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Abstract

Let K be a complete algebraically closed field of characteristic 0 and let f be a transcen-
dental meromorphic function in K. A conjecture suggests that f ′ takes every values infinitely
many times, what was proved when f has finitely many multiple poles. Here we can generalize
the conclusion just by assuming that there exists positive constants c, d such that number of
multiple poles inside the disk |x| ≤ r is less than crd for all r ≥ 1. Applications are given to
entire functions g in K such that g′ divides g, to links between residues and zeros of functions
admitting primitives and finally to the p-adic Hayman conjecture in the cases that are not yet
solved.

1 Introduction and results.

Throughout the paper, K is an algebraically closed field of characteristic 0, complete with respect
to a p-adic absolute value denoted by | . | (example Cp). Given a ∈ K and r > 0 we denote by
d(0, r) the disk {x ∈ K | |x− a| ≤ r}.

We denote by A(K) the K-algebra of entire functions in K i.e. the set of power series with
coefficients in K converging in all K and we denote by M(K) the field of meromorphic functions
in K, i.e. the field of fraction of A(K). Given f, g ∈ A(K), we denote by W (f, g) the Wronskian
of f and g.

Let f ∈ A(K) be non-constant. We can factorize f(x) in the form

f(x) = cxn0
∏

ω∈Ω,ω 6=0

(1− x

ω
)nω ,

where c is a non zero constant, Ω is the set of distinct zeros of f and n0 = 0 if 0 is not a zero of
f . We set f = xm0

∏
ω∈Ω,ω 6=0

(1 − x

ω
), with m0 = 0 if 0 is not a zero of f and m0 = 1 else. So, the

function f is an entire function admitting as zeros the distinct zeros of f , all with order 1.
We can then set f = ff̃ where the function f̃ is an entire function admitting for zeros the

multiple zeros of f , each with order q − 1 when it is a zero of f of order q. Particularly, if f is
constant, we set f = 1 and f̃ = f .
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Now, f(x) is a power series
∑∞
n=0 anx

n of infinite radius of convergence. According to classical
notation [7], we set |f |(r) = sup{|f(x)| | |x| ≤ r}. We know that

|f |(r) = sup
n∈N

|an|rn = lim
|x|→r, |x|6=r

|f(x)|.

That notation defines an absolute value on A(K) and has continuation to M(K) as∣∣f
g

∣∣(r) =
|f |(r)
|g|(r)

with f, g ∈ A(K). In the paper [4], the following Theorems A and B are proven:

Theorem A: Let f, g be entire functions on K such that W (f, g) is a non-identically zero
polynomial. Then both f, g are polynomials.

(Theorem A has been recently generalized to several functions [2])

Theorem B is an easy consequence of Theorem A:

Theorem B: Let f be a transcendental meromorphic function on K having finitely many multiple
poles. Then f ′ takes every value infinitely many times.

That has suggested the following conjecture:

Conjecture: Let f be a meromorphic function on K such that f ′ has finitely many zeros. Then
f is a rational function.

This paper is aimed at proving the following theorem which generalizes Theorem B. For this
we will define new expressions.

Notation: Let f ∈ M(K). For each r > 0, we denote by ψf (r) the number of multiple zeros of
f in d(0, r), each counted with its multiplicity and we set φf (r) = ψ 1

f
(r). Similarly, we denote by

θf (r) the number of zeros of f in d(0, r), taking multiplicity into account and set τf (r) = θ 1
f
(r).

Theorem 1: Let f be a meromorphic function on K such that, for some c, d ∈]0,+∞[, φf satisfies
φf (r) ≤ crd in [1,+∞[. If f ′ has finitely many zeros, then f is a rational function.

Corollary 1: Let f be a meromorphic function on K such that, for some c, d ∈]0,+∞[, φf
satisfies φf (r) ≤ crd in [1,+∞[. If for some b ∈ K f ′ − b has finitely many zeros, then f is a
rational function.

Corollary 2: Let f be a transcendental meromorphic function on K such that τf (r) ≤ crd in
[1,+∞[ for some c, d ∈]0,+∞[. Then f (k) takes every value in K infinitely many times, for each
k ∈ N∗.

Corollary 3: Let h be a transcendental entire function on K and P ∈ K[x]. The differential
equation y′h = yP admits no entire solution f different from 0, such that, f for some c, d ∈]0,+∞[,
ψf (r) ≤ crd in [1,+∞[.

By Main Theorem of [5] we can derive this corollary:

Corollary 4: Let f be a a meromorphic function on K such that, for certain d ∈ N, the number
of poles of order ≥ 3, counted each with its multiplicity, in each disk d(0, r) is bounded by rd for all
r ∈ [1,+∞[ and such that all residues at poles are null. Then for every b ∈ K, f − b has infinitely
many zeros.
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According to the p-adic Hayman conjecture, for every n ∈ N∗ f ′fn takes every non-zero value
infinitely many times. Here Theorem 1 has an immediate application to that conjecture in the
cases n = 1 or n = 2 which are not yet solved, except with additional hypotheses [2], [3], [4], [8].

Corollary 5: Let f be a meromorphic function on K. Suppose that there exists c, d ∈]0,+∞[,
such that τf (r) ≤ crd ∀r ∈ [1,+∞[. If f ′fn− b has finitely many zeros for some b ∈ K, with n ∈ N
then f is a rational function.

Corollary 5 may be writen in another way:

Corollary 6: Let f be a transcendental meromorphic function on K. Suppose that there exists
c, d ∈]0,+∞[, such that θf (r) ≤ crd ∀r ∈ [1,+∞[. Then for all m ∈ N, m ≥ 3 and for all b ∈ K∗,
f ′ − bfm admits infinitely many zeros that are not zeros of f .

Corollary 7: Let f be a transcendental meromorphic function on K. Suppose that there exists

c, d ∈]0,+∞[, such that ψf (r) ≤ crd ∀r ∈ [1,+∞[. Then, for all b ∈ K,
f ′

f2
− b has infinitely many

zeros.

Remark: Using Corollary 7 to study zeros of f ′+bf2 that are not zeros of f is not so immediate,
as done in Theorems 3, 4, 5 [3], because of residues of f at poles of order 1.

Theorem 2: Let f be a transcendental meromorphic function on K such that, for some c, d ∈
]0,+∞[, we have θf ′(r) ≤ crd in [1,+∞[. Then for every b ∈ K, b 6= 0, f ′ − b has infinitely many
zeros.

2 Preliminary results

We will need several lemmas.

Lemma 1: Let U, V ∈ A(K) have no common zero and let f =
U

V
. If f ′ has finitely many

zeros, there exists a polynomial P ∈ K[x] such that U ′V − UV ′ = PṼ

Proof: If V is a constant, the statement is obvious. So, we assume that V is not a constant.
Now Ṽ divides V ′ and hence V ′ factorizes in the way V ′ = Ṽ Y with Y ∈ A(K). Then no zero of
Y can be a zero of V . Consequently, we have

f ′(x) =
U ′V − UV ′

V 2
=
U ′V − UY

V
2
Ṽ

.

The two functions U ′V − UY and V
2
Ṽ have no common zero since neither have U and V .

Consequently, the zeros of f ′ are those of U ′V − UY which therefore has finitely many zeros and
consequently is a polynomial.

Lemma 2 is known as the p-adic Schwarz Lemma (Lemma 23.12 [6]). Lemmas 3 and 4 are
immediate corollaries:

Notation: Let a ∈ K, r′, r′′ ∈]0,+∞[ with r′ < r′′. We denote by Γ(a, r′, r′′) the annulus
{x ∈ K | r′ < |x− a| < r′′}.
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Lemma 2: Let r,R ∈]0,+∞[ be such that r < R and let f ∈ M(K) admit s zeros and t poles

in d(0, r) and no zero and no pole in Γ(0, r, R). Then
|f |(R)
|f |(r)

=
(R
r

)s−t
.

Lemma 3: Let r,R ∈]0,+∞[ be such that r < R and let f ∈ A(K) have q zeros in d(0, R).
Then

|f |(R)
|f |(r)

≤
(R
r

)q
.

Lemma 4: Let f ∈ A(K). Then f is a polynomial of degree q if and only if there exists a
constant c such that |f |(r) ≤ crq ∀r ∈ [1,+∞[.

Notation: Let d(a, r−) be the disk {x ∈ K | |x − a| < r}. We denote by A(d(a,R−)) the K-
algebra of analytic functions in d(a,R−) i.e. the set of power series in x − a with coefficients in
K whose radius of convergence is ≥ R and we denote by M(d(a,R−)) the field of meromorphic
functions in d(a,R−), i.e. the field of fraction of A(d(a,R−)).

Lemma 5: Let f ∈M(d(0, R−)). For each n ∈ N, and for all r ∈]0, R[, we have

|f (n)|(r) ≤ |n!| |f |(r)
rn

.

Proof: Suppose first f belongs to A(d(0, R−)) and set f(x) =
∑∞
k=0 akx

k. Then

f (n)(x) =
∞∑
k=n

(n!)
(

k

n− k

)
akx

k−n.

The statement then is immediate. Consider now the general case and set f =
U

V
with U, V ∈

A(d(0, R−)). The stated inequality is obvious when n = 1. So, we assume it holds for q ≤ n − 1

and consider f (n). Writing U = V
(U
V

)
, by Leibniz Theorem we have

U (n) =
n∑
q=0

(
n

q

)
V (n−q)

(U
V

)(q)

and hence

V
(U
V

)(n)

= U (n) −
n−1∑
q=0

(
n

q

)
V (n−q)

(U
V

)(q)

.

Now, |U (n)|(R) ≤ |n!| |U |(R)
Rn

and for each q ≤ n− 1, we have |V (n−q)|(R) ≤ |(n− q)!| |V |(R)
Rn−q

and∣∣∣(U
V

)(q)∣∣∣(R) ≤ |q!| |U |(R)
|V |(R)Rq

. Therefore, we can derive that terms on the right hand side are upper

bounded by |n!| |U |(R)
|V |(R)Rn

and hence the conclusion holds for q = n.

Notation: For each n ∈ N∗, we set λn = max{ 1
|k| , 1 ≤ k ≤ n}.
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Remark: For every n ∈ N∗, we have λn ≤ n because k|k| ≥ 1 ∀k ∈ N. The equality holds for all
n of the form ph.

Lemma 6: Let U, V ∈ A(d(0, R−)). Then for all r ∈]0, R[ and n ≥ 1 we have

|U (n)V − UV (n)|(r) ≤ |n!|λn
|U ′V − UV ′|(r)

rn−1
.

More generally, given j, l ∈ N, we have

|U (j)V (l) − U (l)V (j)|(r) ≤ |(j!)(l!)|λj+l
|U ′V − UV ′|(r)

rj+l−1
.

Proof: Set g =
U

V
and f = g′. Applying Lemma 5 to f for k − 1, we obtain

|g(k)|(r) = |f (k−1)|(r) ≤ |(k − 1)!| |f |(r)
rk−1

= |(k − 1)!| |U
′V − UV ′|(r)
|V 2|(r)rk−1

.

As in the proof of Lemma 5, we set U = V
(U
V

)
. By Leibniz formula again, now we can obtain

U (n) =
n∑
q=1

(
n

q

)
V (n−q)

(U
V

)(q)

+ V (n)
(U
V

)
hence

(1) U (n) − V (n)
(U
V

)
=

n∑
q=1

(
n

q

)
V (n−q)

(U
V

)(q)

Now we have ∣∣∣(U
V

)(q)∣∣∣(r) = |g(q)|(r) ≤ |(q − 1)!| |U
′V − UV ′|(r)
|V 2|(r)rq−1

and

|V (n−q)|(r) ≤ |(n− q)!| |V |(r)
rn−q

.

Consequently, the general term in (1) is upper bounded as

∣∣∣(n
q

)
V (n−q)

(U
V

)(q)∣∣∣(r) ≤ |(n!)((n− q)!)((q − 1)!)|
|(q!)((n− q)!)|

|U ′V − UV ′|(r)
|V |(r)rn−1

≤ λn
|n!||U ′V − UV ′|(r)

|V |(r)rn−1
.

Therefore by (1) we obtain∣∣∣U (n) − V (n)
(U
V

)∣∣∣(r) ≤ |n!|λn
|U ′V − UV ′|(r)
|V |(r)rn−1

and finally ∣∣∣U (n)V − V (n)U
∣∣∣(r) ≤ |n!|λn

|U ′V − UV ′|(r)
rn−1

.
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We can now generalize the first statement. Set Pj = U (j)V − UV (j). By induction, we can
show the following equality that already holds for l ≤ j:

U (j)V (l) − U (l)V (j) =
l∑

h=0

(
l

h

)
(−1)hP (l−h)

j+h

Now, the second statement gets just an application of the first.

Remark: Suppose the residue characteristic is p 6= 0 and U(x) = 1, V (x) = xp, n = p. Then, for
all R > 0, the inequality |U (p)V − UV (p)|(R) ≤ |(p!)| |U

′V−UV ′|(R)
Rp−1 is not satisfied. So, we can’t

eliminate the factor λn.

Lemma 7: Let U, V ∈ A(K) and let r, R ∈]0,+∞[ satisfy r < R. For all x, y ∈ K with |x| ≤ R
and |y| ≤ r, we have the inequality:

|U(x+ y)V (x)− U(x)V (x+ y)| ≤ R|U ′V − UV ′|(R)
e(logR− log r)

Proof: By Taylor’s formula at the point x, we have

U(x+ y)V (x)− U(x)V (x+ y) =
∑
n≥0

U (n)(x)V (x)− U(x)V (n)(x)
n!

yn

Now,
∣∣∣U (n)(x)V (x)− U(x)V (n)(x)

n!
yn

∣∣∣ ≤ λn
|U ′V − UV ′|(R)

Rn−1
rn. But as remarked above, we have

λn ≤ n, hence ∣∣∣U (n)(x)V (x)− U(x)V (n)(x)
n!

yn
∣∣∣ ≤ nR|U ′V − UV ′|(R)(

r

R
)n.

And we notice that lim
n→+∞

n
( r
R

)n
= 0. Consequently, we can define B = max

n≥1

(
n
( r
R

)n) and we

have |U(x+ y)V (x)− U(x)V (x+ y)| ≤ BR|U ′V − UV ′|(R) ∀x ∈ d(0, R), y ∈ d(0, r).

We can check that the function h defined in ]0,+∞[ as h(t) = t
(
r
R

)t
reaches it maximum at

the point u =
1

(logR− log r)
. Consequently, B ≤ 1

e(logR− log r)
and therefore

|U(x+ y)V (x)− U(x)V (x+ y)| ≤ R|U ′V − UV ′|(R)
e(logR− log r)

.

Proof of Theorem 1: Suppose f ′ has finitely many zeros. If V is a constant, the statement is
immediate. So, we suppose V is not a constant and hence it admits at least one zero a. By Lemma
1, there exists a polynomial P ∈ K[x] such that U ′V − UV ′ = PṼ . Next, we take r,R ∈ [1,+∞[
such that |a| < r < R and x ∈ d(0, R), y ∈ d(0, r). By Lemma 7 we have

|U(x+ y)V (x)− U(x)V (x+ y)| ≤ R|U ′V − UV ′|(R)
e(logR− log r)

.
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Notice that U(a) 6= 0 because U and V have no common zero. Now set l = max(1, |a|) and take

r ≥ l. Setting c1 =
1

e|U(a)|
, we have

|V (a+ y)| ≤ c1
R|P |(R)|Ṽ |(R)
logR− log r

.

Then taking the supremum of |V (a+ y)| inside the disk d(0, r), we can derive

(1) |V |(r) ≤ c1
R|P |(R)|Ṽ |(R)
logR− log r

.

Let us apply Lemma 3, by taking R = r +
1
rd

, after noticing that the number of zeros of Ṽ (R) is

bounded by ψV (R). So, we have

(2) |Ṽ |(R) ≤
(
1 +

1
rd+1

)ψV (r+ 1
rd )

|Ṽ |(r).

Now, due to the hypothesis: ψV (r) = φf (r) ≤ crd in [1,+∞[, we have

(3)
(
1 +

1
rd+1

)ψV (r+ 1
rd )

≤
(
1 +

1
rd+1

)[c(r+ 1
rd )d]

= exp
[
c(r +

1
rd

)d log(1 +
1

rd+1
)
]
.

The function h(r) = c(r + 1
rd )d log(1 + 1

rd+1 ) is continuous on ]0,+∞[ and equivalent to
c

r
when

r tends to +∞. Consequently, it is bounded on [l,+∞[. Therefore, by (2) and (3) there exists a
constant M > 0 such that, for all r, R ∈ [l,+∞[, r < R by (3) we obtain

(4) |Ṽ |(r +
1
rd

) ≤M |Ṽ |(r).

On the other hand, log
(
r+

1
rd

)
− log r = log

(
1+

1
rd+1

)
clearly satisfies an inequality of the form

log
(
1 +

1
rd+1

)
≥ c2
rd+1

in [l,+∞[ with c2 > 0. Moreover, we can obviously find positive constants
c3, c4 such that

(r +
1
rd

)|P |
(
r +

1
rd

)
≤ c3r

c4 .

Consequently, by (1) and (4) we can find positive constants c5, c6 such that |V |(r) ≤ c5r
c6 |Ṽ |(r) ∀r ∈

[l,+∞[. Thus, writing again V = V Ṽ , we have |V |(r)|Ṽ |(r) ≤ c5r
c6 |Ṽ |(r) and hence |V |(r) ≤

c5r
c6 ∀r ∈ [l,+∞[. Consequently, by Lemma 4, V is a polynomial of degree ≤ c6 and hence it has

finitely many zeros and so does V . And then, by Theorem B, f must be a rational function.

Proof of Corollary 1: Suppose f ′ − b has finitely many zeros. Then f − bx satisfies the same
hypothesis as f , hence it is a rational function and so is f .

Proof of Corollary 2: Indeed, if k = 1, the statement just comes from Theorem 1. Now suppose
k ≥ 2. Each pole a of order n of f is a pole of order n + k of f (k) and f (k) has no other pole.
Consequently, we have φfk−1(r) = τf(k−1)(r) ≤ kcrd. So, we can apply Theorem 1 to f (k−1) to
show the claim.
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Proof of Corollary 3: Suppose V is an entire solution of the equation V ′h = V P such that

ψV (r) ≤ crd ∀r ∈ [1,+∞[. If V is a rational function, so is
V P

V ′
, a contradiction because h is

transcendental. Suppose now V is transcendental and apply Theorem 1: then
( 1
V

)′ = − V
′

V 2
=
−P
hV

admits infinitely many zeros, a contradiction since P is a polynomial.

Definition: Given a meromorphic function in K, we call exceptional value of f (or Picard value
of f) a value b ∈ K such that f−b has no zero. And, if f is transcendental, we call quasi-exceptional
value a value b ∈ K such that f − b has finitely many zeros.

Proof of Corollary 4: By the Main Theorem of [5], f admits a primitive F and then, by
hypothesis, we have φF (r) ≤ rd. Consequently, by Corollary 1 F ′ − b = f − b has infinitely many
zeros.

Proof of Corollary 5: Suppose f is transcendental. Due to hypothesis, fn+1 satisfies θ 1
fn+1

(r) =

τfn+1(r) ≤ c(n+ 1)rd ∀r ∈ [1,+∞[ hence by Theorem 1, f ′fn has no quasi-exceptional value.

Proof of Corollary 6: We set g =
1
f

. Then by Corollary 2, g′gm−2 has no quasi-exceptional

value. Consequently, given b ∈ K∗, g′gm−2 + b has infinitely many zeros and hence f ′ − bfm has
infinitely many zeros that are not zeros of f .

Proof of Corollary 7: Set g =
1
f

again. Since the poles of g are the zeros of f , we have

φg(r) ≤ crd. Consequently, by Theorem 1, g′ has no quasi-exceptional value.

Proof of Theorem 2: Suppose f ′ admits a quasi-exceptional value b ∈ K∗. Then f ′ is of the

form
P

h
with P ∈ K[x] and h a transcendental entire function. Consequently there exists S > 0

such that
|P |(r)
|h|(r)

< |b| ∀r > S and hence |f ′|(r) = |b| ∀r > S. Then by Lemma 2, the numbers of

zeros and poles of f ′ in disks d(0, r) are equal when r when r > S. So, there exists S′ ≥ S such
that for every r > S′ we have

(1) τf ′(r) = θf ′(r)

On the other hand, of course we have τf (r) < τf ′(r), hence by (1) and by hypothesis of Theorem
2, we have τf (r) < rd. Therefore by Theorem 1, f ′ has no quasi-exceptional value, a contradiction.
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