 6= b. If (f − a)n(f − b)2f ′ and (g − a)n(g − b)2g′ share the function α C.M. and n ≥ 3,
then f = g. Moreover, if (f − a)n(f − b)f ′ and (g − a)n(g − b)g′ (with n ≥ 1) share the function
α C.M. and if n ≥ 1, then again f = g.

Proof: Without loss of generality, we can assume a = 0 and b = 1. Let P be the primitive of
xn(x − 1)k such that P (0) = 0. If k = 2 and n ≥ 3, we can apply Theorem C showing that P is a
polynomial of uniqueness for Au(d(0, R−)) and then, by Theorem P we have f = g.

And now suppose k = 1. Then P ′(x) has two distinct zeros, one of order 1 and hence by
Theorem C, P is a polynomial of uniqueness for Au(d(0, R−)). Consequently, by Theorem P, we
have f = g.
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