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Zeros of the derivative of a p-adic meromorphic function

1 Introduction and results.

Throughout the paper, K is an algebraically closed field of characteristic 0, complete with respect to a p-adic absolute value denoted by | . | (example C p ). Given a ∈ K and r > 0 we denote by d(0, r) the disk {x ∈ K | |x -a| ≤ r}.

We denote by A(K) the K-algebra of entire functions in K i.e. the set of power series with coefficients in K converging in all K and we denote by M(K) the field of meromorphic functions in K, i.e. the field of fraction of A(K). Given f, g ∈ A(K), we denote by W (f, g) the Wronskian of f and g.

Let f ∈ A(K) be non-constant. We can factorize f (x) in the form

f (x) = cx n0 ω∈Ω,ω =0 (1 - x ω ) nω ,
where c is a non zero constant, Ω is the set of distinct zeros of f and n 0 = 0 if 0 is not a zero of f . We set f = x m0 ω∈Ω,ω =0

(1 -x ω ), with m 0 = 0 if 0 is not a zero of f and m 0 = 1 else. So, the function f is an entire function admitting as zeros the distinct zeros of f , all with order 1. We can then set f = f f where the function f is an entire function admitting for zeros the multiple zeros of f , each with order q -1 when it is a zero of f of order q. Particularly, if f is constant, we set f = 1 and f = f . That notation defines an absolute value on A(K) and has continuation to

M(K) as f g (r) = |f |(r) |g|(r)
with f, g ∈ A(K). In the paper [START_REF] Boussaf | Zeros of the derivative of p-adic meromorphic functions and applications[END_REF], the following Theorems A and B are proven:

Theorem A: Let f, g be entire functions on K such that W (f, g) is a non-identically zero polynomial. Then both f, g are polynomials.

(Theorem A has been recently generalized to several functions [START_REF] Boussaf | Picard values of p-adic meromorphic functions. p-Adic Numbers Ultrametric[END_REF])

Theorem B is an easy consequence of Theorem A:

Theorem B: Let f be a transcendental meromorphic function on K having finitely many multiple poles. Then f takes every value infinitely many times.

That has suggested the following conjecture:

Conjecture: Let f be a meromorphic function on K such that f has finitely many zeros. Then f is a rational function.

This paper is aimed at proving the following theorem which generalizes Theorem B. For this we will define new expressions.

Notation: Let f ∈ M(K). For each r > 0, we denote by ψ f (r) the number of multiple zeros of f in d(0, r), each counted with its multiplicity and we set φ f (r) = ψ 1 f (r). Similarly, we denote by θ f (r) the number of zeros of f in d(0, r), taking multiplicity into account and set τ f (r) = θ 1 f (r). 

f different from 0, such that, f for some c, d ∈]0, +∞[, ψ f (r) ≤ cr d in [1, +∞[.
By Main Theorem of [START_REF] Boussaf | Primitives of p-adic meromorphic functions[END_REF] we can derive this corollary:

Corollary 4: Let f be a a meromorphic function on K such that, for certain d ∈ N, the number of poles of order ≥ 3, counted each with its multiplicity, in each disk d(0, r) is bounded by r d for all r ∈ [1, +∞[ and such that all residues at poles are null. Then for every b ∈ K, f -b has infinitely many zeros.

According to the p-adic Hayman conjecture, for every n ∈ N * f f n takes every non-zero value infinitely many times. Here Theorem 1 has an immediate application to that conjecture in the cases n = 1 or n = 2 which are not yet solved, except with additional hypotheses [START_REF] Boussaf | Picard values of p-adic meromorphic functions. p-Adic Numbers Ultrametric[END_REF], [START_REF] Boussaf | Value distribution of p-adic meromorphic functions[END_REF], [START_REF] Boussaf | Zeros of the derivative of p-adic meromorphic functions and applications[END_REF], [START_REF] Ojeda | Hayman's conjecture in a p-adic field[END_REF]. Remark: Using Corollary 7 to study zeros of f + bf 2 that are not zeros of f is not so immediate, as done in Theorems 3, 4, 5 [START_REF] Boussaf | Value distribution of p-adic meromorphic functions[END_REF], because of residues of f at poles of order 1. 

Preliminary results

We will need several lemmas.

Lemma 1:

Let U, V ∈ A(K) have no common zero and let f = U V . If f has finitely many zeros, there exists a polynomial

P ∈ K[x] such that U V -U V = P V
Proof: If V is a constant, the statement is obvious. So, we assume that V is not a constant. Now V divides V and hence V factorizes in the way V = V Y with Y ∈ A(K). Then no zero of Y can be a zero of V . Consequently, we have

f (x) = U V -U V V 2 = U V -U Y V 2 V .
The two functions U V -U Y and V 2 V have no common zero since neither have U and V .

Consequently, the zeros of f are those of U V -U Y which therefore has finitely many zeros and consequently is a polynomial.

Lemma 2 is known as the p-adic Schwarz Lemma (Lemma 23.12 [START_REF] Escassut | Analytic elements in p-adic analysis[END_REF]). Lemmas 3 and 4 are immediate corollaries:

Notation: Let a ∈ K, r , r ∈]0, +∞[ with r < r . We denote by Γ(a, r , r ) the annulus {x ∈ K | r < |x -a| < r }.

Lemma 2: Let r, R ∈]0, +∞[ be such that r < R and let f ∈ M(K) admit s zeros and t poles in d(0, r) and no zero and no pole in Γ(0, r, R).

Then |f |(R) |f |(r) = R r s-t .
Lemma 3: Let r, R ∈]0, +∞[ be such that r < R and let f ∈ A(K) have q zeros in d(0, R).

Then |f |(R) |f |(r) ≤ R r q . Lemma 4: Let f ∈ A(K).
Then f is a polynomial of degree q if and only if there exists a constant c such that |f |(r) ≤ cr q ∀r ∈ [1, +∞[. Notation: Let d(a, r -) be the disk {x ∈ K | |x -a| < r}. We denote by A(d(a, R -)) the Kalgebra of analytic functions in d(a, R -) i.e. the set of power series in x -a with coefficients in K whose radius of convergence is ≥ R and we denote by M(d(a, R -)) the field of meromorphic functions in d(a, R -), i.e. the field of fraction of A(d(a, R -)).

Lemma 5: Let f ∈ M(d(0, R -)). For each n ∈ N, and for all r ∈]0, R[, we have

|f (n) |(r) ≤ |n!| |f |(r) r n . Proof: Suppose first f belongs to A(d(0, R -)) and set f (x) = ∞ k=0 a k x k . Then f (n) (x) = ∞ k=n (n!) k n -k a k x k-n .
The statement then is immediate. Consider now the general case and set f = U V with U, V ∈ A(d(0, R -)). The stated inequality is obvious when n = 1. So, we assume it holds for q ≤ n -1 and consider f (n) . Writing U = V U V , by Leibniz Theorem we have

U (n) = n q=0 n q V (n-q) U V (q)
and hence Remark: For every n ∈ N * , we have λ n ≤ n because k|k| ≥ 1 ∀k ∈ N. The equality holds for all n of the form p h .

V U V (n) = U (n) - n-1 q=0 n q V (n-q) U V (q) . Now, |U (n) |(R) ≤ |n!| |U |(R) R n and for each q ≤ n -1, we have |V (n-q) |(R) ≤ |(n -q)!| |V |(R) R n-q and U V (q) (R) ≤ |q!| |U |(R) |V |(R)R q . Therefore,
Lemma 6: Let U, V ∈ A(d(0, R -)). Then for all r ∈]0, R[ and n ≥ 1 we have

|U (n) V -U V (n) |(r) ≤ |n!|λ n |U V -U V |(r) r n-1 .
More generally, given j, l ∈ N, we have

|U (j) V (l) -U (l) V (j) |(r) ≤ |(j!)(l!)|λ j+l |U V -U V |(r) r j+l-1 . Proof: Set g = U V
and f = g . Applying Lemma 5 to f for k -1, we obtain

|g (k) |(r) = |f (k-1) |(r) ≤ |(k -1)!| |f |(r) r k-1 = |(k -1)!| |U V -U V |(r) |V 2 |(r)r k-1 .
As in the proof of Lemma 5, we set U = V U V . By Leibniz formula again, now we can obtain

U (n) = n q=1 n q V (n-q) U V (q) + V (n) U V hence (1) U (n) -V (n) U V = n q=1 n q V (n-q) U V (q)
Now we have U V

(q) (r) = |g (q) |(r) ≤ |(q -1)!| |U V -U V |(r) |V 2 |(r)r q-1
and

|V (n-q) |(r) ≤ |(n -q)!| |V |(r)
r n-q . Consequently, the general term in (1) is upper bounded as

n q V (n-q) U V (q) (r) ≤ |(n!)((n -q)!)((q -1)!)| |(q!)((n -q)!)| |U V -U V |(r) |V |(r)r n-1 ≤ λ n |n!||U V -U V |(r) |V |(r)r n-1 .
Therefore by (1) we obtain

U (n) -V (n) U V (r) ≤ |n!|λ n |U V -U V |(r) |V |(r)r n-1
and finally

U (n) V -V (n) U (r) ≤ |n!|λ n |U V -U V |(r) r n-1 .
We can now generalize the first statement. Set P j = U (j) V -U V (j) . By induction, we can show the following equality that already holds for l ≤ j:

U (j) V (l) -U (l) V (j) = l h=0 l h (-1) h P (l-h) j+h
Now, the second statement gets just an application of the first.

Remark: Suppose the residue characteristic is p = 0 and U (x) = 1, V (x) = x p , n = p. Then, for all R > 0, the inequality

|U (p) V -U V (p) |(R) ≤ |(p!)| |U V -U V |(R) R p-1
is not satisfied. So, we can't eliminate the factor λ n .

Lemma 7: Let U, V ∈ A(K) and let r, R ∈]0, +∞[ satisfy r < R. For all x, y ∈ K with |x| ≤ R and |y| ≤ r, we have the inequality:

|U (x + y)V (x) -U (x)V (x + y)| ≤ R|U V -U V |(R) e(log R -log r)
Proof: By Taylor's formula at the point x, we have

U (x + y)V (x) -U (x)V (x + y) = n≥0 U (n) (x)V (x) -U (x)V (n) (x) n! y n Now, U (n) (x)V (x) -U (x)V (n) (x) n! y n ≤ λ n |U V -U V |(R) R n-1
r n . But as remarked above, we have λ n ≤ n, hence

U (n) (x)V (x) -U (x)V (n) (x) n! y n ≤ nR|U V -U V |(R)( r R ) n .
And we notice that lim 

(x + y)V (x) -U (x)V (x + y)| ≤ BR|U V -U V |(R) ∀x ∈ d(0, R), y ∈ d(0, r).
We can check that the function h defined in ]0, +∞[ as h(t) = t r R t reaches it maximum at the point u = 1 (log R -log r)

. Consequently, B ≤ 1 e(log R -log r) and therefore

|U (x + y)V (x) -U (x)V (x + y)| ≤ R|U V -U V |(R) e(log R -log r) .
Proof of Theorem 1: Suppose f has finitely many zeros. If V is a constant, the statement is immediate. So, we suppose V is not a constant and hence it admits at least one zero a. By Lemma 1, there exists a polynomial P ∈ K[x] such that U V -U V = P V . Next, we take r, R ∈ [1, +∞[ such that |a| < r < R and x ∈ d(0, R), y ∈ d(0, r). By Lemma 7 we have

|U (x + y)V (x) -U (x)V (x + y)| ≤ R|U V -U V |(R) e(log R -log r) .
Proof of Corollary 3: Suppose V is an entire solution of the equation V h = V P such that

ψ V (r) ≤ cr d ∀r ∈ [1, +∞[. If V is a rational function, so is V P V , a contradiction because h is transcendental. Suppose now V is transcendental and apply Theorem 1: then 1 V = - V V 2 =
-P hV admits infinitely many zeros, a contradiction since P is a polynomial. 
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Theorem 1 :Corollary 1 :Corollary 2 :Corollary 3 :

 1123 Let f be a meromorphic function on K such that, for some c, d ∈]0, +∞[, φ f satisfies φ f (r) ≤ cr d in [1, +∞[. If f has finitely many zeros, then f is a rational function. Let f be a meromorphic function on K such that, for some c, d ∈]0, +∞[, φ f satisfies φ f (r) ≤ cr d in [1, +∞[. If for some b ∈ K f -b has finitely many zeros, then f is a rational function. Let f be a transcendental meromorphic function on K such that τ f (r) ≤ cr d in [1, +∞[ for some c, d ∈]0, +∞[. Then f (k) takes every value in K infinitely many times, for each k ∈ N * . Let h be a transcendental entire function on K and P ∈ K[x]. The differential equation y h = yP admits no entire solution

Corollary 5 :

 5 Let f be a meromorphic function on K. Suppose that there exists c, d ∈]0, +∞[, such that τ f (r) ≤ cr d ∀r ∈ [1, +∞[. If f f n -b has finitely many zeros for some b ∈ K, with n ∈ N then f is a rational function. Corollary 5 may be writen in another way: Corollary 6: Let f be a transcendental meromorphic function on K. Suppose that there exists c, d ∈]0, +∞[, such that θ f (r) ≤ cr d ∀r ∈ [1, +∞[. Then for all m ∈ N, m ≥ 3 and for all b ∈ K * , f -bf m admits infinitely many zeros that are not zeros of f . Corollary 7: Let f be a transcendental meromorphic function on K. Suppose that there exists c, d ∈]0, +∞[, such that ψ f (r) ≤ cr d ∀r ∈ [1, +∞[. Then, for all b ∈ K, f f 2 -b has infinitely many zeros.

Theorem 2 :

 2 Let f be a transcendental meromorphic function on K such that, for some c, d ∈ ]0, +∞[, we have θ f (r) ≤ cr d in [1, +∞[. Then for every b ∈ K, b = 0, f -b has infinitely many zeros.

  we can derive that terms on the right hand side are upper bounded by |n!| |U |(R) |V |(R)R n and hence the conclusion holds for q = n. Notation: For each n ∈ N * , we set λ n = max{ 1 |k| , 1 ≤ k ≤ n}.

Definition:

  Given a meromorphic function in K, we call exceptional value of f (or Picard value of f ) a value b ∈ K such that f -b has no zero. And, if f is transcendental, we call quasi-exceptional value a value b ∈ K such that f -b has finitely many zeros.Proof of Corollary 4: By the Main Theorem of[START_REF] Boussaf | Primitives of p-adic meromorphic functions[END_REF], f admits a primitive F and then, by hypothesis, we have φ F (r) ≤ r d . Consequently, by Corollary 1 F -b = f -b has infinitely many zeros.Proof of Corollary 5: Supposef is transcendental. Due to hypothesis, f n+1 satisfies θ 1 f n+1 (r) = τ f n+1 (r) ≤ c(n + 1)r d ∀r ∈ [1,+∞[ hence by Theorem 1, f f n has no quasi-exceptional value. Proof of Corollary 6: We set g = 1 f . Then by Corollary 2, g g m-2 has no quasi-exceptional value. Consequently, given b ∈ K * , g g m-2 + b has infinitely many zeros and hence f -bf m has infinitely many zeros that are not zeros of f . Proof of Corollary 7: Set g = 1 f again. Since the poles of g are the zeros of f , we have φ g (r) ≤ cr d . Consequently, by Theorem 1, g has no quasi-exceptional value. Proof of Theorem 2: Suppose f admits a quasi-exceptional value b ∈ K * . Then f is of the form P h with P ∈ K[x] and h a transcendental entire function. Consequently there exists S > 0 such that |P |(r) |h|(r) < |b| ∀r > S and hence |f |(r) = |b| ∀r > S. Then by Lemma 2, the numbers of zeros and poles of f in disks d(0, r) are equal when r when r > S. So, there exists S ≥ S such that for every r > S we have (1) τ f (r) = θ f (r) On the other hand, of course we have τ f (r) < τ f (r), hence by (1) and by hypothesis of Theorem 2, we have τ f (r) < r d . Therefore by Theorem 1, f has no quasi-exceptional value, a contradiction.

Notice that U (a) = 0 because U and V have no common zero. Now set l = max(1, |a|) and take r ≥ l. Setting c 1 = 1 e|U (a)| , we have

Then taking the supremum of |V (a + y)| inside the disk d(0, r), we can derive

Let us apply Lemma 3, by taking R = r + 1 r d , after noticing that the number of zeros of V (R) is bounded by ψ V (R). So, we have

Now, due to the hypothesis: Consequently, by ( 1) and ( 4) we can find positive constants c 5 , c

V is a polynomial of degree ≤ c 6 and hence it has finitely many zeros and so does V . And then, by Theorem B, f must be a rational function.

Proof of Corollary 1: Suppose f -b has finitely many zeros. Then f -bx satisfies the same hypothesis as f , hence it is a rational function and so is f .

Proof of Corollary 2: Indeed, if k = 1, the statement just comes from Theorem 1. Now suppose k ≥ 2. Each pole a of order n of f is a pole of order n + k of f (k) and f (k) has no other pole. Consequently, we have φ f k-1 (r) = τ f (k-1) (r) ≤ kcr d . So, we can apply Theorem 1 to f (k-1) to show the claim.