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Abstract
All of our perceptual experiences arise from the activity of neural populations. Here we

study the formation of such percepts under the assumption that they emerge from a linear

readout, i.e., a weighted sum of the neurons’ firing rates. We show that this assumption con-

strains the trial-to-trial covariance structure of neural activities and animal behavior. The

predicted covariance structure depends on the readout parameters, and in particular on the

temporal integration window w and typical number of neurons K used in the formation of the

percept. Using these predictions, we show how to infer the readout parameters from joint

measurements of a subject’s behavior and neural activities. We consider three such scenar-

ios: (1) recordings from the complete neural population, (2) recordings of neuronal sub-en-

sembles whose size exceeds K, and (3) recordings of neuronal sub-ensembles that are

smaller than K. Using theoretical arguments and artificially generated data, we show that

the first two scenarios allow us to recover the typical spatial and temporal scales of the read-

out. In the third scenario, we show that the readout parameters can only be recovered by

making additional assumptions about the structure of the full population activity. Our work

provides the first thorough interpretation of (feed-forward) percept formation from a popula-

tion of sensory neurons. We discuss applications to experimental recordings in classic sen-

sory decision-making tasks, which will hopefully provide new insights into the nature of

perceptual integration.

Author Summary

This article deals with the interpretation of neural activities during perceptual decision-
making tasks, where animals must assess the value of a sensory stimulus and take a deci-
sion on the basis of their percept. A “standard model” for these tasks has progressively
emerged, whence the animal’s percept and subsequent choice on each trial are obtained
from a linear integration of the activity of sensory neurons. However, up to date, there has
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been no principled method to estimate the parameters of this model: mainly, the typical
number of neurons K from the population involved in conveying the percept, and the typi-
cal time scale w during which these neurons’ activities are integrated. In this article, we
propose a novel method to estimate these quantities from experimental data, and thus as-
sess the validity of the standard model of percept formation. In the process, we clarify the
predictions of the standard model regarding two classic experimental measures in these
tasks: sensitivity, which is the animal’s ability to distinguish nearby stimulus values, and
choice signals, which assess the amount of correlation between the activity of single neu-
rons and the animal’s ultimate choice on each trial.

Introduction
Most cortical neurons are noisy, or at least appear so in experiments. When we record the re-
sponses of sensory neurons to well-controlled stimuli, their spike patterns vary from trial to
trial. Does this variability reflect the uncertainties of the measurement process, or does it have
a direct impact on behavior? These questions are central to our understanding of percept for-
mation and decision-making in the brain and have been the focus of much previous work [1].
Many studies have sought to address these problems by studying animals that perform simple,
perceptual decision-making tasks [2, 3]. In such tasks, an animal is typically presented with dif-
ferent stimuli s and trained to categorize them through a simple behavioral report. When this
perceptual report is monitored simultaneously with the animal’s neural activity, one can try to
find a causal link between the two.

One particular hypothesis about this link—which we refer to as the “sensory noise” hypoth-
esis—postulates that the accuracy of the animal’s perceptual judgments is primarily limited by
noise at the level of sensory neurons [4, 5]. In terms of signal detection theory, the hypothesis
predicts a quantitative match between (1) the animal’s ability to discriminate nearby stimulus
values—known as psychometric sensitivity, and (2) an ideal observer’s ability to discriminate
nearby stimulus values based on the activities of the underlying neural population—known as
neurometric sensitivity. Both types of sensitivities can be quantified as signal-to-noise ratios
(SNR). With this idea in mind, several studies have compared the neurometric and psychomet-
ric sensitivities in various sensory systems and behavioral tasks (see [6, 7] for reference).

However, as was soon realized, any extrapolation from a few recorded cells to the entire
population is fraught with implicit assumptions. For example, if neurons in a population be-
have independently one from another, then the SNR of the population is simply the sum of the
individual SNRs. Consequently, any estimate of neurometric sensitivity will grow linearly with
the number of recorded neurons K. However, if neurons in a population do not behave inde-
pendently, the precise growth of neural sensitivity with K is determined by the correlation
structure of noise in the population [8–10]. In addition, the neurometric sensitivities also de-
pend on the time scale w that is used to integrate each neuron’s spike train in a given trial [3,
11–13]. Indeed, the more spikes are incorporated in the readout, the more accurate that read-
out will be. Adding extra neurons by increasing K, or adding extra spikes by increasing w, are
two dual ways of increasing the readout’s overall SNR.

As there is no unique way of reading out information from a population of sensory neurons,
the sensory noise hypothesis can only be tested if we understand how the organism itself “reads
out” the relevant information. In other words, how many sensory neurons K, and what integra-
tion time scale w, provide a relevant description of the animal’s percept formation? Given the
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“K-w” duality mentioned above, we cannot answer that question based solely on sensitivity
(SNR). Another experimental measure should also be included in the analysis.

A good candidate for such a measure are choice signals, i.e., measures of the trial-to-trial cor-
relation between the activity of each recorded neuron and the animal’s ultimate choice on each
trial. These signals, weak but often significant, arise from the unknown process by which each
neuron’s activity influences—or is influenced by—the animal’s perceptual decision. In two-al-
ternative forced choice (2AFC) discrimination tasks, they have generally been computed in the
form of choice probabilities (CP) [14, 15]. The temporal evolution of CPs has been used to find
the instants in time when a given population covaries with the animal’s percept [13, 16]. In a
seminal study, Shadlen et al. (1996) proposed to jointly use sensitivity and choice signals, as
two independent constraints characterizing the underlying neural code [17]. They derived a
feed-forward model of perceptual integration in visual area MT, and studied numerically how
the population’s sensitivity and CPs vary as a function of various model parameters. They ac-
knowledged the existence of a link between CPs and pairwise noise correlations—both mea-
sures being (partial) reflections of how information is embedded in the neural population as a
whole (see also [12, 18]). However, the quantitative nature of this link was only revealed recent-
ly, when Haefner et al. (2013) derived the analytical expression of CPs in the standard model of
perceptual integration [19] (see Methods).

In this article, we show that the standard feed-forward model of percept formation gives rise
to three characteristic equations that describe analytically the trial-to-trial covariance between
neural activities and animal percept. These equations depend on the brain’s readout policy
across neurons and time, and hold for any noise correlation structure in the neural population.
In accordance with the intuition of Shadlen et al. (1996), we show that sensitivity and choice
signals correspond to two distinct, characteristic properties of the readout. The equation de-
scribing choice signals is equivalent to the one derived by Haefner et al. (2013), but stripped
from the non-linear complications inherent to the CP formulation. We use a linear formulation
instead, which gives us a particularly simple prediction of choice signals at every instant
in time.

We then show how these equations can be used in order to recover the time window and
the number of neurons used in the formation of a percept. A quantitative analysis of choice sig-
nals allows us to overcome the “K–w trade-off” inherent to neurometric sensitivity. We specifi-
cally focus on situations in which only a finite sample of neurons has been measured from a
large, unknown population. We show how to recover the typical number of neurons K, provid-
ed that the experimenter could record at least K neurons simultaneously. Finally, we discuss
the scope and the limitations of our method, and how it can be applied to real
experimental data.

Results

Experimental measures of behavior and neural activities
We will study the formation of percepts in the context of perceptual decision-making experi-
ments (Fig. 1, see Methods or Tables 1–3 for the corresponding formulas). In these experi-
ments, an animal is typically confronted with a stimulus, s, and must then make a behavioral
choice, c, according to the rules of the task. A specific example is the classic discrimination task
in which the animal’s choice c is binary, and the animal must report whether it perceived s to
be higher (c = 1) or lower (c = 0) than a fixed reference s0 (Fig. 1A, top and middle panels).
While the animal is performing the task, the neural activity in a given brain area can be moni-
tored (Fig. 1A, bottom panel). Typical examples from the literature include area MT in the con-
text of a motion discrimination task [3], area MT or V2 in the context of a depth
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Fig 1. Framework andmain experimental measures. (A) Experimental setup. Top: A set of stimulus values s (color-coded as blue, yellow, red) are
repeatedly presented to an animal. Middle: The animal’s choice c on each trial (green) indicates whether the animal judged s to be larger or smaller than the
fixed central value, s0. Bottom: In each session, several task-relevant sensory neurons are recorded simultaneously with the behavior. (B) The psychometric
curveψ(s) quantifies the animal’s sensory accuracy. Its inverse slope in s0 provides the just-noticeable-difference (JND), Z. (C) The noise covariance
structure can be assessed in each pair of simultaneously recorded neurons, as their joint peri-stimulus histogram (JPSTH)Cij(t, u). (D) Responses of a
particular neuron. Each thin line is the schematic (smoothed) representation of the spike train on one trial. Segregating trials according to stimulus (top), we
access the neuron’s peri-stimulus histogram (PSTH, thick lines) and its tuning signal bi(t)—shown in panel (E). Fixing a stimulus value and segregating trials
according to the animal’s choice c (bottom), we access the neuron’s choice covariance (CC) curve di(t)—shown in panel (F).

doi:10.1371/journal.pcbi.1004082.g001
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discrimination task [11, 20], or area S1 in the context of a tactile discrimination task [21]. For
concreteness, we will mostly focus on these discrimination tasks, although the general frame-
work can be applied to arbitrary perceptual decision-making tasks.

The animal’s behavior in a discrimination task can be quantified through the psychometric
curve ψ(s). This curve measures the animal’s repartition of responses at each stimulus value s
(Fig. 1B). If the animal is unbiased, it will choose randomly whenever the stimulus s is equal to
the threshold value s0, so that ψ(s0) = 1/2. The slope of the psychometric curve at s = s0 deter-
mines the animal’s ability to distinguish near-threshold values of the stimulus, i.e., its psycho-
metric sensitivity. We assess this sensitivity through the just noticeable difference (JND) or
difference limen, noted Z. The more sensitive the animal, the smaller Z, and the steeper its
psychometric curve.

Table 1. Variables and notations: typography.

Notation Description Examples

Bold Lower case: vector notation, across neurons
Upper case: matrix notation, across neurons

r(t), b(t)
C(t, u), ��C

Overline Temporal integration, using readout parameters (w, tR) �r i,
��Cij, ��q

Starred Pertaining to the animal’s true behavior
(as opposed to model-based predictions)

Z?, d?
i ðtÞ, t?R

E[�] Expectation across trials (can also be conditional) E[s], E[ri(t)js], E[sri(t)]
Cov[�] Covariance across trials (can also be conditional) Cov[ri(t), c

?js]
xr Vector (or matrix) x restricted to neurons in readout ensemble E ar, �b r ,

��C r , �C irðtÞ
doi:10.1371/journal.pcbi.1004082.t001

Table 2. Variables and notations: experimental data.

Raw experimental data Ref in text

s Stimulus—a varying scalar value on each trial

s0 Threshold stimulus value in the 2AFC task

c? Animal choice—binary report on each trial

ri(t) Spike train from neuron i in a given trial

s2
s Stimulus variance across trials s2

s ≔Var½s� after eq. 18

Animal psychometry

c?(s) Psychometric curve c?(s)≔E[c?js] eq. 23

Z? Just-noticeable difference Best fit to c?ðsÞ ¼ F
sþm?d�s0

Z?

� �
eq. 27

m?
d Decision bias

Individual statistics for the neurons

mi(t; s) PSTH for neuron i with stimulus s mi(t; s)≔E[ri(t)js] eq. 24

bi(t) Tuning signal for neuron i
(variation of the PSTH wrt. stimulus)

biðtÞ≔ @s miðt; sÞ eq. 30, 31

Cij(t, u) JPSTH for neurons i and j
(pairwise noise correlations)

Cijðt; uÞ≔E½Cov½riðtÞ; rjðuÞjs�� eq. 25, 32

��C Noise covariance matrix
(time average of C, with parameters (w, tR))

��Cij ≔E½Cov½�r i;�r jjs�� eq. 40

d?
i ðtÞ Choice Covariance for neuron i

(linear equivalent of choice probabilities)
d?
i ðtÞ≔E½Cov½riðtÞ; c?js�� eq. 26, 33

doi:10.1371/journal.pcbi.1004082.t002
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We assume that the neural activity within the recorded brain area conveys the stimulus in-
formation that the animal uses to make its choice (Fig. 1A, bottom). We describe the activity of
this neural population on every trial as a multivariate point process r(t) = {ri(t)}i = 1. . .Ntot

, where
each ri(t) is the spike train for neuron i, and Ntot denotes the full population size, a very large
and unknown number. (The number of neurons actually recorded is generally much smaller.)
As is common in electrophysiological recordings, we will quantify the raw spike trains by their
first and second order statistics. First, neuron i’s trial-averaged activity in response to each test-
ed stimulus s is given by the peri-stimulus time histogram (PSTH) or time-varying firing rate,
mi(t; s) (Fig. 1D). In so-called “fine” discrimination tasks, the stimuli s display only moderate
variations around the central value s0, so that the PSTH at each instant in time can often be ap-
proximated by a linear function of s:miðt ; sÞ ’ m0

i ðtÞ þ biðtÞs. The slope bi(t), defined at every
instant in time, summarizes neuron i’s tuning properties (Fig. 1E). Second, we assume that sev-
eral neurons can be recorded simultaneously, so that we can access samples from the trial-to-
trial covariance structure of the population activity (Fig. 1C). For every pair of neurons (i, j)
and instants in time (t, u), the joint peri-stimulus time histogram (JPSTH, [22]) Cij(t, u) sum-
marizes the pairwise noise correlations between the two neurons (eq. 25). For simplicity, we
furthermore assume that the JPSTHs do not depend on the exact stimulus value s.

Finally, we can measure a choice signal for each neuron, which captures the trial-to-trial co-
variation of neuron activity ri(t) with the animal’s choice (Fig. 1F). Traditionally, this signal is

Table 3. Variables and notations: model and methods.

Linear readout and decision model Ref in text

w Readout window—duration of the temporal integration

tR extraction time—time at which the percept is formed

ai Readout weight—contribution of neuron i to the percept

sd Decision noise—added to the percept at decision time

ŝ Readout—computed on every trial ŝ ¼ a0 þ
PNtot

i¼1 ai�r i eq. 2

c Choice—computed on every trial c ¼ Hðŝ þ xd � s0Þ eq. 3

Model predictions (characteristic equations)

Z Just-noticeable difference Z2 ¼ a> ��Caþ s2
d

eq. 8

d(t) Choice covariance for every neuron dðtÞ ¼ kðZÞ �CðtÞa eq. 9

k(Z) Conversion factor from Percept Covariance to Choice Covariance eq. 46

Restricted optimality hypothesis

E Readout ensemble—neurons used for the readout

K Readout size—number of neurons in E

H Restriction matrix on E (of size K × Ntot) xr ¼ Hx eq. 54

ar Optimal readout vector (over E) ar � ð��C rÞ�1 �b r
eq. 12

Population-wide indicators for choice signals

q(u, t) Population-wide link between tuning and CC q(u, t)≔hbi(u)di(t)ii eq. 14

V Deviation from linearity between tuning and CC V ≔ h�b2
i iih�d 2

i ii � ��q2 eq. 15

Rescaled indicators (used in the SVD analysis)

A Total covariance matrix A ¼ ��C þ s2
s
�b �b> eq. 50

Y Sensitivity to stimulus Y ≔s2
s = ðs2

s þ Z2Þ eq. 47

e Total percept covariance e ≔ A a eq. 76

Q Rescaled version of ��q Q ≔ hei
�biii eq. 18, 79

η Tuning vector in the space of modes �b ¼ ULZ eq. 68

doi:10.1371/journal.pcbi.1004082.t003
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measured in the form of choice probability (CP) curves. We consider here a simpler linear
equivalent, that we term choice covariance (CC) curves [3]. The CC curve for neuron i, denoted
by di(t), measures the difference in firing rate (at each instant in time) between trials where the
animal chose c = 1 and trials where it chose c = 0—all experimental features (including stimulus
value) being fixed.

Unlike many characterizations of neural activity that rely only on spike counts, our frame-
work requires an explicit temporal description of neural activity through PSTHs, JPSTHs, and
CC curves. Exact formulas for these statistical measures are provided in the Methods. By keep-
ing track of time, we will be able to predict when, and how long, perceptual integration takes
place in an organism.

From the neural activities to the animal’s choice
Linear readout model. Our goal is to quantify the mapping from the neural activities, r(t),

to the animal’s choice, c. This can be done if we assume (1) how the stimulus information is ex-
tracted from the neural activities and (2) how the animal’s decision is formed. For (1) we as-
sume the common linear readout model (Fig. 2A). Here, each neuron’s spike train ri(t) is first
integrated into a single number describing the neuron’s activity over the trial. We write,

�ri ¼
1

w

Z tR

t¼0

dt h
tR � t
w

� �
riðtÞ; ð1Þ

where the kernel h(�) defines the shape of the integration window (e.g., square window, de-
creasing exponential, etc.), the parameter w controls the length of temporal integration, and
the parameter tR specifies the time at which the percept is built or read out. Second, the actual
percept is given by a weighted sum over the neurons’ activities,

ŝ ¼ a0 þ
XNtot

i¼1

ai�r i; ð2Þ

Fig 2. Linear readout and its interpretation. (A) We study a “standard”model of percept formation, with two parametersw and tR defining integration in
time, and a readout vector a defining integration across neurons. (B) Geometric interpretation of the model. The temporal parametersw and tR define the

tuning vector �b and noise covariance matrix ��C in the population. Colored ellipses represent the distribution of neural activities from trial to trial, for the three
possible stimulus values. The readout ŝ can be viewed as an orthogonal projection of neural activities in the direction given by a. (C) Behavioral part of the
model. The percept ŝ can be corrupted by decision noise ξd. Then it is thresholded to produce a binary choice c.

doi:10.1371/journal.pcbi.1004082.g002
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where a = (a1, . . ., aNtot
) is a specific readout vector, or “perceptual policy”. This classic linear

readout has sometimes been referred to as the “standard”model of perceptual integration
[17, 19].

Previous studies have generally made ad hoc choices for the various constituents of this
model. Most often, �ri is taken to be the total spike count for neuron i, in which case tR = w coin-
cides with the end of the stimulation period, and h(�) in eq. 1 is a square kernel. However, this
readout is likely incorrect: the length of the integration window w influences the neurometric
sensitivity, and experiments suggest that animals do not always use the full stimulation period
to build their judgment [23]. Similarly, vector a is often defined over an arbitrary set of neu-
rons, typically those recorded by the experimenter. Again, this choice is arbitrary, and it has a
direct influence on the predicted sensitivities.

Instead, we view the readout window w and extraction time tR as free parameters, and we
generically define a over the full, unknown population of neurons. If a neuron does not con-
tribute to the percept, it simply corresponds to a zero entry in a. For conceptual and implemen-
tation simplicity, we take h(�) to be a simple square window (see Discussion for a
generalization). Our goal is now to understand whether the readout ŝ can be a good model for
the animal’s true percept formation and if yes, for what set of parameters.

Decision policy. The linear model builds a continuous-valued, internal percept ŝ of stimu-
lus value by the animal on each trial. To emulate the discrimination tasks, we also need to
model the animal’s decision policy, which converts the continuous percept ŝ into a binary
choice c. While the linear model is rather universal, the decision model will depend on the spe-
cifics of each experimental task. To ground our argumentation, we model here the required de-
cision in a classic random dot motion discrimination task [3]. However, the ideas herein could
also be transposed to other types of behavioral tasks (see Discussion).

On each trial, we assume that an extraneous source of noise ξd is added to the animal’s per-
cept ŝ (Fig. 2C). Known in the literature as ‘decision noise’ or ‘pooling noise’, ξd encompasses
all extra-sensory sources of variation which may influence the animal’s decision. We assume
that ξd is a Gaussian variable with variance s2

d , which we take as an additional model parameter.
Then, the animal’s choice on each trial is built deterministically, by comparing ŝ þ xd to the
threshold value s0 (Fig. 2C), so that

c ¼ Hðŝ þ xd � s0Þ; ð3Þ
whereH(�) is the Heaviside function. We note that the decision noise is negligible in the classic
“sensory noise hypothesis”, in which case σd ! 0.

The characteristic equations of the standard model
The linear readout model and the animal’s decision policy specify both how the animal’s per-
cepts are formed from its neural activities and how its choices are generated from these per-
cepts. If we had recorded the activities of the entire neural population together with the
animal’s behavior, then the parameters of this model could be estimated from the data using
any standard regression method. However, this is generally not a realistic experimental situa-
tion. Instead, we take here a statistical approach to the problem, which (1) allows us to deal
with incomplete recordings and (2) relates the estimation problem to the standard experimen-
tal measures described above.

Characteristic equations of the linear readout. Thanks to its linear structure, the readout
defined in eq. 2 induces a simple covariance between the neural activities, r(t), and the resulting
percept, ŝ (Fig. 2B). Since the linear readout relies on the integrated spike trains, eq. 1, we need
similarly integrated versions of the neural tuning and noise covariances in order to express the
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respective covariance relations. In general, we will denote these time-integrated quantities by
an overhead bar, and alert the reader that the respective quantities depend implicitly on the

readout window w and the extraction time tR. We will write �bi for the integrated version of the

neural tuning, bi(t), we will write �CijðtÞ for the once integrated noise covariances, and ��Cij for

the doubly integrated noise covariance. This latter quantity, known in the literature as the
‘noise covariance matrix’, measures how the spike counts of two neurons, �ri and �r j, covary due

to shared random fluctuations across trials (stimulus s being held fixed). We can then summa-
rize the covariances between neural activities and the resulting percepts by three characteristic
equations (see Methods):

@sE½̂sjs� ¼ �b>a ; ð4Þ

Var½̂sjs� ¼ a> ��C a ; ð5Þ

Cov½rðtÞ; ŝjs� ¼ �CðtÞa : ð6Þ

On the left-hand sides of eq. 4–6, we find statistical quantities related to the percept ŝ. On the
right-hand sides of these equations, we find the model’s predictions, which are based on the
neurons’ (measurable) response statistics, b and C. More specifically, the first line describes the
average dependency of ŝ on stimulus s, the second line expresses the resulting variance for the
percept, and the third line expresses the linear covariance between each neuron’s spike train,
and the animal’s percept ŝ on the trial.

Characteristic equations of the decision policy. To produce a binary choice, the continu-
ous percept ŝ is fed into the decision model (Fig. 2C). From the output of this decision model,
we obtain a second set of characteristic equations (see Methods),

1 ¼ @sE½̂sjs� ;

Z2 ¼ Var½̂sjs� þ s2
d ;

dðtÞ ¼ kðZÞCov½rðtÞ; ŝjs� :

Here the first equation simply expresses that both percept and decision are assumed to be unbi-
ased. The second equation relates the JND, Z, extracted from the psychometric curve, to the
variance in the percept, ŝ. The third equation restates the definition of choice covariance, ex-
cept for the scaling factor, κ(Z), which will be constant for most practical purposes, and is de-
scribed in detail in the Methods (eq. 46). Hence, in our full model of the task, we are able to
predict both the psychometric sensitivity and the individual neurons’ choice signals from the
first and second-order statistics of the neural responses. Specifically, by combining the charac-
teristic equations for the linear readout and the decision policy, we obtain

1 ¼ �b>a ; ð7Þ

Z2 ¼ a> ��C aþ s2
d ; ð8Þ

dðtÞ ¼ kðZÞ �CðtÞa : ð9Þ

Importantly, since these equations deal with integrated versions of the raw neural signals, they
depend on both the readout time window, w, and the extraction time, tR.
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We note that the choice covariance equation (eq. 9) can also be derived in a simpler, time-

averaged form. Let �di be the time-integrated version of di(t), using the readout’s temporal pa-
rameters (w, tR). Then, eq. 9 becomes

�d ¼ kðZÞ ��C a; ð10Þ

which provides the linear covariance between each neuron’s spike count �r i on the trial, and the
animal’s choice. This is essentially the relationship already revealed by Haefner et al. (2013)
[19], that choice probabilities are related to readout weights through the noise covariance ma-
trix. The simpler linear measure of choice covariance, used in this article, allows us (1) to get
rid of some non-linearities inherent to the choice probability formulation, and (2) to easily ex-
tend the interpretation of choice signals in the time domain, with eq. 9.

Estimating the parameters of sensory integration
Equations 7–9 describe the analytical link between measures of neural response to the stimulus
(bi and Cij) and measures related to the animal’s percept (Z and di), based on the model’s read-
out parameters (a, w, tR, and σd). This naturally raises the reverse question: can we estimate the
parameters of the standard model (a, w, tR, and σd) from actual measurements? From here on,
we will denote the true (and unknown) values of these parameters, i.e., the values used in the
animal’s actual percept formation, with a star (a?, w?, t?R, and s

?
d).

As mentioned in the introduction, our primary interest concerns the trade-off between the
time scale w? of integration, and the size K? of the functional population which conveys the an-
imal’s percept to downstream areas. Thus, we assume that the animal’s percept is constructed
from a specific sub-ensemble E? of neurons, of size K? (Fig. 3A). Neurons inside E? correspond
to nonzero entries in the readout vector a?, while neurons outside E? have zero entries. Since
only a subset of neurons within a cortical area will project to a downstream area, we can gener-
ally assume that K? < Ntot.

Naturally, all those parameters are not measurable experimentally. For any candidate set of
parameters, a, w, tR, and σd, the characteristic equations 7–9 lead to predictions for Z and di(t)
(note the absence of star when referring to predictions). In turn, the experimenter canmeasure
the animal’s actual choice c? on each trial, from which they can estimate the JND Z?, and the
CC curves d?

i ðtÞ for all recorded neurons. In the next three sections, we study whether this in-
formation is sufficient to retrieve the true readout parameters, depending on the amount of
data available.

In the ideal scenario where all neurons in the population are recorded simultaneously, N =
Ntot, all parameters can be retrieved exactly (Case 1). In most experimental recordings, howev-
er, we only measure the activities of a small subset of that population (Fig. 3A). If this subset is
representative of the full population, we may want to retrieve the readout parameters through
extrapolation. Unfortunately, any such extrapolation is fraught with additional assumptions—
whether implicit or explicit—as it requires to replace the missing data with some form of (gen-
erative) model. In Case 2, we impose a generative model for the readout vector a. Coupled with
a statistical principle, it allows us to estimate the true size K? of the readout ensemble, provided
that the number of neurons recorded simultaneously, N, is larger: N> K?. In Case 3, we study
the scenario in which N� K?. Here, we need to assume a generative model for the neural activ-
ities themselves. Since the noise covariance structure assumed by that model exerts a strong in-
fluence on the predicted JND and CC curves, a direct inference of the readout scales
becomes impossible.
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Case 1: all cells recorded
If all neurons in the population have been recorded, with a sufficient amount of trials to esti-
mate the complete covariance structure of the population, then the only unknown quantities in
eq. 7–9 are the readout parameters w, tR and a, and the decision noise σd. For fixed parameters
w and tR, eq. 7 and 9 impose linear constraints on vector a. These constraints are generally
over-complete, since a is Ntot-dimensional, while each time t in eq. 9 provides Ntot additional
linear constraints. Thus, in general, a solution a will only exist if one has targeted the true pa-
rameters w? and t?R, and it will then be unique. (If no choice of the readout parameters approxi-
mately fulfills the characteristic equations, we would have to conclude that the linear readout
model is fundamentally wrong.) In practice, we can find the best solution to the characteristic

Fig 3. Statistical recovery of readout parameters: method. (A) The full population (of sizeNtot) and the true readout ensemble E? (of size K?), are not fully
measured. Only subsets of N neurons are recorded simultaneously from the population. (B) True measures for the three statistical indicators: the animal’s
psychometric JND Z?, plus indicators q?(u, t) and V? that summarize the distribution of the recorded neurons’ CC curves d?

i ðtÞ. (C) A large number of neural
ensembles E of size K are randomly selected from the experimental pool and proposed as the candidate readout ensemble. This yields model-based
predictions for the indicators as a function of the proposed readout parameters (K, σd,w, tR). (D-F) The three statistical indicators considered (see text for
details).

doi:10.1371/journal.pcbi.1004082.g003
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equations by simply combining them and then minimizing the following mean-square error:

Lðw; tR;a;sdÞ ¼ 1� �b>a
� �2 þ lðZ?2�s2

d � a> ��CaÞ2 þ m
Z

dt k d� ðtÞ � kðZ?Þ �CðtÞa k2 ; ð11Þ

where the parameters λ and μ trade off the importance of the errors in the different characteristic
equations. Note that the loss function L depends not only on the readout weights a and the decision
noise σd, but also on the parameters w and tR, both of which enter all the time integrations that are
denoted by an overhead bar. Once vector a? is estimated, the readout ensemble E? will correspond
to the set of neurons with nonzero readout weights.

Case 2: more than K? cells recorded
Unfortunately, measuring the neural activity of a full population is essentially impossible, al-
though optogenetic techniques are coming ever closer to this goal [24–26]. Nevertheless, if the
activity patterns of the recorded cells are statistically similar to those of the readout ensemble,
and if the number of simultaneously recorded cells exceeds the number of cells in the readout
ensemble, we can still retrieve the readout parameters by making specific assumptions about
the true readout vector a?.

A statistical approach. Our central assumption will be that the system uses the principle
of restricted optimality: we assume that the readout vector a? extracts as much information as
possible from the neurons within the readout ensemble, E?, and no information from all other
neurons. Since most of the neurons contributing to the readout were probably not recorded,
we cannot directly estimate the true readout vector, a?. However, we can form candidate en-
sembles from the recorded pool of neurons, E, compute their optimal readout vector, ar(E), and
then test to what extent these candidate ensembles can predict the JND or the CC curves
(Fig. 3C). By changing the size of the candidate ensembles, K, we can in turn infer the number
of neurons involved in the readout.

For an arbitrary candidate ensemble E, we can express its optimal readout vector, ar(E)≔
{ai}i 2 E, on the basis of the neurons’ tuning and noise covariance, through a formula known as
Fisher’s linear discriminant [27]:

ar ¼
ð ��CrÞ�1 �br

�b>
r ð ��CrÞ�1 �br

: ð12Þ

Here, the subscript r indicates that all quantities are only evaluated for the neurons within the
ensemble E. The remaining neurons in the population do not participate in the readout. The re-
sulting readout vector verifies eq. 7, and minimizes the just noticeable difference Z under the
given constraints. Specifically, by entering the optimal readout into eq. 8, we obtain a predic-
tion for the JND (Fig. 3D),

Z2 ¼ 1

�b>
r ð ��CrÞ�1 �br

þ s2
d : ð13Þ

As for CC signals, the statistical description eliminates any reference to neuron identities, so
we can no longer work directly with eq. 9. Instead, we re-express this equation in terms of two
population-wide indicators, that summarize the CC signals of the individual neurons. The first
indicator assesses the population-wide link between a neuron’s tuning at each time u, and its
choice covariance at each time t. The second indicator measures the average deviation from
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this link (see also Methods):

qðu; tÞ≔ hbiðuÞdiðtÞi i ð14Þ

V≔ h�b2
i iih�d2

i ii � ��q2 : ð15Þ

Here, the angular brackets h�ii denote averaging over the full neural population—or, in prac-
tice, over a representative ensemble of neurons (see Methods on how to construct this from ac-
tual data).

Experimentally, q(u, t) is expected to be globally positive, because the tuning of a neuron is
often found to be somewhat correlated with its choice signal [11, 15] (Fig. 3E)—likely due to
the fact that positively-tuned neurons contribute positively to stimulus estimation, and nega-
tively-tuned neurons negatively. This correlation can be quantified under the assumption of re-
stricted optimality (see Methods). The indicator q(u, t) has a simple interpretation which we

will illustrate by focusing on its doubly time-integrated version, ��q ¼ h �bi
�di ii. When we seek to

predict a neuron’s choice covariance �di from its tuning �bi, then ��q is the best regression coeffi-
cient (Fig. 3F), so that

�di ¼
��q

h�b2
j ij

�bi þ xi:

The deviations from this prediction are indicated by ξi, whose variance in turn is measured by
the indicator V (Fig. 3F). A similar relation holds for the time-dependent indicator q(u, t).

We now seek readout parameters which provide the best fit to the indicators introduced
above. We set a number of potential values for parameters K, w, tR, σd, and we explore routinely
all their possible combinations. For each tested value of the readout ensemble size, K, we re-
peatedly pick a random neural ensemble E of size K from the pool of neurons recorded by the
experimenter, and propose it as the source of the animal’s percept (Fig. 3C). Then, we compute
the average indicators across ensembles of similar size (see Methods), which we will denote by
hZ2iE , hqiE , and hViE . Note that all of these indicators depend on the parameters w, tR, K, and
σd. Finally, we replace the loss function of Case 1 (eq. 11) by the following “statistical” loss
function:

Lðw; tR;K; sdÞ ¼ Z?2 � hZ2iE
� �2 þ l

Z Z
dt du q?ðu; tÞ � hqðu; tÞiE

� �2 þ m V? � hViE
� �2

: ð16Þ

The minimum of the loss function then indicates what values of the readout parameters agree
best with the recorded data.

Network simulations and retrieval of readout parameters. To validate these claims, we
have tested our method on synthetic data—which are the only way to control the true parame-
ters of integration, and thus to test our predictions. We implemented a recurrent neural net-
work with N = 5000 integrate-and-fire neurons that encodes some input stimulus s in the
spiking activity of its neurons, and we built a perceptual readout from that network according
to our model, with parameters K? = 80 neurons, w? = 50 ms, t?R ¼ 100ms, and s?

d ¼ 1 stimulus
units (see Methods for a description of the network, and supporting S1 Text).

Then, as experimenters, we observed on every trial the perceptual report c? and samples of
network activity, from which we computed neural response statistics bi(t) and Cij(t, u), the psy-
chometric curve ψ?(s), and the neuron CC curves d?

i ðtÞ (Fig. 4). From these (partial) measures,
we extracted the three population-wide indicators Z?, q?(u, t) and V?, and investigated whether
the loss function from eq. 16 allows us to recover the system’s true scales of perceptual integra-
tion ðw?; t?R;K

?; s?
dÞ.
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Fig 4. Simulated neural network used for testing the method. (A) Spike count statistics amongst the population of 5000 neurons (spike counts over 400
msec, on 3 × 180 stimulus repetitions). Note the weak, but significant, correlation between tuning (bi) and choice covariance (di). (B) Sample PSTHs: the
model neurons display varied firing rates, and tunings of different polarities. (C) Sample choice covariance curves for the same neurons as panel B (thin lines:
bootstrap-based error bars). (D) Sample JPSTHs (noise correlations) for pairs of model neurons. Inset: corresponding cross-correlograms, obtained by
projection along the diagonal. For better visibility, the curves in panels B-D were computed from a larger number of trials (3 × 3000) than used for the study
itself (3 × 180), and time-averaged with a 10 msec Gaussian kernel.

doi:10.1371/journal.pcbi.1004082.g004
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The results, summarized in Fig. 5, show that the recovery is indeed possible. Each indicator
plays a specific role in recovering some of the parameters. First, indicator q(u, t) allows us to re-
cover the temporal parameters of integration (w, tR). Indeed, it characterizes the time interval
during which the population—as a whole—shows the strongest choice covariance (Fig. 5A),
and the bounds of this interval are essentially governed by parameters (w, tR) (Fig. 5B). As a re-
sult, the match between true measure and prediction—second term in eq. 16—shows a clear
optimum near the true values ðw?; t?RÞ (Fig. 5C). The bi-temporal structure of q(u, t) in eq. 14,
with time index u corresponding to the neurons’ tuning bi(u), stabilizes the results by insuring
that q(u, t) is globally positive.

Second, indicator Z allows us to target readouts with the correct ‘overall amount’ of integra-
tion, resulting in a JND compatible with the data. Fig. 5D depicts the predicted value for Z as a
function of w and K. The mark of the ‘K-w trade-off’ is visible: higher sensitivity to stimulus
can be achieved either through longer temporal integration (w), or through larger readout en-

sembles (K). Analytically, the JND Z depends on w because the covariance matrix ��C will gener-
ally scale with w−1 (under mild assumptions, supporting S1 Text). The red curve marks the
pairs (K, w) for which the prediction matches the measured JND Z?—thereby minimizing the
first loss term in eq. 16. The true parameters (K?, w?) lie along that curve (white square in

Fig 5. Statistical recovery of readout parameters: structure of the results. (A) Experimental indicator q?(u, t). Note the noisiness due to limited amounts
of data. (B) Prediction hq(u, t)iE for a given set of readout parameters (w, tR, K, σd). The temporal location of the CC signal is mostly governed by parameters
w and tR. (C) (Normalized) mean square error between measured and predicted q(u, t), as a function of readout parameters (w, tR). The true values ðw?; t?RÞ
are indicated by a white square. (D) Predicted JND hZ2iE as a function of K andw. (E) Predicted JND hZ2iE as a function of K and σd. (F) Predicted deviation
hViE as a function of K and σd. In panels C-F, the white square indicates the true (starred) value for the parameters being represented. The parameters not
represented are always fixed at their true (starred) value. In panels D-F, the red curve marks the intersection of the predicted indicator with its measured
value. All indicators have units derived from Hz, owing to stimulus s being itself a frequency (see Methods).

doi:10.1371/journal.pcbi.1004082.g005
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Fig. 5D). Since w? is recovered independently thanks to indicator q(u, t), this in turn allows us
to recover parameter K?.

If sensory noise is the main source of error in the animal’s judgments (meaning σd ’ 0 in
the model), the two indicators q(u, t) and Z suffice to characterize the readout parameters. But
in the general case, the observed JND Z? can also be influenced by extraneous sources of noise
in the animal’s decision, and bias the comparison between Z? and its prediction. To account
for this potential effect, our model includes the decision-noise term σd. For a fixed value of w,
the JND Z is influenced both by parameters K and σd (eq. 13, Fig. 5E). However, both parame-
ters can be disentangled thanks to the third indicator V, which depends mostly on K (Fig. 5F).

The signification of V hinges on the following result, that was first shown in [19]: when the
readout is truly optimal over the full population (K = Ntot), then each neuron’s choice covari-

ance �di is simply proportional to its tuning �bi (see Methods). Since the indicator V quantifies

the deviations from perfect proportionality between �bi and �di (eq. 15, Fig. 3F), it becomes a
marker of the readout’s global optimality, and decreases to zero as K grows to large popula-
tions. At the same time, the dependency of V on parameter σd is minimal, and limited to the in-
fluence of the scaling factor κ(Z) in eq. 9 (see Methods).

When minimizing the loss function in eq. 16, we impose the joint fit of the three indicators
Z, q(u, t) and V. Following the explanations above, this will be obtained for parameters close to
the true values ðw?; t?R;K

?; s?
dÞ. In our simulation, the minimum was achieved for the following

values: w = 50 msec, tR = 100 msec, K = 60 neurons, σd = 0.25 stimulus units (with the following
levels of discretization: 10 neurons for K, 0.25 stimulus units for σd, 10 msec for w and tR).

The best fit parameters are represented in Fig. 6, along with bootstrap confidence intervals
derived from 14 resamplings of our original data. The temporal parameters (w, tR) are recov-
ered with good precision (panel A). Conversely, parameters K and σd are somewhat underesti-
mated (panels B and C) compared to their true values (black square). Indeed, the values of K
and σd are disentangled thanks to indicator V which, of the three indicators introduced, is the
most subject to measurement noise. As a result, the match between V? and its prediction V is
not as precise as the other two: see Fig. 5F. Nevertheless, the true values are rather close to the
final estimates, lying within the 1-standard deviation confidence region (Fig. 6C).

Importantly, only a reasonable amount of data is required to produce these estimates. Net-
work activity was monitored on 15 independent runs, each run consisting of 180 repetitions

Fig 6. Statistical recovery of readout parameters: best fit parameters. Efficiency of the inference method, applied to our simulated LIF network. The
three panels show different 2d projections of the underlying 4d parameter space: (tR, w) plane (A), (K,w) plane (B), (K, σd) plane (C). Black square: true
parameters ðK?;w?; t?R; s

?
dÞ used to produce the data. Red square: best fit parameters (K,w, tR, σd), achieving the minimum of the loss function in eq. 16. Gray

points: best fit parameters for 14 (bootstrap) resamplings of the original trials (some points are superimposed, due to the finite grid of tested parameters). Red
ellipses: corresponding confidence intervals, as the 1- and 2- standard deviation of the bootstrap resamplings.

doi:10.1371/journal.pcbi.1004082.g006
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for each of the 3 stimuli. On each run, a different set of N = 170 random neurons were simulta-
neously recorded—out of a total population of Ntot = 5000. As a result, (i) individual neuron
statistics such as Cij(t, u) or d?

i ðtÞ display an important amount of measurement noise, (ii) pop-
ulation statistics such as indicator V are computed from relatively few neurons i. Numerically,
this noisiness introduces a number of biases in the above indicators, such as overfitting, which
require counteracting with specific corrections (see Methods and supplementary material for
details). Naturally, the width of the confidence intervals in Fig. 6 is directly related to the
amount of data available.

In conclusion, if the data conform to a number of hypotheses (optimal linear readout from
a neural ensemble typical of the full population, and smaller than the recording pool size), then
it is possible to estimate the underlying readout’s parameters, from a plausible amount of
experimental samples.

Case 3: less than K? cells recorded
By construction, the method presented in Case 2 can only test ensemble sizes K smaller than N,
the number of neurons recorded simultaneously by the experimenter. If N is smaller than the
true size K?, the method will provide biased estimates. In current-day experiments, N can
range from a few tens to a few hundred neurons. While it is not excluded that typical readout
sizes K? be of that magnitude in real neural populations (as suggested, e.g., by [8]), it is also
possible that they are larger. In this case, the only way to estimate the readout parameters is to
make specific assumptions about the nature of the full population activity. In turn, the extrapo-
lated results will depend on these assumptions.

Singular value analysis of the linear readout. To investigate the underlying issues, and to
explain why there is no “natural” extrapolation, we will study how the indicators Z, ��q, and V
defined above evolve as a function of the number of neurons K used for the readout. For sim-
plicity, we assume a fixed choice of (w, tR) and focus on the time-integrated neural activities �r i
(eq. 1). We also suppose that the decision noise σd ’ 0 is negligible. Finally, we consider alter-
native definitions for the indicators Z and ��q that simplify the following analysis. We define

Y ≔
s2
s

Z2 þ s2
s

; ð17Þ

Q≔
1

kðZÞ ��q þ s2
s h�b2

i ii; ð18Þ

where s2
s is the variance of the tested stimuli, i.e., s2

s ≔E½s2� � E½s�2. The sensitivity Y is simply
an inverse reparametrization of the JND, Z. More specifically, Y is the ratio between the signal-
related variance and the total variance (see Methods), which grows from zero (if Z =1) to one
(if Z = 0) as the readout’s sensitivity to the stimulus increases. As for Q, it is simply a conve-
nient linear rescaling of ��q.

Then, we re-express the population activity through a singular value decomposition (SVD)
(see Methods for details). Specifically, we write the time-averaged activity of neuron i for the q-
th presentation of stimulus s as

�rsqi ¼ �r0i þ
XM
m¼1

lmu
m
i v

sq
m ; ð19Þ

where �r0i is the trial-averaged activity of each neuron. This decomposition is best interpreted as
a change of variables, which re-expresses the neural activities f�rigi¼ 1...Ntot

in terms of a new set

The Scales of Perceptual Integration in the Brain

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004082 March 20, 2015 17 / 38



of variables, {vm}m = 1. . .M, which we will call the activations of the population’smodes. These
modes can be viewed as the underlying “patterns of activity” that shape the population on each
trial. Each modem has a strength λm > 0 which describes the mode’s overall impact on popula-
tion activity. We assume λ1 � . . .� λM, so we progressively include modes with lower
strengths (Fig. 7A). The vector um is the “shape” of modem and describes how the mode affects
the individual neurons. Finally, vsqm is the mode’s activation variable, which takes a different
(random) value on every trial q for a given stimulus s. The number of modesM is the intrinsic
dimensionality of the neural population’s activity. In real populations we may expectM< Ntot,
because neural activities are largely correlated.

Since the singular value decomposition is simply a linear coordinate transform, we can rede-
fine all quantities with respect to the activity modes. Of particular interest is the sensitivity of
each mode, which is the square of its respective tuning parameter, or (see Methods)

ym ¼ ss

XNtot

i¼1

l�1

m um
i
�bi

" #2

: ð20Þ

If the readout vector a is chosen optimally over the full population, the resulting percept’s sen-
sitivity will be a simple sum over the modes: Ytot = ∑m ym.

Fig 7. Readout properties as a function of ensemble size K. (A) The SVD decomposes population activity into a number of modesm with decreasing
powers l2m. (B) Each modem has a sensitivity to stimulus, ym. Red bars: individual sensitivities, black dots: cumulative distribution. (C) The fractions �m(K)
describe the “proportion” of each mode which can be observed, on average, in random neural ensembles of size K. They are a function of the SVD
decomposition, but bear no analytical expression in general. (D) Mean sensitivity from neural ensembles of size K, empirically measured (blue) and predicted
with eq. 21 (green). The dashed black line indicates the optimal sensitivity, for a readout from the full population. (E) Same for the CC indicatorQ (eq. 22). All
panels computed from the spike counts �r of the 5000 simulated neurons, over the first 10 msec after stimulus presentation, on 3 × 3000 recording trials
(without correcting for measurement errors owing to the large dimensionality and limited number of trials).

doi:10.1371/journal.pcbi.1004082.g007
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The mode sensitivities and their cumulative sum for the simulated network above are
shown in Fig. 7B. Note the presence of a “dominant”mode for the sensitivity. This seems to be
a rather systematic effect, which arises because the definition of total covariance (Methods, eq.

50) favors the appearance of a mode almost collinear with �b. Even so, this dominant mode ac-
counted only for 71% of the population’s total sensitivity, so the residual sensitivity in the other
modes is generally not negligible.

Sensitivity and choice covariance as a function of the size K of the readout ensemble.
However, we wish to study the more general case where the readout is built from sub-ensem-
bles of size K. In such a case, not all modes are equally observable, and we rather need to intro-
duce a set of fractions, {�m(K)}m = 1. . .M, that express to what extent each modem is “observed”,
on average, in sub-ensembles E of size K (see Methods for a precise definition). Modes with
larger power λm tend to be observed more, so �m(K) globally decreases withm. Conversely,
�m(K) naturally increases with K. For the full population, �m(Ntot) = 1 for all modesm, meaning
that all modes are fully observed (see Fig. 7C; here, the mode observation fractions were empir-
ically computed by averaging over random neural sub-ensembles). Using these fractions, we
can analytically approximate the values of Y and Q which are expected, on average, if the read-
out is based on ensembles of size K:

hYiEðKÞ ’
XM
m¼1

�mðKÞym ; ð21Þ

hQiEðKÞ ’
1

hYiEðKÞ
XM
m¼1

�mðKÞyml2m : ð22Þ

Thus, the sensitivity hYiE grows with K as mode sensitivities ym are progressively revealed
by the fractions �m(K). The sensitivity reaches its maximum value, Y(Ntot) = Ytot, when �m(K) =
1 for all modesm with a nonzero ym (Fig. 7D). Conversely, hQiE decreases with K. Indeed, it

can be viewed as an average of the squared powers fl2

mg, each modem contributing with a
weight �m(K)ym. As �m(K) progressively reveals modes with lower power λm, this average
power is expected to decrease with K. Again, the minimum value is reached when all nonzero
ym are revealed (Fig. 7E).

The results for the simulated network in Fig. 7D-E illustrate that the approximations leading
to eq. 21–22 are well justified in practice. As for the third indicator used in Case 2, V, it can also
be expressed in the SVD basis (see Methods). However, being a second-order variance term, its
approximation based solely on the average fractions {�m(K)}, as in eq. 21–22, is generally poor.

The extrapolation problem revisited. What do these results imply in terms of extrapola-
tion to larger neural ensembles than those recorded by the experimenter? Arguably, eq. 21–22
constitute an interesting basis for principled extrapolations to larger sizes K. These equations
show that the evolution of Y and Q in growing ensembles of size K is mostly related to the in-
terplay between the modes’ sensitivity spectrum {ym} and their power spectrum {λm}. (Empiri-
cally, the observation fractions {�m(K)} seem primarily governed by the decay rate of {λm},
although the analytical link between the two remains elusive.) However, note that the spectra
{ym}, {λm} and {�m(K)} are generally not accessible to the experimenter—this would precisely
require to have recorded at least N>M neurons, and potentially the whole neural population
ifM = Ntot.

To extrapolate sensitivity hYiE(K) in ensembles of size K larger than those monitored, one
must (implicitly or explicitly) assume a model for {λm} and {ym}—which amounts to character-
izing the relative embedding of signal and noise in the full population [28]. A number of
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reasonable heuristics could be used to produce such a model. For example, one may assume a
simple distribution for {λm}, such as a power law, and estimate its parameters from recorded
data. Alternatively, it is often assumed that the noise covariance matrix is “smooth” with re-
spect to the signal covariance matrix, so that the former can be predicted on the basis of the lat-
ter [19, 29]. Finally, the extrapolation could rely on more specific assumptions about how
neural activities evolve, e.g., through linear dynamics with additive noise [30]. In all cases, the
additional assumptions impose (implicit) constraints on the structure of the spectra {λm} and
{ym}.

However, most likely, any chosen model will be (1) difficult to fit rigorously on the basis of
experimental data, (2) subject to pathological situations when extrapolations fail to produce
the correct predictions. For example, one can imagine scenarios in which the most sensitive
modes (those with highest ym) correspond to very local circuits of neurons, independent from
the rest of the population, and thus invisible to the experimenter (see also [19]). Another path-
ological situation could be a neural network specifically designed to dispatch information non-
redundantly across the full population [31, 32], resulting in a few ‘global’modes of activity
with very large SNR—meaning high ym and low λm. As a result, extrapolation to neural popula-
tions larger than those recorded is never trivial, and always subject to some a priori assump-
tions. The most judicious assumptions, and the extent to which they are justified, will depend
on each specific context.

Discussion
We have proposed a framework to interpret sensitivity and choice signals in a standard model
of perceptual decision-making. Our study describes percept formation within a full sensory
population, and proposes novel methods to estimate its characteristic readout scales on the
basis of realistic samples of experimental data. Here, we briefly discuss the underlying assump-
tions and their restrictions, the possibility of further extensions, and the applicability to
real data.

The linear readout assumption
The readout model (eq. 2) used to analyze sensitivity and choice signals is an installment of the
“standard”, feed-forward model of percept formation [17, 19]. As such it makes a number of
hypotheses which should be understood when applying our methods to real experimental data.
First, it assumes that the percept ŝ is built linearly from the activities of the neurons—a com-
mon assumption which greatly simplifies the overall formalism (but see, e.g., [33] for a recent
example of nonlinear decoding). Even if the real percept formation departs from linearity, fit-
ting a linear model will most likely retain meaningful estimates for the coarse information
(temporal scales, number of neurons involved) that we seek to estimate in our work.

More precisely, the model in eq. 1–2 assumes that spikes are integrated using a kernel that is
separable across neurons and time, that is Ai(t) = ai h(t/w)/w. Theory does not prevent us from
studying a more general integration, where each neuron i contributes with a different time
course Ai(t). The readout’s characteristic equations are derived equally well in that case. Rather,
assuming a separable form reflects our intuition that the time scale of integration is somewhat
uniform across the population. This time scale, w, is then the one crucial parameter of the inte-
gration kernel. Although the shape h(t) of the kernel could also be fit from data in theory, it
seems more fruitful to assume a simple shape from the start. We assumed a classic square ker-
nel in our applications. Other shapes may be more plausible biologically, such as a decreasing
exponential mimicking synaptic integration by downstream neurons. However, given that our
goal is to estimate the (coarse) time scale of percept formation, our method will likely be robust

The Scales of Perceptual Integration in the Brain

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004082 March 20, 2015 20 / 38



to various simple choices for h. As a simple example, we tested our method, assuming a square
kernel, on data produced by an exponential readout kernel, and still recovered the correct pa-
rameters w, tR and K (data not shown).

Through the process of integration across time and neurons, each instant in time could be
associated to an “ongoing percept”, i.e., the animal’s estimate of stimulus value at current time.
In our model, the animal’s estimate at time tR serves as the basis for its behavioral report
(Fig. 2A), and we designate this single number ŝ as the “percept”. A second strong assumption
of our model is that this perceptual readout occurs at the same time tR on every stimulus pre-
sentation. In reality, there is indirect evidence that tR could vary from trial to trial, as suggested
by the subjects’ varying reaction times (RT) when they are allowed to react freely [34, 35]. In
such tasks, we expect the variations in tR to be moderate—because subjects generally react as
fast as they can—and we may even try to correct for fluctuations across trials by measuring
RTs. On the other hand, when subjects are forced to wait for a long period of time before re-
sponding, there is room for ample variations in tR from trial to trial, and the model presented
above may become insufficient.

As a first step towards addressing this question, we derived a more general version of the
characteristic equations 4–6 assuming that tR in eq. 1 is itself a random variable, drawn on each
trial following some probability distribution g(t) (supporting S1 Text). The main impact of this
modification is on CC curves, which become broader and flatter; essentially, the resulting curve
resembles a convolution of the deterministic CC curve by g(t) (Fig. 8A). This means that if a be-
havioral task is built such that tR can display strong variations from trial to trial, the methods
introduced above will produce biased estimates. In theory, this issue could be resolved by add-
ing an additional parameter in the analysis, to describe g(t) (see supporting S1 Text).

The decision model
The linear readout provides a percept ŝ on every trial. In principle, behavioral experiments
could be set up such that the subject directly reports this percept, so that c ¼ ŝ. Such experi-
ments could be treated completely without a decision model. However, almost all experiments
that have been studied in the past involve a more indirect report of the animal’s percept. In
these cases, some assumptions about how the percept is transformed into the behavioral report
c need to be made.

In the choice of a decision model, we have followed the logic of the classic random dot mo-
tion discrimination task [3], in which a monkey observes a set of randomly moving dots whose

Fig 8. Discussion. (A) If the extraction time tR varies strongly from trial to trial (with density g(t)), it leads to a flattening of CC signals (thick green curve)
compared to the case with deterministic tR (dashed green curve). (B) If a choice-related signal feedbacks into sensory areas, it leads to an increase of CC
signals (thick green curve) after the extraction time tR, compared to the case without feedback (dashed green curve).

doi:10.1371/journal.pcbi.1004082.g008
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overall motion is slightly biased towards the left (s< 0 in our notations) or towards the right
(s> 0). The monkey must then press either of two buttons depending on its judgment of the
overall movement direction. The simplest decision model assumes a fixed integration time
window, additive noise on the percept, ŝ, and an optimal binary decision. A slightly more so-
phisticated model, the “integration-to-bound”model, assumes that the integration time is not
fixed, but rather limited by a desired behavioral accuracy. This model requires variable readout
windows, rather than the fixed readout window assumed here, and will require further investi-
gation in the future.

In another classic task [2], the monkey must discriminate the frequencies s1 and s2 of two
successive vibrating stimuli on their fingertip. They must press either of two buttons depending
on whether they consider that s1 > s2 or not. In this task, the optimal behavioral model would
be c ¼ Hðŝ1 � ŝ2Þ. In reality, however, the monkey needs to memorize s1 for a few seconds be-
fore s2 is presented, so potential effects of memory loss may also come into play (see e.g. [36]
for a study of these problems).

More generally, behaving animals can display biases, lapses of attention, various exploratory
and reward-maximization policies that lead to deviations from the optimal behavioral model.
Choosing a relevant behavioral model is a connected problem that cannot be addressed here,
and that will vary depending on the task and individual considered. For most tractable behav-
ioral models, the predicted sensitivities and choice signals will ultimately rely on the quantities
introduced in this article.

The feedforward assumption
Finally, the standard model assumes that percept formation is exclusively feed-forward. The
activities ri(t) of the sensory neurons are integrated to give rise to the percept ŝ and the animal’s
choice c, yet the formation of this decision does not affect sensory neurons in return. Recent ev-
idence suggests that reality is more complex. By looking at the temporal evolution of CP signals
in V2 neurons during a depth discrimination task, Nienborg and Cumming (2009) evidenced
dynamics which are best explained by a top-down signal, biasing the activity of the neurons on
each trial after the choice is formed [20]. In our notations, the population spikes ri(t) would
thus display a choice-dependent signal which kicks in on every trial after time tR, resulting in
CC signals that deviate from their prediction in the absence of feedback (Fig. 8B).

What descriptive power does our model retain, if such top-down effects are strong? The an-
swer depends on the nature of the putative feedback. If the feedback depends linearly on per-
cept ŝ (and thus, on the spike trains), its effects are fully encompassed in our model. Indeed,
this feedback signal will then be totally captured by the neurons’ linear covariance structure
Cij(t, u), so that our predictions will naturally take it into account. On the other hand, if the
feedback depends directly on the choice c—which displays a nonlinear, “all-or-none” depen-
dency on ŝ—then it will not be captured by our model, and lead to possible biases. Even so, our
model would still apply if percept and decision were essentially uncoupled before the putative
extraction time tR, in which case one could simply compare true and predicted CC signals up
to (candidate) time tR (see Fig. 8B).

Undersampled neural populations
In most real-life situations, experimenters only have access to samples from a large, unknown
population, so they must resort to a statistical description of readout vector a. Our solution re-
lies on an assumption of restricted optimality, based on Fisher’s linear discriminant formula
(eq. 12). By assuming that readout is made optimally from some unknown neural ensemble E,
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we reformulated the problem of characterizing a in that of characterizing E, and could in turn
exploit the characteristic equations 4–6 statistically.

In real experiments, the true readout profile amay not match this description: most vectors
a do not implement optimal readout from a sub-ensemble. This potential discrepancy from the
true readout is inescapable, once we start representing a through a statistical model. However,
note that our model uses two distinct sources of non-optimality: (1) the size K of the readout
ensemble, which can be much smaller than the full population, and (2) the decision noise σd,
which adds a ‘global’ non-optimality to the readout. Arguably, by combining both factors, our
chosen model for a will be flexible enough to provide meaningful estimates when fit to
real data.

At present, the main limitation is likely to be the size of ensembles of neurons that have
been recorded simultaneously. Past work has often shown that small ensembles of neurons are
completely sufficient to account for an animal’s behavior [3, 37]. However, there is an inherent
trade-off between the number of neurons and the time scale of integration. One simple expla-
nation for the small sizes of previous readout ensembles is that the true readout time scales
used by subjects are much shorter. Unfortunately, as detailed above (Case 3), extrapolations
from a finite-size recording onto the whole population always come at the price of strong
additional assumptions.

However, as experimental techniques advance, and as the number of simultaneously re-
corded neurons reaches the number of neurons implied in the readout, we will eventually be
able to directly infer the readout parameters from the data. In this case, our method can readily
be tested on real data, and hopefully provide new insights into the nature of percept formation
from populations of sensory neurons.

Methods
The methods are organized as follows. First, we set our basic notations and definitions. Second,
we derive the characteristic equations of the model, both for the linear part and decision part.
Third, we detail the predictions in case of an optimal readout from some neural sub-ensemble
E. Fourth, we re-express these predictions in the basis of the population’s SVD modes. Finally,
we detail our methodology to empirically estimate the quantities used in this article, from limit-
ed amounts of experimental data. Tables 1–3 summarize the main variables and notations used
in the article.

Statistical notation
In the following, we generally deal with variables x that assume different values on different tri-
als. An example is the spike count of a single neuron. Trials in turn can be grouped by stimulus
s or choice c. We can make this explicit by writing xscq to denote the q-th trial in which the
stimulus was s and the subject’s choice was c. Given such a variable, we will write E[x] for its ex-
pectation value, i.e., for the hypothetical value this quantity would take if it could be averaged
over infinitely many trials. We will write E[xjs] for the expectation value conditioned on stimu-
lus s, i.e., for the expectation value computed over all trials in which the stimulus was s. A simi-
lar notation holds when conditioning on choices c. We note that for quantities that are already
conditional expectations, for instance, y(s) = E[xjs], their expectation value E[y(s)] will average
out the stimuli according to their relative probabilities, i.e., E[y(s)] = ∑s p(s)y(s). Thereby, each
stimulus s contributes to the expectation in proportion to the number of trials associated to it.
Then the notations are coherent, since we have E½E½xjs�� ¼ E½x�. Covariances are generically
defined as Cov[x, y] = E[xy] − E[x]E[y], and variances as Var[x] = Cov[x, x]. For vectorial
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quantities, we assume Cov[x, y] = E[x y>] − E[x]E[y>], and introduce the shorthand Cov[x]≔
Cov[x, x].

Experimental statistics of neural activity and choice
Classic measures in decision-making experiments can be interpreted as estimates of the first-
and second-order statistics of choice c and recorded spike trains ri(t), across all trials with a
fixed stimulus value s:

cðsÞ≔E½cjs�; ð23Þ

miðt ; sÞ≔E½riðtÞjs�; ð24Þ

Cijðt; u ; sÞ≔Cov½riðtÞ; rjðuÞjs�; ð25Þ

diðt ; sÞ≔Cov½riðtÞ; cjs�: ð26Þ
Here, ψ(s) is the psychometric curve,mi(t; s) is known as the PSTH, and Cij(t, u; s) as the
JPSTH. The choice covariance (CC) curve di(t; s) is our proposal for measuring each neuron’s
“choice signal”. Theoretically, the temporal signals in eq. 24–26 are well-defined quantities in
the framework of continuous-time point processes [38]. In practice, they are estimated by bin-
ning spike trains ri(t) with a finite temporal precision, depending on the amount of
data available.

From the psychometric curve, we also derive two simpler quantities: the animal’s just-no-
ticeable difference (JND), Z, and decision bias μd. We obtain them as the best (MSE) fit to the
following formula:

c sð Þ ¼ F
sþ md � s0

Z

� �
; ð27Þ

where F is the standard cumulative normal distribution. Zmeasures the inverse slope of the

psychometric curve (up to a scaling factor
ffiffiffiffiffiffi
2p

p
). The decision bias μd, when non-zero, repre-

sents a bias towards one button when s = s0. This formula for the psychometric curve arises
naturally when we model the decision task (see below).

Choice covariance and choice probability
Throughout the article, we consider the special case of a binary choice c = {0, 1}. In this case,
the variance of the choice conditioned on s is given by

s2
c ðsÞ≔Var½cjs� ¼ cðsÞð1� cðsÞÞ; ð28Þ

and a straightforward computation shows that

diðt ; sÞ ¼ s2
c ðsÞ E½riðtÞjs; c ¼ 1� � E½riðtÞjs; c ¼ 0�ð Þ: ð29Þ

(These formulas, and all those below, assume that the choice takes values 0 and 1. Any other bi-
nary parametrization should first be reparametrized to {0, 1}.)

The term in brackets is the difference between the two conditional PSTHs, computed only
from trials where the animal took one decision vs. the other (stimulus s keeping a fixed value).
This measure is sometimes used as a simpler alternative to choice probabilities [3]. In fact, CC
curves and CP curves can be analytically related if one assumes Gaussian statistics: see [19] or
supporting S1 Text.
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Simplified dependencies on the stimulus
The neural statistics in eq. 24–26 are defined conditionally for each stimulus s used in the task.
To ease the subsequent analysis, we assume that the activity of each neuron is well approximat-
ed by a time-varying, linear dependency on the stimulus s, and that Cij(t, u; s) is independent of
s. Consequently,

miðt ; sÞ ¼ m0
i ðtÞ þ biðtÞs;

Cijðt; u ; sÞ ¼ Cijðt; uÞ:

Since we are modeling a discrimination task, in which stimuli s display only small variations
around the central value s0, the linearity assumption seems reasonable. In turn, we can write

biðtÞ≔ @sE½riðtÞjs�: ð30Þ

We will refer to bi(t) as the neural tuning. More precisely, it is the slope of the neuron’s tuning
curve at each time point.

Naturally, actual data (even from a synthetic simulation) always somewhat deviate from this
idealized situation. In practice, we obtain the best fits for bi(t) and Cij(t, u) using linear regres-
sion, so that

biðtÞ ¼
E½smiðt; sÞ� � E½s�E½miðt; sÞ�

E½s2� � E½s�2 ; ð31Þ

Cijðt; uÞ ¼ E½Cijðt; u ; sÞ�: ð32Þ

Similarly, it is convenient to integrate the various CC curves di(t; s) (eq. 26) into a single CC
curve for each neuron, say di(t). There is no obvious choice for this simplification, because di(t;
s) has to change with s. For example, the CC signal is non-zero only if stimulus s and threshold
s0 are close enough for the animal to make occasional mistakes (this is reflected in eq. 29, since
s2
c ðsÞ tends to zero when the animal makes no mistakes). In the experimental literature, a com-

mon choice is to focus only on the CC curve at threshold, that is di(t) = di(t; s0). In experiments
with a limited number of trials, this has the inconvenience of losing the statistical power from
nearby stimulus values s that were also tested. We thus propose an alternative definition:

diðtÞ≔E½diðt ; sÞ�; ð33Þ

which exploits each stimulus s in proportion to the number of associated trials. In our model,
this averaging also limits the influence of the JND Z on the magnitude of CC signals: see eq.
45–46.

Derivation of the linear characteristic equations
The readout defined in eq. 1–2 is linear with respect to the underlying spike trains {ri(t)}. To
clarify the equations, let us introduce the temporal averaging kernel

kðt jw; tRÞ≔
1

w
h

tR � t
w

� �
; ð34Þ

where parameters w and tR are generally implicit. Then, the integrated spike counts from eq. 1
are simply �r i ¼

R
triðtÞkðtÞdt.
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Using this notation, eq. 2 becomes ŝ ¼ a0 þ
P

i

R
t
aikðtÞriðtÞdt. Thanks to the linear struc-

ture, the two first moments of ŝ can easily be developed:

E½̂sjs� ¼ a0 þ
X

i

ai

Z
t

E½riðtÞjs�kðtÞdt;

Var½̂sjs� ¼
X
ij

aiaj

Z
u

Z
t

Cov½riðtÞ; rjðuÞjs�kðtÞkðuÞdt du;

Cov½riðtÞ; ŝjs� ¼
X

j

aj

Z
u

Cov½riðtÞ; rjðuÞjs�kðuÞdu:

Given our various definitions (eq. 24–25), and after differentiating the first line with respect to
s, see eq. 30, we obtain:

@sE½̂sjs� ¼
X

i

ai

Z
t

biðtÞkðtÞdt ¼ a>�b; ð35Þ

Var½̂sjs� ¼
X
ij

aiaj

Z
u

Z
t

Cijðt; uÞkðtÞkðuÞdt du ¼ a> ��Ca; ð36Þ

Cov½riðtÞ; ŝjs� ¼
X

j

aj

Z
u

Cijðt; uÞkðuÞdu ¼ ½ �CðtÞa�i: ð37Þ

These are exactly the characteristic equations 4–6 from the main text, after introducing the fol-
lowing vectors and matrices:

�bi ≔
Z
t

biðtÞkðtÞdt; ð38Þ

�CijðtÞ≔
Z
u

Cijðt; uÞkðuÞdu; ð39Þ

��Cij ≔
Z
t

�CijðtÞkðtÞ dt; ð40Þ

�di ≔
Z
t

diðtÞkðtÞdt; ð41Þ

which simply correspond to the statistics of activity for the integrated spike counts �ri (eq. 1).

Indeed, �bi ¼ @sE½�r ijs� (tuning vector), ��Cij ¼ Cov½�ri;�r jjs� (noise covariance matrix), and
�di ¼ E½Cov½�r i; cjs�� (choice covariance vector). Given our assumptions above, the resulting
quantities are all independent of the stimulus s. Note though, that all quantities depend on the

readout parameters w and tR. Importantly, one can show that the noise covariance matrix ��C

scales as w−1, under mild assumptions (supporting S1 Text, section 2).

The decision model of a fine-discrimination task
To produce a binary choice, the (continuous) percept ŝ is fed into the decision model
c ¼ Hð̂s � s0 þ xdÞ, whereH is the Heaviside function, s0 is the (task-imposed) decision
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threshold, and ξd *N(μd, σd) is a Gaussian variable representing additional noise and biases.
The mean μd implements a possible bias towards one button when s = s0. The standard devia-
tion σd implements additional sources of noise in the animal’s decision process.

Using this decision model, and mild additional assumptions, we can relate the left-hand
sides of eq. 35–37 to experimental data. First, we assume that E½̂sjs� ¼ s, meaning that ŝ follows
s on average. (In statistical terminology, ŝ is an unbiased estimator of s.) Then, the left-hand
side of eq. 35 is simply equal to

@sE½̂sjs� ¼ 1: ð42Þ

Second, we assume that the distribution of r(t) (given s) is Gaussian. (In theory, this as-
sumption is violated at small time scales due to the binary nature of ri(t). But in practice this is
not an issue, as the spike trains always undergo some form of temporal integration afterwards.)
Then, ŝ (given s) is normally distributed, and eq. 36 ensures that its variance Var½̂sjs� is inde-
pendent of s (see Fig. 2B). In these conditions, the predicted formula for the psychometric
curve is exactly that of eq. 27, namely,

cðsÞ ¼ F
sþ md � s0

Z

� �
;

and the JND, Z, is given by the following expression:

Z2 ¼ Var½̂sjs� þ s2
d: ð43Þ

Furthermore, under the same assumptions, we can predict the CC curve for each neuron. We
use the following general result: for any bivariate normal variables (X, Y) and threshold t,
Cov[X,H(Y − t)] = Cov[X, Y]G(t; μY, σY), where G(�; μ, σ) is the normal density function. Here,
we take X = ri(t), Y ¼ ŝ þ xd and t = s0, to obtain:

diðt ; sÞ ¼ Gðs ; s0 � md;ZÞCov½riðtÞ; ŝjs�: ð44Þ
With di(t) defined as an average CC curve over tested stimuli (eq. 33), we finally obtain

diðtÞ ¼ kðZÞCov½riðtÞ; ŝjs�; ð45Þ

with kðZÞ ¼ E Gðs ; s0 � md; ZÞ½ �: ð46Þ
The final equation for CC signals (eq. 9) is obtained by combining eq. 37 and 45.

In many experimental setups, the averaging over stimuli s will ensure that κ(Z) has
only a mild dependency on its argument Z. Indeed, note the rough approximation
κ(Z)/ R

sdsG(s; s0−μd, Z) = 1, valid whenever the tested stimuli s are uniformly distributed
over a range of values comparable to Z. This is another practical argument for considering the
stimulus-averaged CC signal di(t), from eq. 33.

Signal, noise, and sensitivity
The just-noticeable difference (JND) and the sensitivity can be related to the variances of
signal and noise in the population. Here, we briefly review these relations. The variance of
any scalar variable x that changes from trial to trial can be decomposed in a signal term
s2
x ≔Var½E½xjs�� and a noise term Z2

x ≔E½Var½xjs��. Then, note that Var½x� ¼ s2
x þ Z2

x .
The noise term Zx defines the minimal level past which fluctuations in x can be attributed to

s rather than intrinsic noise—hence the term JND. When a decision is taken on the basis of var-
iable x, the JND governs the inverse slope of the corresponding psychometric curve (see eq.
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27). We also define the sensitivity of variable x as

Yx ≔
s2
x

s2
x þ Z2

x

; ð47Þ

which is simply the ratio of the signal to the total variance. The sensitivity Yx takes values be-
tween 0 and 1. It thus avoids singularities which may occur when Zx tends to 0 or +1.

We can also distinguish between signal-related and noise-related variance for the (time-av-

eraged) neural activities �r. The signal covariance matrix, ∑, noise covariance matrix, ��C, and
total covariance matrix, A, are given by the following relations:

S≔Cov E½�rjs�½ � ¼ Cov½ �mðsÞ� ¼ s2
s
�b�b> ð48Þ

��C ≔E Cov½�rjs�½ � ð49Þ

A≔Cov½�r� ¼ ��C þ s2
s
�b�b>: ð50Þ

The last equality is the classic decomposition of total covariance into noise and signal terms.
Note that ∑ is a rank-1 matrix, owing to the system’s assumed linearity wrt. stimulus s.

In turn, these matrices allow to compute the signal- and noise- variances for any weighted
sum of the neural activities. For our linear readout (with added decision noise ξd), we have
x ¼ a>�r þ xd , and thus:

s2
x ¼ a>Sa ¼ s2

s ða>�bÞ2; ð51Þ

Z2
x ¼ a> ��C aþ s2

d; ð52Þ

s2
x þ Z2

x ¼ a>Aaþ s2
d: ð53Þ

Optimal readout from a neural ensemble E

We now assume that the readout vector a has support only on some neural ensemble E. For-
mally, we introduce the K × Ntot projection matrixH(E), such that for i 2 E and every neuron j,

Hij(E) = δij. Then, the restrictions of vectors and matrices in neuron space, such as �b and ��C, to
ensemble E will be denoted by a subscript r (for restriction), so that

�br ≔H�b; ð54Þ

��Cr
≔H ��CH>: ð55Þ

Our principle of (restricted) optimality selects the readout vector a which maximizes the sig-

nal-to-noise ratio of the resulting percept ŝ. Since a>�b ¼ 1 (unbiased percept, eq. 35 and 42),
the signal variance is imposed to be s2

x ¼ s2
s (eq. 51). Under this constraint, optimality is

achieved by minimizing the noise variance a> ��Ca (eq. 52)—or equivalently, the total
variance a> A a (eq. 53). The solution, known as Fisher’s Linear Discriminant, is easily found

with Lagrange multipliers (either based on ��C or A):

ar ¼
ð ��CrÞ�1 �br

�b>
r ð ��CrÞ�1 �br

¼ ðArÞ�1 �br

�b>
r ðArÞ�1 �br

: ð56Þ
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The second formulation of ar, based on the total covariance matrix Ar, will prove more useful
when we turn to the SVD analysis. It also has the advantage of avoiding the singularity which

may occur when vector �br lies outside the span of matrix ��Cr. In that case one simply replaces
(Ar)

−1 by the (Moore-Penrose) pseudoinverse (Ar)
+.

When combining the optimal readout in eq. 56 with the equation for the JND (eq. 52), we
obtain the JND predicted by the model:

Z2 ¼ �b>
r ð ��CrÞ�1 �br

� ��1

þ s2
d: ð57Þ

Equivalently, using the formulations based on total variance (eq. 47, 53, 56) we obtain the mod-
el’s prediction for sensitivity:

Y ¼ s2
s

�b>
r ðArÞ�1 �br

� ��1 þ s2
d

: ð58Þ

CC signals for the optimal readout
When combining the optimal readout in eq. 56 with the characteristic equation for the CC
curves (eq. 9), we obtain the CC curves predicted by the model,

diðtÞ ¼ kðZÞ Z2 � s2
d

� �
�C irðtÞð ��CrÞ�1 �br : ð59Þ

Here, di(t) is the resulting, predicted CC curve for every neuron i in the population (not only in

ensemble E). Note that �C irðtÞ is the restriction of vector �C iðtÞ (eq. 39) to neurons j 2 E, but
that i = 1. . .Ntot still runs over all neurons. Equation 59 can also be expressed in its temporally-

integrated form, using the definition
R
t
�CðtÞkðtÞdt ¼ ��C:

�di ¼ kðZÞ Z2 � s2
d

� � ��C ir ð ��CrÞ�1 �br : ð60Þ

If neuron i belongs to the readout ensemble E, matrix ��Cr simplifies away from eq. 60, yielding:

�d ðEÞ
i ¼ kðZÞ Z2 � s2

d

� �
�bðEÞ
i : ð61Þ

This equation, first shown in [19], means that choice signals within the readout ensemble are
simply proportional to tuning. This is not true, however, for neurons outside the
readout ensemble.

This has two important implications. First, it proves that choice signals are markedly differ-
ent for neurons inside or outside the readout ensemble (an observation made empirically by
[12]). Second, as we consider readout ensembles E larger and larger, eq. 61 will become true for
more and more neurons. As a result the statistical indicator V (eq. 15), which measures the

population-wide deviation from linearity between �di and �bi, is expected to decrease with the
readout ensemble’s size K.

Finally, under the assumption of (restricted) optimality, the time-averaged statistical indica-
tor ��q is always positive. Indeed, averaging over all neurons i in the population is akin to a scalar

product: ��q ¼ h�bi
�diii ¼ N�1

tot
�b>�d. Using this relation and eq. 60, we get

��q ¼ N�1
tot kðZÞ Z2 � s2

d

� �
�b> ��CH>ð ��CrÞ�1

H
� �

�b ; ð62Þ

which is always positive because both matrices ��C andH>ð ��CrÞ�1
H are symmetric semi-

definite positive.
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Singular value decomposition
We denote the time-averaged activities of neuron i in the q-th presentation of stimulus s as �rsqi .
We interpret these activities as a very large Ntot × Omatrix, where Ntot refers to the number of
neurons and O to an idealized, and essentially infinitely large number of trials.

Next, we consider the singular value decomposition (SVD) of the neural activities. The
(compact) SVD is a standard decomposition which can be applied to any rectangular matrix R.
It is given by R = U Λ V>, where Λ is anM ×M diagonal matrix with strictly positive entries
λm (the singular values), U is an Ntot ×Mmatrix of orthogonal columns (meaning U> U =
IdM), and V is an O ×Mmatrix of orthogonal columns (meaning V> V = IdM).

Using the indices defined above, the SVD decomposition for the neural activities becomes

�rsqi ¼ �r0i þ
XM
m¼1

lmu
m
i v

sq
m ; ð63Þ

where �r0i is the average activity of each cell over all trials and stimuli. The orthogonality of U
implies that for all indicesm and n, we have

P
iu

m
i u

n
i ¼ dmn, while the orthogonality of V simi-

larly implies
P

sqðvsqmvsqn Þ ¼ dmn.

Statistics of activity, in the space of modes
The SVD decomposition (eq. 63) is best interpreted as a change of variables re-expressing neu-
ral activities f�rsqi gi¼1...Ntot

in terms of mode appearance variables fvsqmgm¼1...M . As a result, we can

define the respective equivalents of all statistical quantities in the space of activity modes. Spe-
cifically, we can reinterpret sums over trials in the SVD as expectations, thus emphasizing the
statistical interpretation of the SVD. First we note that �r0i ¼ E½�rsqi � for all neurons i, so that the
data for the actual SVD has been “centered”. This centering implies for all modesm that

E½vsqm � ¼ 0; ð64Þ

E½vsqm js� ¼ Zm s� E½s�ð Þ; ð65Þ

where ηm is the tuning parameter of them-th mode, just as �bi was the tuning parameter for the
i-th neuron. Grouping all mode appearance variables in a vector v, we obtain the signal covari-
ance and total covariance matrices in mode space as

Sv ≔Cov E½vjs�½ � ¼ Cov½Zs� ¼ s2
s ZZ

>; ð66Þ

Av :¼ Cov½v� ¼ E½vv>� ¼ IdM: ð67Þ
where the last relation follows from the orthogonality of V explained in the previous section.
The singular values λm and distribution vectors um then allow us to relate the statistics at the
levels of neurons and modes. Using the SVD formula (eq. 63) yields (in matrix form):

�b ¼ ULZ; ð68Þ

A ¼ UL2U>: ð69Þ

Sensitivity of sub-ensembles, in the space of modes
We now wish to understand which factors govern the sensitivity embedded in a neural sub-en-
semble E of cardinality K. For simplicity, we will consider the case for which the decision noise
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is negligible, i.e., σd ! 0. Then, from eq. 58, we have

Y ¼ s2
s
�b>
r ðArÞþ�br : ð70Þ

Here we use explicitly the most general formula, based on the pseudo-inverse of matrix Ar. To
re-express this sensitivity of finite sub-ensembles E into mode space, we need to find the equiv-
alent, restricted expressions of eq. 68–69. For that purpose, we introduce the design matrix as-
sociated to ensemble E in mode space:

X≔LU>H>; ð71Þ

whereH is the restriction operator from eq. 54. X is anM × Kmatrix with elements

xmi ≔ lmu
m
i . Using this matrix, we obtain from eq. 68–69 that �br ¼ X>Z and Ar = X> X, so

that eq. 70 becomes

Y ¼ s2
s Z

>XðX>XÞþX>Z

¼ s2
s Z

>PZ;
ð72Þ

where we have defined theM ×Mmatrix

P≔XðX>XÞþX>: ð73Þ

Note that P is simply the orthogonal projector on ImðXÞ, since P = P2 = P>, and Im(P) = Im(X).
The projector P = P(E) spans more and more space as the size K of ensemble E increases. In

the limiting case, when K is larger than the number of modesM, then necessarily P = IdM, and
we obtain

Ytot ¼ s2
sZ

>Z ¼
XM
m¼1

s2
s Z

2
m: ð74Þ

In other words, all modes are available experimentally, and sensitivity estimates saturate to
their maximum value, independently of ensemble E. We can explicitly denote the sensitivity of
each mode’s activation variable vm by defining

ym ≔ s2
sZ

2
m: ð75Þ

By solving eq. 68 for η, we obtain Zm ¼ P
il

�1

m um
i
�bi, which in turn yields eq. 20 from the main text.

CC signals, in the space of modes
Similarly, we can express CC signals in mode space. First, we re-express the CC equation
(eq. 10) as a function of the total covariance A (eq. 50) to obtain

�d ¼ kðZÞ ��C a

¼ kðZÞ ðA� s2
s
�b�b>Þa:

We further recall that a>�b ¼ 1 (unbiased percept, see eq. 35 and 42). Hence, up to a scaling

and shift, the CC vector �d can be replaced by the total percept covariance vector

e≔Aa ¼ kðZÞ�1 �d þ s2
s
�b: ð76Þ

In the case of an optimal readout, vector a is given by eq. 56, so that we obtain

e ¼ AH>Aþ
r
�br

�b>
r ðArÞþ�br

: ð77Þ
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Second, using the corresponding sensitivity Y (eq. 70), and the SVD expressions for A and �b

(eq. 68–69), and for Ar and �br as a function of matrix X (eq. 71), we write:

e ¼ s2
s Y

�1AH>Aþ
r
�br

¼ s2
s Y

�1 ULXðX>XÞþX>Z

¼ s2
s Y

�1 ULPZ:

ð78Þ

Here also, the final result can be expressed as a function of P, the projection matrix associated
to ensemble E in the space of modes (eq. 73). Note again that e provides the CC signal for every
neuron i in the population (not only in ensemble E). As E tends to the full population, P = P(E)

tends to IdM and we recover eð1Þ ¼ s2
s Y

�1
tot

�b, the prediction for choice signals in the case of a
(globally) optimal readout [19].

Using eq. 78, we can finally compute the analytical predictions for the two CC statistical in-
dicators, ��q and V. Precisely, we compute the following population-wide regression coefficient

between e and �b:

Q ≔ hei�biii
¼ N�1

tot
�b>e

¼ s2
s N

�1
tot Y

�1 Z>LU>ULPZ

¼ s2
s N

�1
tot Y

�1 Z>L2PZ:

ð79Þ

Again, we made use of the SVD expressions for �b (eq. 68) and e (eq. 78). Note that, since e is a line-

ar rescaling of �d,Q is a similar rescaling of indicator ��q, as pointed in the main text (eq. 18). Finally,
a very similar computation leads to the expression of indicator V (eq. 15) in the space of modes:

V ¼ kðZÞ2 N�2
tot s4

s Y
�2 Z>L2 ZZ>P�PZZ>ð ÞL2PZ: ð80Þ

Sensitivity and CC signals as a function of K
We are now better armed to understand how sensitivity and CC indicators vary as a function
of the readout ensemble E. We are mostly interested in averages of these quantities over very
large numbers of randomly chosen ensembles E of size K; we thus use the generic notation
E[xjK]≔E[x(E)jCard(E) = K] to denote the expected value of a variable x when averaging over
ensembles of size K. Note that this notation is equivalent to the more explicit notation used in
the main text, so that E[xjK] = hxiE(K). From eq. 72 we find: E½Y jK� ¼ s2

s Z
> E½PjK� Z.

To understand the properties of the (M ×M) matrix E[PjK], we view the (M × K) design
matrix X(E) (eq. 71) as a collection of K random vectors xi in mode space, viewing neuron
identities i as the random variable. Thus, P(E) is the orthogonal projector on the linear span of
the K sample vectors {xi}i 2 E. As a projector, its trace is equal to its rank, so we have
TrðE½PjK�Þ ¼ K . Furthermore, since K+1 samples span on average more space than K sam-
ples, we are ensured that E[P j K+1] ≽ E[PjK], in the sense of positive semidefinite matrices.

Finally, intuition and numerical simulations suggest that E[PjK] is almost diagonal. Indeed,
as the various modes are linearly independent, there is no linear interplay between the different
dimensions of xi across samples i. More precisely, the expectation value over neurons is

hxmi xni ii ¼ N�1
totl

2
md

mn. This leads to the matrix expression:

E½XX>jK� ¼ KN�1
tot L

2:
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Let us consider the (compact) SVD decomposition X X>≔WDW>, withW> W = Id, andD
an invertible diagonal matrix. Then, the projection matrix P is simply equal toWW>. As for
the previous equation, it rewrites

E½WDW>jK� ¼ KN�1
tot L

2:

Here, both matrices D and Λ are diagonal. So, if we assume a form of independence between
W andD, it is reasonable to suppose that E[WW>jK] = E[PjK] is close to diagonal as well.
(Actually, we postulate that E[PjK] is exactly diagonal when the random vectors xi follow a
normal distribution. In the general case, small or moderate deviations from diagonality can be
observed.) We denote these diagonal terms as

�ðKÞ≔ diagðE½PjK�Þ: ð81Þ
The properties of E[PjK] stated above imply that ∑m �m(K) = K (trace property), and �m(K+1)
� �m(K) (growth property). Finally, we can consider the resulting approximations of sensitivity
(eq. 72) and CC indicator (eq. 79):

E½Y jK� ’ s2
s

XM
m¼1

�mðKÞZ2m; ð82Þ

E½YQjK� ’ N�1
tot s

2
s

XM
m¼1

�mðKÞl2

mZ
2
m: ð83Þ

In this expression, we recognize the individual mode sensitivities ym ¼ s2
s Z

2
m. For CC signals,

we also make the approximation E[YQjK]’ E[YjK]E[QjK], and recover eq. 21–22 from the
main text. Unfortunately, there is no such simple approximation for indicator V, that would
lead from eq. 80 to E[VjK].

Validation on a simulated neural network
In this final part of the Methods, we provide additional information for applying our inference
method (Case 2) to experimental data. The neural network used to test our methods is de-
scribed in detail in supporting S1 Text (section 3). Briefly, on each trial, 2000 input Poisson
neurons fire with rate s, taking one of three possible values 25, 30 and 35 Hz (so in our simula-
tion, stimulus units are Hz). The encoding population per se consists of 5000 leaky integrate-
and-fire (LIF) neurons. 1000 of these neurons receive sparse excitatory projections from the
input Poisson neurons, which naturally endows them with a positive tuning to stimulus s. An-
other 1000 neurons receive sparse inhibitory projections from the Poisson neurons, which nat-
urally endows them with negative tuning. The remaining 3000 neurons receive no direct
projections from the input. Instead, all neurons in the encoding population are coupled
through a sparse connectivity with random delays up to 5 msec. Synaptic weights are random
and balanced, leading to a mean firing rate of 21.8 Hz in the population. We implemented and
simulated the network using Brian, a spiking neural network simulator in Python [39].

The “true” perceptual readout from this network was built from a fixed random set of K? =
80 neurons, with temporal parameters w? = 50 msec and t?R ¼ 100msec, and decision noise
s?
d ¼ 1 stimulus units (Hz). The readout vector a? was built optimally given these constraints

(eq. 12). The trials used to learn a? were not used in the subsequent analysis. The resulting JND
for the “animal” was Z? 	 3 stimulus units (Hz).

Then, “experimentally”, neural activity was observed through 15 pools of 170 simultaneous-
ly recorded neurons, each pool being recorded on 3 × 180 trials. For the statistical inference
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method, we assumed a square integration kernel h. We tested all combinations of the following
readout parameters (in matrix notation): K = 10:10:150 neurons, w = 10:10:100 msec, tR =
10:10:200 msec, σd = 0:0.25:3 stimulus units (Hz). For each tested size K, we picked 2000 ran-
dom candidate ensembles E (always within one of the 15 simultaneous pools) to build the pre-
dictions. For each ensemble E, another ensemble I of 20 neurons, segregated from E, were used
to predict CC signals outside the readout ensemble (this was always possible since recording
pools had size 170, and K� 150). The details of these predictions are explained in the following
paragraph. Finally, the three terms in the “statistical” loss function (eq. 16) were weighted ac-
cording to the power of the respective, true measures. That is:

l ¼ Z?ð Þ4RR
dt du q?ðu; tÞð Þ2 and m ¼ Z?ð Þ4

V?ð Þ2 :

Experimental predictions for CC indicators
Here, we detail how to compute the CC indicators q(u, t) and V (eq. 14–15) from actual data.
For themeasured versions q?(u, t) and V?(w, tR), this is straightforward. One considers the
true,measured CC signals d?

i ðtÞ, and computes the population averages in eq. 14–15 over as
many neurons i as were recorded. Note however that the final indicators can be corrupted by
noise, whenever each measure d?

i ðtÞ comes from too few recording trials (this problem is ad-
dressed in the next section). Also note that, since the definition of V requires a temporal inte-
gration, we actually have to produce a different “true” V? for each tested set of temporal
parameters w and tR.

Conversely, special care must be taken when it comes to predicted CC indicators. Whenever
a candidate ensemble E is proposed as the source of the readout, eq. 59 predicts the resulting
CC signal di(tjE) for every neuron i in the population. However, in practice, the noise covari-

ance term �C irðtÞ is required in the computation, so neuron i and ensemble Emust have been
recorded simultaneously during the same run. This limits the number of neurons i which can
participate in the population averages.

Furthermore, choice covariances will generally differ between neurons that are part of the
readout ensemble and neurons that are not (see eq. 61 and the associated discussion). As a re-
sult, the two following averages must be predicted separately:

qEðu; t jEÞ≔ hbiðuÞdiðtjEÞii2E ; ð84Þ

qoutðu; t jEÞ≔ hbiðuÞdiðtjEÞii=2E ; ð85Þ

before one can recombine them in the correct proportions:

p Eð Þ≔ K
Ntot

; ð86Þ

qðu; t jEÞ ¼ pðEÞqEðu; t jEÞ þ 1� pðEÞð Þqoutðu; t jEÞ; ð87Þ

and similarly for V(E). To compute qout experimentally, each tested candidate ensemble E (of
size K) is associated to a complimentary set of neurons I (of size I), which we use to approxi-
mate the average in eq. 85:

qIðu; t jEÞ≔ hbiðuÞdiðtjEÞii2I : ð88Þ

The Scales of Perceptual Integration in the Brain

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004082 March 20, 2015 34 / 38



All neurons in ensembles E and Imust have been recorded during the same run, which im-
poses that I+K� N. Hence in our simulations, we chose a size I = 170−150 = 20 neurons.

Clearly, 20 neurons is not sufficient for qI to be a reliable population average. So in practice,
we cannot estimate reliably each prediction q(u, t jE) from eq. 87. Luckily, we are not interested
in their value for each individual readout ensemble E. We simply need to estimate their means
across all tested ensembles E of similar size:

hqðu; tÞiE ≔ hqðu; tjEÞiE with Card ðEÞ¼K ð89Þ

hViE ≔ hVðEÞiE with Card ðEÞ¼K ð90Þ

which will be reliable as soon as we test a sufficient amount of candidate ensembles E.
Note that in the final inference (eq. 16), a match is sought between the true indicators q?

and V?—which arise from a single readout ensemble E?, and the predictions hqiE and hViE —

which are average values across all readout ensembles E of size K. Thus, a prediction error can
occur whenever the true readout ensemble E? is not a “typical” representative of its size K?. To
quantify these potential errors, one should also estimate the indicators’ variance across ensem-
bles E of same size.

Correcting for the finite amounts of data
The computations of Z, q and V, as described above, can produce imprecise results when the
data are overly limited. Generically, for any quantity X estimated from the data, we can write

Xnoisy ¼ Xideal þ x;

where ξ represents the measurement error on X due to the finite amounts of data. If we could
recompute X from a different set of neurons and/or a different set of trials, variable ξ would
take a different value—meaning that Var(ξ)> 0. This is an inescapable phenomenon for
experimental measures.

More problematically, variable ξ can display a systematic bias, meaning that E(ξ) 6¼ 0. Since
the bias is generally different for the ‘true’ and ‘predicted’ versions, the comparison between
the two (eq. 16) will be systematically flawed. To counteract this effect, we applied a number of
correction procedures when computing indicators Z, q and V, to ensure that they are globally
unbiased. We only provide an overview here, and refer to supporting S1 Text for a detailed
description.

First, when the optimal vector a is computed with Fisher’s linear discriminant, it systemati-
cally underestimates the JND Z (overestimates the sensitivity Y). Essentially, vector ar comput-

ed through eq. 12 finds artificial “holes” in matrix ��Cr which are only due to its imprecise
measurement—a phenomenon known as statistical overfitting. The less recording trials, the
more overfitting there will be [40, 41]. We addressed this problem with a regularization tech-
nique, inspired by Bayesian linear regression [42]. We replaced eq. 12 by the following:

ar ¼
ð ��Cr þ lIdÞ�1 �br

�b>
r ð ��Cr þ lIdÞ�1 �br

;

where the strength of parameter λ imposes the degree of regularization. We chose λ according
to an ‘empirical Bayes’ principle, to maximize the likelihood of the data under a given statistical
model (supporting S1 Text, section 4). It largely mitigated the effects of overfitting, without to-
tally suppressing them—as can be seen in Fig. 5D-E.
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Second, indicator V (eq. 15) can also display substantial biases (E(ξ) 6¼ 0 in the above discus-

sion). Indeed, its computation relies on squared quantities—such as �d2
i or ��q

2—that systemati-
cally transform measurement errors into positive biases. The required corrections are very
similar to the classic “N/(N−1)” correction for the naive variance estimator, with the additional
difficulty that V is affected by two sources of noise: the finite number of recording trials, and
the finite number of recorded neurons. The exact corrections to ensure an unbiased estimation
of V are detailed in supporting S1 Text, section 5.

Third, indicator q(u, t) displays little or no measurement bias—because its computation is
essentially linear. Yet, it can display an important level of measurement noise (Var(ξ)
 0 in
the above discussion) that may deteriorate the subsequent inference procedure. We mitigated
this measurement noise by applying a bi-temporal Gaussian smoothing to q?(u, t) and predic-
tions q(u, t), with time constant 10 msec.

To estimate the measurement errors due to the finite number of trials, we produced 14 sets
of surrogate data by sampling our original trials with replacement (bootstrap procedure).
These resamplings were used to derive some of the correction terms for V, and also to derive
confidence intervals on our final estimators, as shown in Fig. 6. This departure from the statis-
tical canon was imposed by the length of the whole inference procedure (see supporting S1
Text, section 5, for details).

Reproduction of our results and implementation
In the Supporting Information, we provide a generic implementation of the inference method
(“Case 2” above) in MATLAB, which can be applied to any data from a 2AFC discrimination
task. We also provide the Python code for the network simulation, and MATLAB scripts for
the reproduction of the experimental Figures in this article (Fig. 4–7).

Supporting Information
S1 Text. Supporting text. Contains additional information about Choice Probabilities (section
1), the influence of parameter w on stimulus sensitivity (section 2), the encoding neural net-
work used for testing the method (section 3), the Bayesian regularization procedure on Fisher’s
linear discriminant (section 4), unbiased computation of CC indicators in the presence of mea-
surement noise (section 5), and an extended readout model with variable extraction time tR
(section 6).
(PDF)

S1 Compressed file archive. Supporting code for the article.
(GZ)
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