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Let K be an algebraically closed field of characteristic 0, complete with respect to an ultrametric absolute value. We show that if the Wronskian of two entire functions in K is a polynomial, then both functions are polynomials. As a consequence, if a meromorphic function f on all K is transcendental and has finitely many multiple poles, then f takes all values in K infinitely many times. We then study applications to a meromorphic function f such that f + bf 2 has finitely many zeroes, a problem linked to the Hayman conjecture on a p-adic field.

Theorem A: Let h, l ∈ A(K) satisfy W (h, l) = c ∈ K, with h non-affine. Then c = 0 and h l is a constant.

Now we can improve Theorem A:

Theorem 1: Let f, g ∈ A(K) be such that W (f, g) is a non-identically zero polynomial. Then both f, g are polynomials.

Remark: Theorem 1 does not hold in characteristic p = 0. Indeed, suppose the characteristic of K is p = 0. Let ψ ∈ A(K). Let f = x(ψ) p and let g = (x + 1)ψ -p . Since p = 0, we have f = (ψ) p , g = ψ -p hence W (f, g) = 1 and this is true for any function ψ ∈ A(K).

Theorem 2:

Let f ∈ M(K) \ K(x) have finitely many multiple poles. Then f takes every value b ∈ K infinitely many times.

We can easily show Corollary 2.1 from Theorem 2, though it is possible to get it through an expansion in simple elements.

Corollary 2.1:

Let f ∈ M(K) \ K(x). Then f belongs to M(K) \ K(x).

Open question: Do exists transcendental meromorphic functions f such that f has finitely many zeroes? By Theorem 2, such functions should have infinitely many multiple poles. Now, we can look for some applications to Hayman's problem in a p-adic field. Let f ∈ M(K). Recall that in [START_REF] Ojeda | Distribution de valeurs des fonctions méromorphes ultramétrique[END_REF], [START_REF] Hayman | s Conjecture over a p-adic field[END_REF] it was shown that if m is an integer ≥ 5 or m = 1, then f + f m has infinitely many zeroes that are not zeroes of f . If m = 3 or m = 4, for many functions f ∈ M(K), f + f m has infinitely many zeroes that are not zeroes of f (see [START_REF] Boussaf | Value distribution of p-adic meromorphic functions[END_REF], [START_REF] Hayman | s Conjecture over a p-adic field[END_REF]) but there remain some cases where it is impossible to conclude, except when the field has residue characteristic equal to zero (see [START_REF] Hayman | s Conjecture over a p-adic field[END_REF]). When m = 2, few results are known. Recall also that as far as complex meromorphic functions f are concerned, f + f m has infinitely many zeroes that are not zeroes of f for every m ≥ 3, but obvious counter-examples show this is wrong for m = 1 (with f (x) = e x ) and for m = 2 (with f (x) = tan(-x)). Here we will particularly examine functions f + bf 2 , with b ∈ K * .

Theorem 3: Let b ∈ K * and let f ∈ M(K) have finitely many zeroes and finitely many residues at its simple poles equal to 1 b and be such that f + bf 2 has finitely many zeroes. Then f belongs to K(x).

Remark:

If f (x) = 1 x , the function f + bf 2 has no zero whenever b = 1. Theorem 4: Let f ∈ M(K) \ K(x) have finitely many multiple zeroes and let b ∈ K. Then f f 2 + b has infinitely many zeroes. Moreover, if b = 0, every zero α of f f 2 + b that is not a zero of f + bf 2 is a simple pole of f such that the residue of f at α is equal to 1 b . Corollary 4.1 : Let b ∈ K * and let f ∈ M(K) \ K(x)
have finitely many multiple zeroes and finitely many simple poles. Then f + bf 2 has infinitely many zeroes that are not zeroes of f .

Remark: In Archimedean analysis, the typical example of a meromorphic function f such that f + f 2 has no zero is tan(-x) and its residue is 1 at each pole of f . Here we find the same implication but we can't find an example satisfying such properties.
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The Proofs.

Notation: Given f ∈ A(K) and r > 0, we denote by |f |(r) the norm of uniform convergence on the disk d(0, r). This norm is known to be multiplicative (see [START_REF]Escassut Analytic Elements in p-adic Analysis[END_REF], [START_REF]Escassut p-adic Value Distribution[END_REF]).

Lemma 1 is well known (see Theorem 13.5 [START_REF]Escassut Analytic Elements in p-adic Analysis[END_REF]) :

Lemma 1: Let f ∈ M(K). Then |f (k-1) |(r) ≤ |f |(r) r k-1 ∀r > 0, ∀k ∈ IN * .
Proof of Theorem 1: First, by Theorem A, we check that the claim is satisfied when W (f, g) is a polynomial of degree 0. Now, suppose the claim holds when W (f, g) is a polynomial of certain degree d. We will show it for d + 1. Let f, g ∈ A(K) be such that W (f, g) is a non-identically zero polynomial P of degree d + 1.

By hypothesis, we have f g-f g = P , hence f "g-f g" = P . We can extract g and get g = f g-P f

. Now, consider the function Q = f "g -f g" and replace g by what we just found: we can get Q = f ( f "g-f g" f )-P f " f . Now, we can replace f "g -f g" by P and obtain Q = f P -P f " f . Thus, in that expression of Q, we

can write |Q|(R) ≤ |f |(R)|P |(R) R 2 |f |(R) , hence |Q|(R) ≤ |P |(R) R 2
∀R > 0. But by definition, Q belongs to A(K) and further, deg(Q) ≤ deg(P ) -2. Consequently, Q is a polynomial of degree at most d -2. Now, suppose Q is not identically zero. Since Q = W (f , g ) and since deg(Q) < d, by induction f and g are polynomials and so are f and g. Finally, suppose Q = 0. Then P f -P f " = 0 and therefore f and P are two solutions of the differential equation of order 1 for meromorphic functions in K : (E) y = ψy with ψ = P P , whereas y belongs to A(K). The space of solutions of (E) is known to be of dimension 0 or 1 (see for instance Lemma 60.1 in [START_REF]Escassut Analytic Elements in p-adic Analysis[END_REF]). Consequently, there exists λ ∈ K such that f = λP , hence f is a polynomial. The same holds for g.

Proof of Theorem 2: Suppose f has finitely many zeroes. By classical results (see [START_REF]Escassut Analytic Elements in p-adic Analysis[END_REF], [START_REF]Escassut p-adic Value Distribution[END_REF]) we can write f in the form h l with h, l ∈ A(K), having no common zero. Consequently, each zero of W (h, l) is a zero of f except if it is a multiple zero of l. But since l only has finitely many multiple zeroes, it appears that W (h, l) has finitely many zeroes and therefore is a polynomial. Consequently, by Theorem 1, both h and l are polynomials, a contradiction because f does not belong to K(x). Now, consider f -b with b ∈ K. It is the derivative of f -bx whose poles are exactly those of f , taking multiplicity into account. Consequently, f -b also has infinitely many zeroes.

Notation: Given f ∈ M(K), we will denote by res a (f ) the residue of f at a. Proof: Clearly, if l(a) = 0, a is a zero of f + bf 2 . Hence, a zero a of h l -hl + bh 2 that is not a zero of f + bf 2 is a pole of f . Now, when l(a) = 0, we have h . By hypothesis, this function has finitely many zeroes. Moreover, if a is a zero of P l -l P + bP 2 but is not a zero of f + bf 2 then, by Lemma 2, a is a simple pole of f such that res a (f ) = 1 b .

Consequently, P l -l P + bP 2 has finitely many zeroes and so we may write . Since α is a zero of f f 2 + b, it is not a zero of h and hence it is a zero of h l -hl + bh 2 . Then by Lemma 2, if it is not a zero of f + bf 2 , it is a simple pole of f such that res α (f ) = 1 b , which ends the proof of Theorem 4.

P l -l P + bP 2 l 2 = Q l 2 with Q ∈ K[x], hence P l -l P = -bP 2 + Q. But then,

Lemma 2 :

 2 Let f = h l ∈ M(K) with h, l ∈ A(K) having no common zero, let b ∈ K * and let a ∈ K be a zero of h l -hl + bh 2 that is not a zero of f + bf 2 .Then a is a simple pole of f and res a (f ) = 1 b .

Proof of Theorem 3 :

 3 (a) = 0 hence l (a) = bh(a) = 0 and therefore a is a simple pole of f such that h(a) l (a) = 1 b . But since a is a simple pole of f , we have res a (f ) = hLet f = P l with P a polynomial, l ∈ A(K) having no common zero with P . Then f + bf 2 = P l -l P + bP 2 l 2

  by Theorem 1, l is a polynomial, which ends the proof. Proof of Theorem 4: Let g = f f 2 + b. Suppose b = 0. Since all zeroes of f are simple zeroes except maybe finitely many, g has finitely many poles of order ≥ 3, hence a primitive G of g has finitely many multiple poles. Consequently, by Theorem 2, g has infinitely many zeroes. Now, suppose b = 0. Let α be a zero of g and let f = h l with h, l ∈ A(K) having no common zero. Then f f 2 + b = h l -hl + bh 2 h 2
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Notation and Definitions.