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Zeroes of the derivative of a p-adic meromorphic function and applications.

by Kamal Boussaf, Jacqueline Ojeda and Alain Escassut

Abstract Let K be an algebraically closed field of characteristic 0, complete with respect to an ultrametric
absolute value. We show that if the Wronskian of two entire functions in K is a polynomial, then both
functions are polynomials. As a consequence, if a meromorphic function f on all K is transcendental
and has finitely many multiple poles, then f ′ takes all values in K infinitely many times. We then study
applications to a meromorphic function f such that f ′ + bf2 has finitely many zeroes, a problem linked to
the Hayman conjecture on a p-adic field.
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Notation and Definitions.

Let K be an algebraically closed field of characteristic 0, complete with respect to an ultrametric absolute
value | . |. Given α ∈ K and R ∈ IR∗+, we denote by d(α,R) the disk {x ∈ K | |x−α| ≤ R} and by d(α,R−)
the disk {x ∈ K | |x − α| < R}, by A(K) the K-algebra of analytic functions in K (i.e. the set of power
series with an infinite radius of convergence), by M(K) the field of meromorphic functions in K and by
K(x) the field of rational functions. Given f, g ∈ A(K), we denote by W (f, g) the Wronskian f ′g − fg′.

We know that any non-constant entire function f ∈ A(K) takes all values in K. More precisely, a
function f ∈ A(K) other than a polynomial takes all values in K infinitely many times (see [5], [8], [9]).
Next, a non-constant meromorphic function f ∈ M(K) takes every value in K, except at most one value.
And more precisely, a meromorphic function f ∈M(K) \K(x) takes every value in K infinitely many times
except at most one value (see [5], [9]).

Many previous studies were made on Picard’s exceptional values for complex and p-adic functions and
their derivatives (see [1], [3], [6], [7], [8]). Here we mean to examine precisely whether the derivative of a
transcendental meromorphic function in K having finitely many multiple poles, may admit a value that is
taken finitely many times and then we will look for applications to Hayman’s problem when m = 2.

From Theorem 4 [6], we can state the following Theorem A:

Theorem A: Let h, l ∈ A(K) satisfy W (h, l) = c ∈ K, with h non-affine. Then c = 0 and
h

l
is a constant.

Now we can improve Theorem A:

Theorem 1: Let f, g ∈ A(K) be such that W (f, g) is a non-identically zero polynomial. Then both f, g
are polynomials.

Remark: Theorem 1 does not hold in characteristic p 6= 0. Indeed, suppose the characteristic of K is
p 6= 0. Let ψ ∈ A(K). Let f = x(ψ)p and let g = (x + 1)ψ−p. Since p 6= 0, we have f ′ = (ψ)p, g′ = ψ−p

hence W (f, g) = 1 and this is true for any function ψ ∈ A(K).

Theorem 2: Let f ∈ M(K) \K(x) have finitely many multiple poles. Then f ′ takes every value b ∈ K
infinitely many times.

We can easily show Corollary 2.1 from Theorem 2, though it is possible to get it through an expansion
in simple elements.

Corollary 2.1: Let f ∈M(K) \K(x). Then f ′ belongs to M(K) \K(x).
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Open question: Do exists transcendental meromorphic functions f such that f ′ has finitely many zeroes?
By Theorem 2, such functions should have infinitely many multiple poles.

Now, we can look for some applications to Hayman’s problem in a p-adic field. Let f ∈ M(K). Recall
that in [9], [10] it was shown that if m is an integer ≥ 5 or m = 1, then f ′ + fm has infinitely many zeroes
that are not zeroes of f . If m = 3 or m = 4, for many functions f ∈ M(K), f ′ + fm has infinitely many
zeroes that are not zeroes of f (see [2], [10]) but there remain some cases where it is impossible to conclude,
except when the field has residue characteristic equal to zero (see [10]). When m = 2, few results are known.
Recall also that as far as complex meromorphic functions f are concerned, f ′+fm has infinitely many zeroes
that are not zeroes of f for every m ≥ 3, but obvious counter-examples show this is wrong for m = 1 (with
f(x) = ex) and for m = 2 (with f(x) = tan(−x)). Here we will particularly examine functions f ′+ bf2, with
b ∈ K∗.

Theorem 3: Let b ∈ K∗ and let f ∈ M(K) have finitely many zeroes and finitely many residues at its

simple poles equal to
1
b

and be such that f ′ + bf2 has finitely many zeroes. Then f belongs to K(x).

Remark: If f(x) =
1
x

, the function f ′ + bf2 has no zero whenever b 6= 1.

Theorem 4: Let f ∈ M(K) \K(x) have finitely many multiple zeroes and let b ∈ K. Then
f ′

f2
+ b has

infinitely many zeroes. Moreover, if b 6= 0, every zero α of
f ′

f2
+ b that is not a zero of f ′ + bf2 is a simple

pole of f such that the residue of f at α is equal to
1
b

.

Corollary 4.1 : Let b ∈ K∗ and let f ∈M(K)\K(x) have finitely many multiple zeroes and finitely many
simple poles. Then f ′ + bf2 has infinitely many zeroes that are not zeroes of f .

Remark: In Archimedean analysis, the typical example of a meromorphic function f such that f ′ + f2

has no zero is tan(−x) and its residue is 1 at each pole of f . Here we find the same implication but we can’t
find an example satisfying such properties.

Acknowledgement: The authors are very grateful to Jean-Paul Bezivin for an important improvement
concerning Theorem 1.

The Proofs.

Notation: Given f ∈ A(K) and r > 0, we denote by |f |(r) the norm of uniform convergence on the disk
d(0, r). This norm is known to be multiplicative (see [4], [5]).

Lemma 1 is well known (see Theorem 13.5 [4]) :

Lemma 1: Let f ∈M(K). Then |f (k−1)|(r) ≤ |f |(r)
rk−1

∀r > 0, ∀k ∈ IN∗.

Proof of Theorem 1: First, by Theorem A, we check that the claim is satisfied when W (f, g) is a
polynomial of degree 0. Now, suppose the claim holds when W (f, g) is a polynomial of certain degree d. We
will show it for d+ 1. Let f, g ∈ A(K) be such that W (f, g) is a non-identically zero polynomial P of degree
d+ 1.

By hypothesis, we have f ′g−fg′ = P , hence f”g−fg” = P ′. We can extract g′ and get g′ = f ′g−P
f . Now,

consider the functionQ = f”g′−f ′g” and replace g′ by what we just found: we can getQ = f ′( f”g−fg”
f )−Pf”f .
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Now, we can replace f”g − fg” by P ′ and obtain Q = f ′P ′−Pf”
f . Thus, in that expression of Q, we

can write |Q|(R) ≤ |f |(R)|P |(R)
R2|f |(R) , hence |Q|(R) ≤ |P |(R)

R2 ∀R > 0. But by definition, Q belongs to A(K) and

further, deg(Q) ≤ deg(P )− 2. Consequently, Q is a polynomial of degree at most d− 2.
Now, suppose Q is not identically zero. Since Q = W (f ′, g′) and since deg(Q) < d, by induction f ′ and

g′ are polynomials and so are f and g. Finally, suppose Q = 0. Then P ′f ′ − Pf” = 0 and therefore f ′ and
P are two solutions of the differential equation of order 1 for meromorphic functions in K : (E) y′ = ψy

with ψ = P ′

P , whereas y belongs to A(K). The space of solutions of (E) is known to be of dimension 0 or
1 (see for instance Lemma 60.1 in [4]). Consequently, there exists λ ∈ K such that f ′ = λP , hence f is a
polynomial. The same holds for g.

Proof of Theorem 2: Suppose f ′ has finitely many zeroes. By classical results (see [4], [5]) we can write

f in the form
h

l
with h, l ∈ A(K), having no common zero. Consequently, each zero of W (h, l) is a zero

of f ′ except if it is a multiple zero of l. But since l only has finitely many multiple zeroes, it appears that
W (h, l) has finitely many zeroes and therefore is a polynomial. Consequently, by Theorem 1, both h and l

are polynomials, a contradiction because f does not belong to K(x).
Now, consider f ′− b with b ∈ K. It is the derivative of f − bx whose poles are exactly those of f , taking

multiplicity into account. Consequently, f ′ − b also has infinitely many zeroes.

Notation: Given f ∈M(K), we will denote by resa(f) the residue of f at a.

Lemma 2: Let f =
h

l
∈ M(K) with h, l ∈ A(K) having no common zero, let b ∈ K∗ and let a ∈ K be a

zero of h′l − hl′ + bh2 that is not a zero of f ′ + bf2. Then a is a simple pole of f and resa(f) =
1
b

.

Proof: Clearly, if l(a) 6= 0, a is a zero of f ′ + bf2. Hence, a zero a of h′l − hl′ + bh2 that is not a zero of
f ′ + bf2 is a pole of f . Now, when l(a) = 0, we have h(a) 6= 0 hence l′(a) = bh(a) 6= 0 and therefore a is a

simple pole of f such that
h(a)
l′(a)

=
1
b

. But since a is a simple pole of f , we have resa(f) =
h(a)
l′(a)

which ends

the proof.

Proof of Theorem 3: Let f =
P

l
with P a polynomial, l ∈ A(K) having no common zero with P . Then

f ′+bf2 =
P ′l − l′P + bP 2

l2
. By hypothesis, this function has finitely many zeroes. Moreover, if a is a zero of

P ′l− l′P + bP 2 but is not a zero of f ′+ bf2 then, by Lemma 2, a is a simple pole of f such that resa(f) =
1
b

.

Consequently, P ′l − l′P + bP 2 has finitely many zeroes and so we may write
P ′l − l′P + bP 2

l2
=
Q

l2
with

Q ∈ K[x], hence P ′l − l′P = −bP 2 +Q. But then, by Theorem 1, l is a polynomial, which ends the proof.

Proof of Theorem 4: Let g =
f ′

f2
+ b. Suppose b = 0. Since all zeroes of f are simple zeroes except

maybe finitely many, g has finitely many poles of order ≥ 3, hence a primitive G of g has finitely many
multiple poles. Consequently, by Theorem 2, g has infinitely many zeroes.

Now, suppose b 6= 0. Let α be a zero of g and let f =
h

l
with h, l ∈ A(K) having no common zero.

Then
f ′

f2
+ b =

h′l − hl′ + bh2

h2
. Since α is a zero of

f ′

f2
+ b, it is not a zero of h and hence it is a zero of

h′l−hl′+bh2. Then by Lemma 2, if it is not a zero of f ′+bf2, it is a simple pole of f such that resα(f) =
1
b

,

which ends the proof of Theorem 4.
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