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The p-adic Hayman conjecture when n = 2

Let IK be a complete ultrametric algebraically closed field of characteristic 0. According to the p-adic Hayman conjecture, given a transcendental meromorphic function f in IK, for each n ∈ IN * , f n f takes every value b = 0 infinitely many times. It was proven by the second author for n ≥ 3. Here we prove it for n = 2 by using properties of meromorphic functions having finitely many multiple poles.
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Introduction

Let IK be a complete ultrametric algebraically closed field of characteristic 0. We denote by A(IK) the IK-algebra of entire functions in IK and by M(IK) the field of meromorphic functions in IK, i.e. the field of fractions of A(IK). Let f ∈ M(IK) be transcendental and let b ∈ IK. Similarly to classical definitions in complex analysis [START_REF] Nevanlinna | Le théorème de Picard-Borel et la théorie des fonctions méromorphes[END_REF], b is called an exceptional value for f or a Picard value for f if f -b has no zero in IK and b is called a quasi-exceptional value for f if f -b has finitely many zeros in IK. By classical results [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF], [START_REF] Escassut | p-adic Value Distribution. Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF], we know that f has at most one quasi-exceptional value and if f ∈ A(IK), then f has no quasi-exceptional value.

On l

C, considering a transcendental meromorphic function f in the whole field, W. Hayman showed that for every n ≥ 3, the function f n f has no quasi-exceptional value different from 0 and he conjectured that the statement remains true for n = 2 and n = 1 [START_REF] Hayman | Picard values of meromorphic functions and their derivatives[END_REF]. That was proved for n = 2 by E.Mues [START_REF] Mues | Uber ein Problem von Hayman[END_REF] and for n = 1 by W. Bergweiler and Eremenko [START_REF] Bergweiler | On the singularities of the inverse to a meromorphic function of nite order[END_REF] and separately by H. Chen and M. Fang [START_REF] Chen | On the value distribution of f n f[END_REF].

On the field IK, the same question makes sens too and similarly, J. Ojeda proved that for every n ≥ 3, f n f has no quasi-exceptional value different from 0 [START_REF] Ojeda | On Hayman's Conjecture over a p-adic field[END_REF]. For n = 2 and n = 1, several particular solutions were given concerning subclasses of meromorphic functions. In [START_REF] Boussaf | Value distribution of p-adic meromorphic functions[END_REF] it was shown that if f has infinitely many multiple zeros or infinitely many multiple poles, then f 2 f has no quasi-exceptional value b = 0. On the other hand, on [START_REF] Bezivin | Zeros of the derivative of a p-adic meromorphic function[END_REF], it was shown that if the number of multiple poles of f in disks of diameter r is upper bounded by a power of r, then f has infinitely many zeros and this implies that f n f takes every value infinitely many times. In [START_REF] Ojeda | On Hayman's Conjecture over a p-adic field[END_REF], it was also shown that the same conclusion holds if f is optimal, i.e. if there exists a sequence (r n ) n∈ IN such that lim n→+∞ r n = +∞ and such that the difference between the number of zeros and the number of poles inside the disk |x| < r n is prime to the residue characteristic of IK. In [START_REF] Boussaf | Picard values of p-adic meromorphic functions, p-Adic Numbers Ultrametric[END_REF], it was shown that a 0 2000 Mathematics Subject Classification: 12J25; 30D35; 30G06. 0 Keywords: p-adic meromorphic functions, value distribution, exceptional values 1 Partially supported by CONICYT (Inserción de Capital Humano a la Academia) function f violating the conjecture should satisfy other conditions. Several other works were made on close topics [START_REF] Escassut | Exceptional values of p-adic analytic functions and derivatives[END_REF], [START_REF] Yang | On the value distribution of a transcendental meromorphic functions and its derivatives[END_REF].

But so far, no solution has been given yet to prove the conjecture for n = 1 and n = 2 in the general case. Here we mean to solve the conjecture for n = 2, without restriction.

Theorem : Let f ∈ M(IK) be transcendental. Then for every b ∈ IK different from 0, f 2 f -b has infinitely many zeros.

The proof

We will use the techniques of the Nevanlinna Theory. Let us recall the definition of the counting functions and the Nevanlinna function.

Let f ∈ M(IK), let a ∈ IK and let r ∈]0, +∞[. By classical results [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], [START_REF] Escassut | p-adic Value Distribution. Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF] we know that |f (x)| has a limit when |x -a| tends to r, while different from r. We set

|f |(r)= lim |x-a|→r,|x-a| =r |f (x)|.
Let log be a real logarithm function of base b > 1. Let f ∈ M(IK) and let γ ∈ IK. If γ is a zero of f of order n we set ω γ (f ) = n. If f has a pole of order n at γ, we set ω γ (f ) = -n and finally, if

f (γ) = 0, ∞, we set ω γ (f ) = 0.
We denote by Z(r, f ) the counting function of zeros of f in d(0, r), counting multiplicities, i.e.

Z(r, f ) = max(ω 0 (f ), 0) log r + ωγ (f )>0, 0<|γ|≤r ω γ (f )(log r -log |γ|).
Similarly, we denote by Z(r, f ) the counting function of zeros of f in d(0, r), ignoring multiplicities, and set

Z(r, f ) = u log r + ωγ (f )>0, 0<|γ|≤r
(log r -log |γ|)

with u = 1 when ω 0 (f ) > 0 and u = 0 else. In the same way, we set N (r, f ) = Z r,

1 f resp. N (r, f ) = Z r, 1 f
to denote the counting function of poles of f in d(0, r), counting multiplicities (resp. ignoring multiplicities).

Let S be a finite subset of IK. We denote by Z S 0 (r, f ) the counting function of zeros c of f when f (c) / ∈ S i.e.

Z S 0 (r, f ) = max(ω 0 (f ), 0) log r + ωγ (f )>0, 0<|γ|≤r f (γ) / ∈S ω γ (f )(log r -log |γ|). For f ∈ M(IK) or f ∈ M(d(0, R -)), we call Nevanlinna function of f or characteristic function of f the function T (r, f ) = max Z(r, f ), N (r, f ) .
We will use these classical lemmas [START_REF] Escassut | p-adic Value Distribution. Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF]:

Lemma 1: Let f ∈ M(IK). Then log(|f |(r)) = Z(r, f ) -N (r, f ) + O(1). Moreover, Z(r, f ) ≤ Z(r, f ) + N (r, f ) -log r + O(1) and N (r, f ) = N (r, f ) + N (r, f ).
We must recall the p-adic Main Fundamental Theorem [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF], [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF], [START_REF] Escassut | p-adic Value Distribution. Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis[END_REF]:

Theorem N: Let f ∈ M(IK) (resp. f ∈ M(d(0, R -))
) and let a 1 , ..., a q ∈ IK be distinct and let S = {a 1 , ..., a q }. Then

(q -1)T (r, f ) ≤ q j=1 Z(r, f -a j ) + N (r, f ) -Z S 0 (r, f ) -log r + O(1)
We will also need Theorem A given in [START_REF] Boussaf | Zeros of the derivative of a p-adic meromorphic function and applications Bull[END_REF] and Theorem B given in [START_REF] Boussaf | Value distribution of p-adic meromorphic functions[END_REF]:

Theorem A: Let f ∈ M(IK) be transcendental and have finitely many multiple poles. Then f has no quasi-exceptional value.

Theorem B: Let f ∈ M(IK) be transcendental and have infinitely many multiple poles or infinitely many multiple zeros. Then f 2 f takes every value infinitely many times.

Lemma 2: Let f ∈ M(IK) be such that f has finitely many multiple zeros. Then f f (f ) 2 has no quasi-exceptional value.

Proof: Let g = f f
. A pole of g is a zero of f , hence by hypothesis, g has finitely many multiple poles. Consequently, by Theorem A, g has no quasi-exceptional value. And hence neither has

1 -g . But g = (f ) 2 -f f (f ) 2 = 1 - f f (f ) 2 . Therefore f f (f ) 2 has no quasi-exceptional value.
Lemma 3: Let f ∈ M(IK) have finitely many multiple zeros. Then f f + 2(f ) 2 has infinitely many zeros that are not zeros of f .

Proof: Suppose first that f has infinitely many multiple zeros. Since f has finitely many multiple zeros, the zeros of f are not zeros of f except at most finitely many. Hence f has infinitely many multiple zeros that are not zeros of f . And then, they are zeros of f , hence of f f + 2(f ) 2 , which proves the statement.

So we are now led to assume that f has finitely many multiple zeros. By Lemma 2, f f + 2(f ) 2 (f ) 2 has infinitely many zeros. Let c ∈ IK be a pole of order q of f . Without loss of generality, we can suppose c = 0. The beginning of the Laurent developpement of f at 0 is of the form a -q x q + ϕ(x) x q-1 whereas ϕ ∈ M(IK) has no pole at 0. Consequently,

f f + 2(f ) 2 (f ) 2 is of the form (a -q ) 2 (3q 2 + q) + xφ(x) (a -q ) 2 (q 2 ) + xψ(x)
whereas φ, ψ ∈ M(IK) have no pole at 0. So, the function

f f + 2(f ) 2 (f ) 2
has no zero at 0. Therefore, 2 and hence f f + 2(f ) 2 has infinitely many zeros. Now, let us show that the zeros of f f + 2(f ) 2 are not zeros of f , except maybe finitely many. Let c be a zero of f f + 2(f ) 2 and suppose that c is a zero of f . Then, it is a zero of f and hence it is a multiple zero of f . But by hypotheses, f has finitely many multiple zeros, hence the zeros of f f + 2(f ) 2 are not zeros of f , except at most finitely many. That finishes proving the claim. Proof of the Theorem: Let b ∈ IK * and suppose that f 2 f -b has q zeros, taking multiplicity into account. By Theorem B, we may assume that f has finitely many multiple zeros and finitely multiple poles. Set F = f 2 f . Then F = f (f f + 2(f ) 2 ). Consequently, F admits for zeros: the zeros of f and the zeros of f f + 2(f ) 2 . And by Lemma 3, there exists a sequence of zeros of f f + 2(f ) 2 that are not zeros of f . Let S = {0, b} and let Z S 0 (r, F ) be the counting function of zeros of F when F (x) is different from 0 and b. Since F -b has finitely many zeros, the zeros c of F which are not zeros of f cannot satisfy F (c) = b except at most finitely many. Consequently, there are infinitely many zeros of F counted by the counting function Z S 0 (r, F ) and hence for every fixed integer t ∈ IN, we have

each zero of f f + 2(f ) 2 (f ) 2 is a zero of f f + 2(f )
(1) Z S 0 (r, F ) ≥ t log r + O(1).

Let us apply Theorem N to F . We have Consequently, by ( 2), ( 3), ( 4), ( 5) we obtain (6) T (r, F ) ≤ Z(r, f ) + Z(r, f ) + N (r, f ) -Z S 0 (r, F ) + (q -1) log r + O(1).

On the other hand, by construction, T (r, F ) ≥ Z(r, F ) = 2Z(r, f ) + Z(r, f ) hence by ( 6) we obtain (7): [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF] Z(r, f ) ≤ N (r, f ) -Z S 0 (r, F ) + (q -1) log r + O(1). Now, by Lemma 4, we have N (r, f ) ≤ Z(r, f ) + O(1) hence by [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF] we obtain 0 ≤ (q -1) log r -Z S 0 (r, F ) + O(1) and hence by (1), fixing t > q -1 we can derive 0 ≤ (q -1) log r -t log r + O(1), a contradiction. That finishes the proof of the Theorem.

Lemma 4 :

 4 Let f ∈ M(IK) be transcendental and let b ∈ IK * be such that f 2 f -b has finitely many zeros. Then, N (r, f ) ≤ Z(r, f ) + O(1). Proof: Let F = f 2 f . Since F -b is transcendental and has finitely many zeros, it is of the form P (x) h(x) with h ∈ A(IK) \ IK[x]. Consequently, |F |(r) is a constant when r is big enough and therefore, by Lemma 1 we have Z(r, F ) = N (r, F ) + O(1) when r is big enough. Now, Z(r, F ) = 2Z(r, f ) + Z(r, f ) and, by Lemma 1, Z(r, f ) ≤ Z(r, f ) + N (r, f ) -log r + O(1). On the other hand, by Lemma 1 again, we have N (r, F ) = 3N (r, f ) + N (r, f ). Consequently, 3N (r, f ) + N (r, f ) ≤ 3Z(r, f ) + N (r, f ) -log r + O(1), which proves the claim.

( 2 )

 2 T (r, F ) ≤ Z(r, F ) + Z(r, F -b) + N (r, F ) -Z S 0 (r, F ) -log(r) + O(1). Now, we have (3) Z(r, F ) ≤ Z(r, f ) + Z(r, f ) (4) N (r, F ) = N (r, f )and since the number of zeros of F -b is q, taking multiplicity into account, we have (5) Z(r, F -b) ≤ q log r + O(1).
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