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Abstract

Let IK be a complete ultrametric algebraically closed field of characteristic 0. According
to the p-adic Hayman conjecture, given a transcendental meromorphic function f in IK, for
each n ∈ IN∗, fnf ′ takes every value b 6= 0 infinitely many times. It was proven by the second
author for n ≥ 3. Here we prove it for n = 2 by using properties of meromorphic functions
having finitely many multiple poles.

.

1 Introduction

Let IK be a complete ultrametric algebraically closed field of characteristic 0. We denote by A(IK)
the IK-algebra of entire functions in IK and by M(IK) the field of meromorphic functions in IK,
i.e. the field of fractions of A(IK). Let f ∈ M(IK) be transcendental and let b ∈ IK. Similarly to
classical definitions in complex analysis [15], b is called an exceptional value for f or a Picard value
for f if f − b has no zero in IK and b is called a quasi-exceptional value for f if f − b has finitely
many zeros in IK. By classical results [13], [10], we know that f has at most one quasi-exceptional

value and if f ∈ A(IK), then f has no quasi-exceptional value.

On lC, considering a transcendental meromorphic function f in the whole field, W. Hayman
showed that for every n ≥ 3, the function fnf ′ has no quasi-exceptional value different from 0
and he conjectured that the statement remains true for n = 2 and n = 1 [12]. That was proved
for n = 2 by E.Mues [14] and for n = 1 by W. Bergweiler and Eremenko [1] and separately by H.
Chen and M. Fang [8].

On the field IK, the same question makes sens too and similarly, J. Ojeda proved that for every
n ≥ 3, fnf ′ has no quasi-exceptional value different from 0 [16]. For n = 2 and n = 1, several
particular solutions were given concerning subclasses of meromorphic functions. In [5] it was shown
that if f has infinitely many multiple zeros or infinitely many multiple poles, then f2f ′ has no
quasi-exceptional value b 6= 0. On the other hand, on [2], it was shown that if the number of
multiple poles of f in disks of diameter r is upper bounded by a power of r, then f ′ has infinitely
many zeros and this implies that fnf ′ takes every value infinitely many times. In [16], it was also
shown that the same conclusion holds if f is optimal, i.e. if there exists a sequence (rn)n∈ IN such
that lim

n→+∞
rn = +∞ and such that the difference between the number of zeros and the number of

poles inside the disk |x| < rn is prime to the residue characteristic of IK. In [4], it was shown that a
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function f violating the conjecture should satisfy other conditions. Several other works were made
on close topics [11], [17].

But so far, no solution has been given yet to prove the conjecture for n = 1 and n = 2 in the
general case. Here we mean to solve the conjecture for n = 2, without restriction.

Theorem : Let f ∈ M(IK) be transcendental. Then for every b ∈ IK different from 0, f2f ′ − b
has infinitely many zeros.

2 The proof

We will use the techniques of the Nevanlinna Theory. Let us recall the definition of the counting
functions and the Nevanlinna function.

Let f ∈M(IK), let a ∈ IK and let r ∈]0,+∞[. By classical results [9], [10] we know that |f(x)|
has a limit when |x− a| tends to r, while being different from r. We set
|f |(r)= lim

|x−a|→r,|x−a|6=r
|f(x)|.

Let log be a real logarithm function of base b > 1. Let f ∈M(IK) and let γ ∈ IK. If γ is a zero
of f of order n we set ωγ(f) = n. If f has a pole of order n at γ, we set ωγ(f) = −n and finally, if
f(γ) 6= 0,∞, we set ωγ(f) = 0.

We denote by Z(r, f) the counting function of zeros of f in d(0, r), counting multiplicities, i.e.

Z(r, f) = max(ω0(f), 0) log r +
∑

ωγ(f)>0, 0<|γ|≤r

ωγ(f)(log r − log |γ|).

Similarly, we denote by Z(r, f) the counting function of zeros of f in d(0, r), ignoring multi-
plicities, and set

Z(r, f) = u log r +
∑

ωγ(f)>0, 0<|γ|≤r

(log r − log |γ|)

with u = 1 when ω0(f) > 0 and u = 0 else. In the same way, we set N(r, f) = Z
(
r,

1
f

) (
resp.

N(r, f) = Z
(
r,

1
f

))
to denote the counting function of poles of f in d(0, r), counting multiplicities

(resp. ignoring multiplicities).

Let S be a finite subset of IK. We denote by ZS0 (r, f ′) the counting function of zeros c of f ′

when f(c) /∈ S i.e.

ZS0 (r, f ′) = max(ω0(f ′), 0) log r +
∑

ωγ (f′)>0, 0<|γ|≤r
f(γ)/∈S

ωγ(f ′)(log r − log |γ|).

For f ∈M(IK) or f ∈M(d(0, R−)), we call Nevanlinna function of f or characteristic function
of f the function T (r, f) = max

{
Z(r, f), N(r, f)

}
.

We will use these classical lemmas [10]:

Lemma 1: Let f ∈ M(IK). Then log(|f |(r)) = Z(r, f) −N(r, f) + O(1). Moreover, Z(r, f ′) ≤
Z(r, f) +N(r, f)− log r +O(1) and N(r, f ′) = N(r, f) +N(r, f).
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We must recall the p-adic Main Fundamental Theorem [7], [13], [10]:

Theorem N: Let f ∈M(IK) (resp. f ∈M(d(0, R−))) and let a1, ..., aq ∈ IK be distinct and let
S = {a1, ..., aq}. Then

(q − 1)T (r, f) ≤
q∑
j=1

Z(r, f − aj) +N(r, f)− ZS0 (r, f ′)− log r +O(1)

We will also need Theorem A given in [6] and Theorem B given in [5]:

Theorem A: Let f ∈ M(IK) be transcendental and have finitely many multiple poles. Then f ′

has no quasi-exceptional value.

Theorem B: Let f ∈ M(IK) be transcendental and have infinitely many multiple poles or
infinitely many multiple zeros. Then f2f ′ takes every value infinitely many times.

Lemma 2: Let f ∈ M(IK) be such that f ′ has finitely many multiple zeros. Then
f ′′f

(f ′)2
has no

quasi-exceptional value.

Proof: Let g =
f

f ′
. A pole of g is a zero of f ′, hence by hypothesis, g has finitely many multiple

poles. Consequently, by Theorem A, g′ has no quasi-exceptional value. And hence neither has

1− g′. But g′ =
(f ′)2 − f ′′f

(f ′)2
= 1− f ′′f

(f ′)2
. Therefore

f ′′f

(f ′)2
has no quasi-exceptional value.

Lemma 3: Let f ∈ M(IK) have finitely many multiple zeros. Then f ′′f + 2(f ′)2 has infinitely
many zeros that are not zeros of f .

Proof: Suppose first that f ′ has infinitely many multiple zeros. Since f has finitely many multiple
zeros, the zeros of f ′ are not zeros of f except at most finitely many. Hence f ′ has infinitely many
multiple zeros that are not zeros of f . And then, they are zeros of f ′′, hence of f ′′f +2(f ′)2, which
proves the statement.

So we are now led to assume that f ′ has finitely many multiple zeros. By Lemma 2,
f ′′f + 2(f ′)2

(f ′)2
has infinitely many zeros. Let c ∈ IK be a pole of order q of f . Without loss of generality, we can

suppose c = 0. The beginning of the Laurent developpement of f at 0 is of the form
a−q
xq

+
ϕ(x)
xq−1

whereas ϕ ∈M(IK) has no pole at 0. Consequently,
f ′′f + 2(f ′)2

(f ′)2
is of the form

(a−q)2(3q2 + q) + xφ(x)
(a−q)2(q2) + xψ(x)

whereas φ, ψ ∈M(IK) have no pole at 0. So, the function
f ′′f + 2(f ′)2

(f ′)2
has no zero at 0. Therefore,

each zero of
f ′′f + 2(f ′)2

(f ′)2
is a zero of f ′′f + 2(f ′)2 and hence f ′′f + 2(f ′)2 has infinitely many

zeros.
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Now, let us show that the zeros of f ′′f + 2(f ′)2 are not zeros of f , except maybe finitely many.
Let c be a zero of f ′′f + 2(f ′)2 and suppose that c is a zero of f . Then, it is a zero of f ′ and hence
it is a multiple zero of f . But by hypotheses, f has finitely many multiple zeros, hence the zeros
of f ′′f + 2(f ′)2 are not zeros of f , except at most finitely many. That finishes proving the claim.

Lemma 4: Let f ∈ M(IK) be transcendental and let b ∈ IK∗ be such that f2f ′ − b has finitely
many zeros. Then, N(r, f) ≤ Z(r, f) +O(1).

Proof: Let F = f2f ′. Since F − b is transcendental and has finitely many zeros, it is of the

form
P (x)
h(x)

with h ∈ A(IK) \ IK[x]. Consequently, |F |(r) is a constant when r is big enough

and therefore, by Lemma 1 we have Z(r, F ) = N(r, F ) + O(1) when r is big enough. Now,
Z(r, F ) = 2Z(r, f) + Z(r, f ′) and, by Lemma 1, Z(r, f ′) ≤ Z(r, f) + N(r, f) − log r + O(1).
On the other hand, by Lemma 1 again, we have N(r, F ) = 3N(r, f) + N(r, f). Consequently,
3N(r, f) +N(r, f) ≤ 3Z(r, f) +N(r, f)− log r +O(1), which proves the claim.

Proof of the Theorem: Let b ∈ IK∗ and suppose that f2f ′ − b has q zeros, taking multiplicity
into account. By Theorem B, we may assume that f has finitely many multiple zeros and finitely
multiple poles. Set F = f2f ′. Then F ′ = f(f ′′f + 2(f ′)2). Consequently, F ′ admits for zeros: the
zeros of f and the zeros of f ′′f + 2(f ′)2. And by Lemma 3, there exists a sequence of zeros of
f ′′f + 2(f ′)2 that are not zeros of f .

Let S = {0, b} and let ZS0 (r, F ′) be the counting function of zeros of F ′ when F (x) is different
from 0 and b. Since F − b has finitely many zeros, the zeros c of F ′ which are not zeros of f cannot
satisfy F (c) = b except at most finitely many. Consequently, there are infinitely many zeros of F ′

counted by the counting function ZS0 (r, F ′) and hence for every fixed integer t ∈ IN, we have

(1) ZS0 (r, F ′) ≥ t log r +O(1).

Let us apply Theorem N to F . We have

(2) T (r, F ) ≤ Z(r, F ) + Z(r, F − b) +N(r, F )− ZS0 (r, F ′)− log(r) +O(1).

Now, we have

(3) Z(r, F ) ≤ Z(r, f) + Z(r, f ′)

(4) N(r, F ) = N(r, f)

and since the number of zeros of F − b is q, taking multiplicity into account, we have

(5) Z(r, F − b) ≤ q log r +O(1).

Consequently, by (2), (3), (4), (5) we obtain

(6) T (r, F ) ≤ Z(r, f) + Z(r, f ′) +N(r, f)− ZS0 (r, F ′) + (q − 1) log r +O(1).

On the other hand, by construction, T (r, F ) ≥ Z(r, F ) = 2Z(r, f) + Z(r, f ′) hence by (6) we
obtain (7):

(7) Z(r, f) ≤ N(r, f)− ZS0 (r, F ′) + (q − 1) log r +O(1).



The p-adic Hayman conjecture when n = 2 5

Now, by Lemma 4, we have N(r, f) ≤ Z(r, f) +O(1) hence by (7) we obtain 0 ≤ (q− 1) log r−
ZS0 (r, F ′) +O(1) and hence by (1), fixing t > q− 1 we can derive 0 ≤ (q− 1) log r− t log r+O(1),
a contradiction. That finishes the proof of the Theorem.
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function, Bulletin des Sciences Mathématiques 136, 8, p.839-847 (2012)..

[3] Bezivin, J.-P., Boussaf, K., Escassut, A. Survey and additional properties on zeros of the
derivative of a p-adic meromorphic function. To appear in Contemporary Mathematics (2013).

[4] Boussaf, K. Picard values of p-adic meromorphic functions, p-Adic Numbers Ultrametric
Anal. Appl. 2, no. 4, p.285-292 (2010).

[5] Boussaf, K. and Ojeda, J. Value distribution of p-adic meromorphic functions, Bull. Belg.
Math. Soc. Simon Stevin, 18, n.4, p. 667-678 (2011).

[6] Boussaf, K. , Ojeda, J. and Escassut, A. Zeros of the derivative of a p-adic meromorphic
function and applications Bull. Belg. Math. Soc. Simon Stevin 19, n.2, p. 367-372 (2012).
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