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Abstract

Let IK be a complete ultrametric algebraically closed field of characteristic 0. According
to the p-adic Hayman conjecture, given a transcendental meromorphic function f in IK, for
each n € IN*, f" f’ takes every value b # 0 infinitely many times. It was proven by the second
author for n > 3. Here we prove it for n = 2 by using properties of meromorphic functions
having finitely many multiple poles.

1 Introduction

Let IK be a complete ultrametric algebraically closed field of characteristic 0. We denote by A(IK)
the IK-algebra of entire functions in IK and by M(IK) the field of meromorphic functions in IK,
i.e. the field of fractions of A(IK). Let f € M(IK) be transcendental and let b € IK. Similarly to
classical definitions in complex analysis [15], b is called an ezceptional value for f or a Picard value
for fif f — b has no zero in IK and b is called a quasi-exceptional value for f if f — b has finitely
many zeros in IK. By classical results [13], [10], we know that f has at most one quasi-exceptional

value and if f € A(IK), then f has no quasi-exceptional value.

On C, considering a transcendental meromorphic function f in the whole field, W. Hayman
showed that for every n > 3, the function f™f’ has no quasi-exceptional value different from 0
and he conjectured that the statement remains true for n = 2 and n = 1 [12]. That was proved
for n = 2 by E.Mues [14] and for n = 1 by W. Bergweiler and Eremenko [1] and separately by H.
Chen and M. Fang [8].

On the field IK, the same question makes sens too and similarly, J. Ojeda proved that for every
n > 3, f™f’ has no quasi-exceptional value different from 0 [16]. For n = 2 and n = 1, several
particular solutions were given concerning subclasses of meromorphic functions. In [5] it was shown
that if f has infinitely many multiple zeros or infinitely many multiple poles, then f2f’ has no
quasi-exceptional value b # 0. On the other hand, on [2], it was shown that if the number of
multiple poles of f in disks of diameter r is upper bounded by a power of r, then f’ has infinitely
many zeros and this implies that f” f’ takes every value infinitely many times. In [16], it was also
shown that the same conclusion holds if f is optimal, i.e. if there exists a sequence (r;,)ne W such
that lim 7, = 400 and such that the difference between the number of zeros and the number of

n—-+o0o

poles inside the disk |x| < 7, is prime to the residue characteristic of IK. In [4], it was shown that a
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function f violating the conjecture should satisfy other conditions. Several other works were made
on close topics [11], [17].

But so far, no solution has been given yet to prove the conjecture for n = 1 and n = 2 in the
general case. Here we mean to solve the conjecture for n = 2, without restriction.

Theorem : Let f € M(IK) be transcendental. Then for every b € IK different from 0, f2f' —b
has infinitely many zeros.

2 The proof

We will use the techniques of the Nevanlinna Theory. Let us recall the definition of the counting
functions and the Nevanlinna function.

Let f € M(IK), let a € IK and let r €]0,4+o00[. By classical results [9], [10] we know that | f(x)|
has a limit when |z — a| tends to 7, while being different from r. We set

A=t )
Let log be a real logarithm function of base b > 1. Let f € M(IK) and let v € IK. If «y is a zero
of f of order n we set w(f) = n. If f has a pole of order n at v, we set w,(f) = —n and finally, if

f(v) # 0,00, we set w,(f) =0.
We denote by Z(r, f) the counting function of zeros of f in d(0,r), counting multiplicities, i.e.

Z(r, f) = max(wo(f),0)logr + > wy (f)(logr —log |y])-
wr (£)>0, 0<|y|<r

Similarly, we denote by Z(r, f) the counting function of zeros of f in d(0,r), ignoring multi-
plicities, and set

Z(r, f) = ulogr + > (logr—loglyl)

wy (£)>0, 0<|v|<r

1
with v = 1 when wo(f) > 0 and u = 0 else. In the same way, we set N(r, f) = Z(r, ?) (resp.

— — 1
N(r,f) = Z(r, ?>) to denote the counting function of poles of f in d(0,r), counting multiplicities
(resp. ignoring multiplicities).

Let S be a finite subset of IK. We denote by Z3 (r, ') the counting function of zeros ¢ of f’
when f(c) ¢ S ie.

Z5 (r, f') = max(wo(f'),0) logr + > wy(f")(logr — log 7).
w~ (f1)>0, 0<|y|<r
F(v)¢s

For f € M(IK) or f € M(d(0,R™)), we call Nevanlinna function of f or characteristic function
of f the function T'(r, f) = maX{Z(T, ), N(r, f)}
We will use these classical lemmas [10]:

Lemma 1: Let f € M(IK). Then log(|f|(r)) = Z(r, f) — N(r, f) + O(1). Moreover, Z(r, f') <
Z(r,f)+ N(r, f) —logr + O(1) and N(r, f') = N(r, f )+W(7‘,f).
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We must recall the p-adic Main Fundamental Theorem [7], [13], [10]:

Theorem N: Let f € M(K) (resp. f € M(d(0,R7))) and let a1, ...,aq € IK be distinct and let
S ={a1,....,aq}. Then

(a=DT(r f) <Y Z(r.f —a;) + N(r, f) = Z5 (r, f') = logr + O(1)

We will also need Theorem A given in [6] and Theorem B given in [5]:
Theorem A: Let f € M(IK) be transcendental and have finitely many multiple poles. Then f’
has no quasi-exceptional value.
Theorem B: Let f € M(IK) be transcendental and have infinitely many multiple poles or
infinitely many multiple zeros. Then f2f’ takes every value infinitely many times.

"

(f)?

has no

Lemma 2: Let f € M(IK) be such that [’ has finitely many multiple zeros. Then

quasi-exceptional value.

Proof: Let g = % A pole of g is a zero of f’, hence by hypothesis, ¢ has finitely many multiple

poles. Consequently, by Theorem A, ¢’ has no quasi-exceptional value. And hence neither has

U =rr 1 ff

Therefore —— has no quasi-exceptional value.

(f)? (> (f)?

Lemma 3: Let f € M(IK) have finitely many multiple zeros. Then f"f + 2(f')? has infinitely
many zeros that are not zeros of f.

1—-¢. But g =

Proof: Suppose first that f’ has infinitely many multiple zeros. Since f has finitely many multiple
zeros, the zeros of f' are not zeros of f except at most finitely many. Hence f’ has infinitely many
multiple zeros that are not zeros of f. And then, they are zeros of f, hence of f” f+2(f")?, which
proves the statement.

, ) ) f//f + 2(]:/)2
So we are now led to assume that f’ has finitely many multiple zeros. By Lemma 2, T
has infinitely many zeros. Let ¢ € IK be a pole of order g of f. Without loss of generality, we can
o(z)
xa—1

suppose ¢ = 0. The beginning of the Laurent developpement of f at 0 is of the form a—;q +
x

f"f+2(f)2
(f)?
(a—g)*(3¢> + q) + z¢(x)
(a—q)2(q?) + zp(x)

f//f + 2(f/)2
(f')?
is a zero of f”f + 2(f')? and hence f”f + 2(f")? has infinitely many

whereas ¢ € M(IK) has no pole at 0. Consequently, is of the form

whereas ¢, ¥ € M(IK) have no pole at 0. So, the function
ff+2(f)?
(f')?

has no zero at 0. Therefore,

each zero of

Zeros.
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Now, let us show that the zeros of f” f 4+ 2(f’)? are not zeros of f, except maybe finitely many.
Let ¢ be a zero of f” f +2(f')? and suppose that c is a zero of f. Then, it is a zero of f’ and hence
it is a multiple zero of f. But by hypotheses, f has finitely many multiple zeros, hence the zeros
of f"f + 2(f")? are not zeros of f, except at most finitely many. That finishes proving the claim.

Lemma 4: Let f € M(IK) be transcendental and let b € IK* be such that f2f — b has finitely
many zeros. Then, N(r, f) < Z(r, f) + O(1).

Proof: Let F' = f2f’. Since F — b is transcendental and has finitely many zeros, it is of the

P(x)

form o) with h € A(IK) \ IK[z]. Consequently, |F|(r) is a constant when r is big enough
x

and therefore, by Lemma 1 we have Z(r,F) = N(r,F) + O(1) when r is big enough. Now,

Z(r, F) = 2Z(r,f) + Z(r, f') and, by Lemma 1, Z(r, f") < Z(r,f) + N(r, f) — logr + O(1).

On the other hand, by Lemma 1 again, we have N(r,F) = 3N(r, f) + N(r, f). Consequently,

3N(r, f)+ N(r,f) <3Z(r, f) + N(r, f) —logr + O(1), which proves the claim.

Proof of the Theorem: Let b€ IK* and suppose that f2f’ — b has ¢ zeros, taking multiplicity
into account. By Theorem B, we may assume that f has finitely many multiple zeros and finitely
multiple poles. Set F' = f2f’. Then F' = f(f"f+2(f)?). Consequently, F’ admits for zeros: the
zeros of f and the zeros of f”f + 2(f)2. And by Lemma 3, there exists a sequence of zeros of
f"f+2(f")? that are not zeros of f.

Let S = {0,b} and let Z5 (r, F') be the counting function of zeros of F’ when F(z) is different
from 0 and b. Since F' —b has finitely many zeros, the zeros ¢ of F’ which are not zeros of f cannot
satisfy F'(¢) = b except at most finitely many. Consequently, there are infinitely many zeros of F’
counted by the counting function Z@g (r, F') and hence for every fixed integer ¢ € IN, we have

(1) Zg(r, F') > tlogr + O(1).

Let us apply Theorem N to F'. We have
(2) T(r,F) < Z(r,F)+ Z(r,F —b) + N(r, F) — Z5 (r, F') — log(r) + O(1).
Now, we have

(3) Z(r,FY < Z(r, f)+ Z(r, )

(4) N(r,F)=N(r, f)

and since the number of zeros of F' — b is ¢, taking multiplicity into account, we have
(5) Z(r,F —b) < qlogr + O(1).

Consequently, by (2), (3), (4), (5) we obtain

(6) T(r,F) < Z(r, )+ Z(r, f') + N(r, f) — Z5 (r, F') 4+ (¢ — 1) log 7 + O(1).

On the other hand, by construction, T'(r, F') > Z(r, F) = 2Z(r, f) + Z(r, f’) hence by (6) we
obtain (7):

(7) Z(r, f) <N(r, f) = Z5 (r, F') + (q = 1) logr + O(1).
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Now, by Lemma 4, we have N(r, f) < Z(r, f) + O(1) hence by (7) we obtain 0 < (¢ —1)logr —
Z§(r, F') + O(1) and hence by (1), fixing t > ¢ — 1 we can derive 0 < (¢ — 1) logr —tlogr + O(1),
a contradiction. That finishes the proof of the Theorem.
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