The p-adic Hayman conjecture when $n=2$

Alain Escassut and Jacqueline Ojeda ${ }^{1}$

Abstract

Let $\mathbb{I K}$ be a complete ultrametric algebraically closed field of characteristic 0 . According to the p-adic Hayman conjecture, given a transcendental meromorphic function f in \mathbb{K}, for each $n \in \mathbb{N}^{*}, f^{n} f^{\prime}$ takes every value $b \neq 0$ infinitely many times. It was proven by the second author for $n \geq 3$. Here we prove it for $n=2$ by using properties of meromorphic functions having finitely many multiple poles.

1 Introduction

Let $\mathbb{I K}$ be a complete ultrametric algebraically closed field of characteristic 0 . We denote by $\mathcal{A}(\mathbb{I K})$ the \mathbb{K}-algebra of entire functions in \mathbb{K} and by $\mathcal{M}(\mathbb{K})$ the field of meromorphic functions in \mathbb{K}, i.e. the field of fractions of $\mathcal{A}(\mathbb{K})$. Let $f \in \mathcal{M}(\mathbb{I K})$ be transcendental and let $b \in \mathbb{K}$. Similarly to classical definitions in complex analysis [15], b is called an exceptional value for f or a Picard value for f if $f-b$ has no zero in \mathbb{K} and b is called a quasi-exceptional value for f if $f-b$ has finitely many zeros in \mathbb{K}. By classical results [13], [10], we know that f has at most one quasi-exceptional value and if $f \in \mathcal{A}(\mathbb{K})$, then f has no quasi-exceptional value.

On \mathbb{C}, considering a transcendental meromorphic function f in the whole field, W. Hayman showed that for every $n \geq 3$, the function $f^{n} f^{\prime}$ has no quasi-exceptional value different from 0 and he conjectured that the statement remains true for $n=2$ and $n=1$ [12]. That was proved for $n=2$ by E.Mues [14] and for $n=1$ by W. Bergweiler and Eremenko [1] and separately by H. Chen and M. Fang [8].

On the field \mathbb{K}, the same question makes sens too and similarly, J. Ojeda proved that for every $n \geq 3, f^{n} f^{\prime}$ has no quasi-exceptional value different from 0 [16]. For $n=2$ and $n=1$, several particular solutions were given concerning subclasses of meromorphic functions. In [5] it was shown that if f has infinitely many multiple zeros or infinitely many multiple poles, then $f^{2} f^{\prime}$ has no quasi-exceptional value $b \neq 0$. On the other hand, on [2], it was shown that if the number of multiple poles of f in disks of diameter r is upper bounded by a power of r, then f^{\prime} has infinitely many zeros and this implies that $f^{n} f^{\prime}$ takes every value infinitely many times. In [16], it was also shown that the same conclusion holds if f is optimal, i.e. if there exists a sequence $\left(r_{n}\right)_{n \in \mathbb{N}}$ such that $\lim _{n \rightarrow+\infty} r_{n}=+\infty$ and such that the difference between the number of zeros and the number of poles inside the disk $|x|<r_{n}$ is prime to the residue characteristic of \mathbb{K}. In [4], it was shown that a

[^0]function f violating the conjecture should satisfy other conditions. Several other works were made on close topics [11], [17].

But so far, no solution has been given yet to prove the conjecture for $n=1$ and $n=2$ in the general case. Here we mean to solve the conjecture for $n=2$, without restriction.

Theorem : Let $f \in \mathcal{M}(\mathbb{K})$ be transcendental. Then for every $b \in \mathbb{K}$ different from $0, f^{2} f^{\prime}-b$ has infinitely many zeros.

2 The proof

We will use the techniques of the Nevanlinna Theory. Let us recall the definition of the counting functions and the Nevanlinna function.

Let $f \in \mathcal{M}(\mathbb{K})$, let $a \in \mathbb{K}$ and let $r \in] 0,+\infty[$. By classical results [9], [10] we know that $|f(x)|$ has a limit when $|x-a|$ tends to r, while being different from r. We set $|f|(r)=\lim _{|x-a| \rightarrow r,|x-a| \neq r}|f(x)|$.

Let \log be a real logarithm function of base $b>1$. Let $f \in \mathcal{M}(\mathbb{K})$ and let $\gamma \in \mathbb{K}$. If γ is a zero of f of order n we set $\omega_{\gamma}(f)=n$. If f has a pole of order n at γ, we set $\omega_{\gamma}(f)=-n$ and finally, if $f(\gamma) \neq 0, \infty$, we set $\omega_{\gamma}(f)=0$.

We denote by $Z(r, f)$ the counting function of zeros of f in $d(0, r)$, counting multiplicities, i.e.

$$
Z(r, f)=\max \left(\omega_{0}(f), 0\right) \log r+\sum_{\omega_{\gamma}(f)>0,0<|\gamma| \leq r} \omega_{\gamma}(f)(\log r-\log |\gamma|)
$$

Similarly, we denote by $\bar{Z}(r, f)$ the counting function of zeros of f in $d(0, r)$, ignoring multiplicities, and set

$$
\bar{Z}(r, f)=u \log r+\sum_{\omega_{\gamma}(f)>0,0<|\gamma| \leq r}(\log r-\log |\gamma|)
$$

with $u=1$ when $\omega_{0}(f)>0$ and $u=0$ else. In the same way, we set $N(r, f)=Z\left(r, \frac{1}{f}\right)($ resp. $\left.\bar{N}(r, f)=\bar{Z}\left(r, \frac{1}{f}\right)\right)$ to denote the counting function of poles of f in $d(0, r)$, counting multiplicities (resp. ignoring multiplicities).

Let S be a finite subset of $\mathbb{I K}$. We denote by $Z_{0}^{S}\left(r, f^{\prime}\right)$ the counting function of zeros c of f^{\prime} when $f(c) \notin S$ i.e.

$$
Z_{0}^{S}\left(r, f^{\prime}\right)=\max \left(\omega_{0}\left(f^{\prime}\right), 0\right) \log r+\sum_{\substack{\omega_{\gamma}\left(f^{\prime}\right)>0,0<|\gamma| \leq r \\ f(\gamma) \notin S}} \omega_{\gamma}\left(f^{\prime}\right)(\log r-\log |\gamma|) .
$$

For $f \in \mathcal{M}(\mathbb{I K})$ or $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$, we call Nevanlinna function of f or characteristic function of f the function $T(r, f)=\max \{Z(r, f), N(r, f)\}$.

We will use these classical lemmas [10]:
Lemma 1: Let $f \in \mathcal{M}(\mathbb{K})$. Then $\log (|f|(r))=Z(r, f)-N(r, f)+O(1)$. Moreover, $Z\left(r, f^{\prime}\right) \leq$ $Z(r, f)+\bar{N}(r, f)-\log r+O(1)$ and $N\left(r, f^{\prime}\right)=N(r, f)+\bar{N}(r, f)$.

We must recall the p-adic Main Fundamental Theorem [7], [13], [10]:
Theorem N: Let $f \in \mathcal{M}(\mathbb{K})$ (resp. $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$) and let $a_{1}, \ldots, a_{q} \in \mathbb{K}$ be distinct and let $S=\left\{a_{1}, \ldots, a_{q}\right\}$. Then

$$
(q-1) T(r, f) \leq \sum_{j=1}^{q} \bar{Z}\left(r, f-a_{j}\right)+\bar{N}(r, f)-Z_{0}^{S}\left(r, f^{\prime}\right)-\log r+O(1)
$$

We will also need Theorem A given in [6] and Theorem B given in [5]:
Theorem A: Let $f \in \mathcal{M}(\mathbb{K})$ be transcendental and have finitely many multiple poles. Then f^{\prime} has no quasi-exceptional value.

Theorem B: Let $f \in \mathcal{M}(\mathbb{K})$ be transcendental and have infinitely many multiple poles or infinitely many multiple zeros. Then $f^{2} f^{\prime}$ takes every value infinitely many times.

Lemma 2: Let $f \in \mathcal{M}(\mathbb{I K})$ be such that f^{\prime} has finitely many multiple zeros. Then $\frac{f^{\prime \prime} f}{\left(f^{\prime}\right)^{2}}$ has no quasi-exceptional value.

Proof: Let $g=\frac{f}{f^{\prime}}$. A pole of g is a zero of f^{\prime}, hence by hypothesis, g has finitely many multiple poles. Consequently, by Theorem A, g^{\prime} has no quasi-exceptional value. And hence neither has $1-g^{\prime}$. But $g^{\prime}=\frac{\left(f^{\prime}\right)^{2}-f^{\prime \prime} f}{\left(f^{\prime}\right)^{2}}=1-\frac{f^{\prime \prime} f}{\left(f^{\prime}\right)^{2}}$. Therefore $\frac{f^{\prime \prime} f}{\left(f^{\prime}\right)^{2}}$ has no quasi-exceptional value.

Lemma 3: Let $f \in \mathcal{M}(\mathbb{I K})$ have finitely many multiple zeros. Then $f^{\prime \prime} f+2\left(f^{\prime}\right)^{2}$ has infinitely many zeros that are not zeros of f.
Proof: Suppose first that f^{\prime} has infinitely many multiple zeros. Since f has finitely many multiple zeros, the zeros of f^{\prime} are not zeros of f except at most finitely many. Hence f^{\prime} has infinitely many multiple zeros that are not zeros of f. And then, they are zeros of $f^{\prime \prime}$, hence of $f^{\prime \prime} f+2\left(f^{\prime}\right)^{2}$, which proves the statement.

So we are now led to assume that f^{\prime} has finitely many multiple zeros. By Lemma $2, \frac{f^{\prime \prime} f+2\left(f^{\prime}\right)^{2}}{\left(f^{\prime}\right)^{2}}$ has infinitely many zeros. Let $c \in \mathbb{K}$ be a pole of order q of f. Without loss of generality, we can suppose $c=0$. The beginning of the Laurent developpement of f at 0 is of the form $\frac{a_{-q}}{x^{q}}+\frac{\varphi(x)}{x^{q-1}}$ whereas $\varphi \in \mathcal{M}(\mathbb{I K})$ has no pole at 0 . Consequently, $\frac{f^{\prime \prime} f+2\left(f^{\prime}\right)^{2}}{\left(f^{\prime}\right)^{2}}$ is of the form

$$
\frac{\left(a_{-q}\right)^{2}\left(3 q^{2}+q\right)+x \phi(x)}{\left(a_{-q}\right)^{2}\left(q^{2}\right)+x \psi(x)}
$$

whereas $\phi, \psi \in \mathcal{M}(\mathbb{K})$ have no pole at 0 . So, the function $\frac{f^{\prime \prime} f+2\left(f^{\prime}\right)^{2}}{\left(f^{\prime}\right)^{2}}$ has no zero at 0 . Therefore, each zero of $\frac{f^{\prime \prime} f+2\left(f^{\prime}\right)^{2}}{\left(f^{\prime}\right)^{2}}$ is a zero of $f^{\prime \prime} f+2\left(f^{\prime}\right)^{2}$ and hence $f^{\prime \prime} f+2\left(f^{\prime}\right)^{2}$ has infinitely many zeros.

Now, let us show that the zeros of $f^{\prime \prime} f+2\left(f^{\prime}\right)^{2}$ are not zeros of f, except maybe finitely many. Let c be a zero of $f^{\prime \prime} f+2\left(f^{\prime}\right)^{2}$ and suppose that c is a zero of f. Then, it is a zero of f^{\prime} and hence it is a multiple zero of f. But by hypotheses, f has finitely many multiple zeros, hence the zeros of $f^{\prime \prime} f+2\left(f^{\prime}\right)^{2}$ are not zeros of f, except at most finitely many. That finishes proving the claim.

Lemma 4: Let $f \in \mathcal{M}(\mathbb{K})$ be transcendental and let $b \in \mathbb{K}^{*}$ be such that $f^{2} f^{\prime}-b$ has finitely many zeros. Then, $N(r, f) \leq Z(r, f)+O(1)$.
Proof: Let $F=f^{2} f^{\prime}$. Since $F-b$ is transcendental and has finitely many zeros, it is of the form $\frac{P(x)}{h(x)}$ with $h \in \mathcal{A}(\mathbb{K}) \backslash \mathbb{K}[x]$. Consequently, $|F|(r)$ is a constant when r is big enough and therefore, by Lemma 1 we have $Z(r, F)=N(r, F)+O(1)$ when r is big enough. Now, $Z(r, F)=2 Z(r, f)+Z\left(r, f^{\prime}\right)$ and, by Lemma $1, Z\left(r, f^{\prime}\right) \leq Z(r, f)+\bar{N}(r, f)-\log r+O(1)$. On the other hand, by Lemma 1 again, we have $N(r, F)=3 N(r, f)+\bar{N}(r, f)$. Consequently, $3 N(r, f)+\bar{N}(r, f) \leq 3 Z(r, f)+\bar{N}(r, f)-\log r+O(1)$, which proves the claim.

Proof of the Theorem: Let $b \in \mathbb{K}^{*}$ and suppose that $f^{2} f^{\prime}-b$ has q zeros, taking multiplicity into account. By Theorem B, we may assume that f has finitely many multiple zeros and finitely multiple poles. Set $F=f^{2} f^{\prime}$. Then $F^{\prime}=f\left(f^{\prime \prime} f+2\left(f^{\prime}\right)^{2}\right)$. Consequently, F^{\prime} admits for zeros: the zeros of f and the zeros of $f^{\prime \prime} f+2\left(f^{\prime}\right)^{2}$. And by Lemma 3, there exists a sequence of zeros of $f^{\prime \prime} f+2\left(f^{\prime}\right)^{2}$ that are not zeros of f.

Let $S=\{0, b\}$ and let $Z_{0}^{S}\left(r, F^{\prime}\right)$ be the counting function of zeros of F^{\prime} when $F(x)$ is different from 0 and b. Since $F-b$ has finitely many zeros, the zeros c of F^{\prime} which are not zeros of f cannot satisfy $F(c)=b$ except at most finitely many. Consequently, there are infinitely many zeros of F^{\prime} counted by the counting function $Z_{0}^{S}\left(r, F^{\prime}\right)$ and hence for every fixed integer $t \in \mathbb{N}$, we have

$$
\begin{equation*}
Z_{0}^{S}\left(r, F^{\prime}\right) \geq t \log r+O(1) \tag{1}
\end{equation*}
$$

Let us apply Theorem N to F. We have

$$
\begin{equation*}
T(r, F) \leq \bar{Z}(r, F)+\bar{Z}(r, F-b)+\bar{N}(r, F)-Z_{0}^{S}\left(r, F^{\prime}\right)-\log (r)+O(1) \tag{2}
\end{equation*}
$$

Now, we have

$$
\begin{equation*}
\bar{Z}(r, F) \leq Z(r, f)+Z\left(r, f^{\prime}\right) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\bar{N}(r, F)=\bar{N}(r, f) \tag{4}
\end{equation*}
$$

and since the number of zeros of $F-b$ is q, taking multiplicity into account, we have

$$
\begin{equation*}
\bar{Z}(r, F-b) \leq q \log r+O(1) \tag{5}
\end{equation*}
$$

Consequently, by (2), (3), (4), (5) we obtain

$$
\begin{equation*}
T(r, F) \leq Z(r, f)+Z\left(r, f^{\prime}\right)+\bar{N}(r, f)-Z_{0}^{S}\left(r, F^{\prime}\right)+(q-1) \log r+O(1) \tag{6}
\end{equation*}
$$

On the other hand, by construction, $T(r, F) \geq Z(r, F)=2 Z(r, f)+Z\left(r, f^{\prime}\right)$ hence by (6) we obtain (7):

$$
\begin{equation*}
Z(r, f) \leq \bar{N}(r, f)-Z_{0}^{S}\left(r, F^{\prime}\right)+(q-1) \log r+O(1) \tag{7}
\end{equation*}
$$

Now, by Lemma 4, we have $N(r, f) \leq Z(r, f)+O(1)$ hence by (7) we obtain $0 \leq(q-1) \log r-$ $Z_{0}^{S}\left(r, F^{\prime}\right)+O(1)$ and hence by (1), fixing $t>q-1$ we can derive $0 \leq(q-1) \log r-t \log r+O(1)$, a contradiction. That finishes the proof of the Theorem.

Acknowledgement: We are grateful to Jean-Paul Bézivin for many comments.

References

[1] Bergweiler, W. and Eremenko, A. On the singularities of the inverse to a meromorphic function of nite order, Rev. Mat. Iberoamericana, 11, 355-373 (1995).
[2] Bezivin, J.-P., Boussaf, K., Escassut, A. Zeros of the derivative of a p-adic meromorphic function, Bulletin des Sciences Mathématiques 136, 8, p.839-847 (2012)..
[3] Bezivin, J.-P., Boussaf, K., Escassut, A. Survey and additional properties on zeros of the derivative of a p-adic meromorphic function. To appear in Contemporary Mathematics (2013).
[4] Boussaf, K. Picard values of p-adic meromorphic functions, p-Adic Numbers Ultrametric Anal. Appl. 2, no. 4, p.285-292 (2010).
[5] Boussaf, K. and Ojeda, J. Value distribution of p-adic meromorphic functions, Bull. Belg. Math. Soc. Simon Stevin, 18, n.4, p. 667-678 (2011).
[6] Boussaf, K. , Ojeda, J. and Escassut, A. Zeros of the derivative of a p-adic meromorphic function and applications Bull. Belg. Math. Soc. Simon Stevin 19, n.2, p. 367-372 (2012).
[7] Boutabaa, A. Théorie de Nevanlinna p-adique, Manuscripta Math. 67, p. 251-269 (1990).
[8] Chen, H. and Fang, M. On the value distribution of $f^{n} f^{\prime}$. Science in China, 38 A (7), p. 789-798 (1995).
[9] Escassut, A. Analytic Elements in p-adic Analysis. World Scientific Publishing Co. Pte. Ltd. Singapore, (1995).
[10] Escassut, A. p-adic Value Distribution. Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis, p. 42-138. Mathematics Monograph, Series 11. Science Press. (Beijing 2008).
[11] Escassut, A. and Ojeda, J. Exceptional values of p-adic analytic functions and derivatives, Complex Variable and Elliptic Equations. Vol 56, N. 1-4, p. 263-269 (2011).
[12] Hayman W. K., Picard values of meromorphic functions and their derivatives, Ann. of Math. 70, p. 9-42 (1959).
[13] Hu, P.C. and Yang, C.C. Meromorphic Functions over non-Archimedean Fields, Kluwer Academic Publishers, (2000).
[14] Mues, E. Uber ein Problem von Hayman, Math. Z., 164, 239-259 (1979).
[15] Nevanlinna, R. Le théorème de Picard-Borel et la théorie des fonctions méromorphes. Gauthiers-Villars, Paris (1929).
[16] Ojeda, J. On Hayman's Conjecture over a p-adic field, Taiwanese Journal of Mathematics 12 (9), p. 2295-2313, (2008).
[17] Yang, C.C. On the value distribution of a transcendental meromorphic functions and its derivatives. Indian J. Pure and Appl.Math. p. 1027-1031 (2004).

Alain ESCASSUT
Laboratoire de Mathematiques UMR 6620
Université Blaise Pascal
Les Cézeaux
63171 AUBIERE
FRANCE
alain.escassut@math.univ-bpclermont.fr
Jacqueline OJEDA
Departamento de Matematica
Facultad de Ciencias Fisicas y Matematicas
Universidad de Concepcion
CONCEPCION

CHILE

mail: jacqojeda@udec.cl
Jacqueline.Ojeda@math.univ-bpclermont.fr

[^0]: ${ }^{0} 2000$ Mathematics Subject Classification: 12J25; 30D35; 30G06.
 ${ }^{0}$ Keywords: p-adic meromorphic functions, value distribution, exceptional values
 ${ }^{1}$ Partially supported by CONICYT (Inserción de Capital Humano a la Academia)

