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EQUIVARIANT CORRESPONDENCES AND THE
BOREL-BOTT-WEIL THEOREM

HEATH EMERSON AND ROBERT YUNCKEN

Abstract. We prove an analogue of the Borel-Bott-Weil theorem in equivari-
ant KK-theory by constructing certain canonical equivariant correspondences
between minimal flag varieties G/B, with G a complex semisimple Lie group.

1. Introduction

Let G be a complex semisimple Lie group and B ⊂ G a minimal parabolic
subgroup. Let µ be a weight for G and Eµ the corresponding induced holomorphic
line bundle on the flag manifold X = G/B. The Dolbeault cohomology group
H∗(X,Eµ) with its canonical action of G, is a graded-finite-dimensional representa-
tion of G, and, more relevantly for us, of its maximal compact subgroup K ⊂ G.
The Borel-Bott-Weil Theorem computes this representation [4].

Bott’s key observation was that there is a Weyl-group symmetry in the solution
to the problem: if the weights µ and µ′ are in the same orbit of the shifted Weyl
group action, then H∗(X,Eµ) and H∗(X,Eµ′) are equal, up to a shift in degree. In
this paper, we will look at this symmetry from the point of view of correspondences
in geometric equivariant K-theory.

The bridge between Dolbeault cohomology and K-theory is provided by index
theory of elliptic operators: H∗(G/K,Eµ), as a virtual K-representation, is the
same as the K-index IndexK [∂̄]µ ∈ R(K), in the sense of Atiyah and Singer [1], of
the Dolbeault operator twisted by Eµ. From the point of view of Kasparov theory,
[∂̄]µ is a class in the K-equivariant K-homology KKK(G/B,C) of G/B. This R(K)-
module is acted on by the bivariant group KKK(G/B,G/B), for which a topological
model was developed in [6] using the theory of equivariant correspondences. The
correspondence theory is the main tool used in this work. We consider certain
canonical correspondences Λ(w), parameterized by the elements of the Weyl group
W , compute how these correspondences act on equivariant K-homology, and relate
it to the Borel-Bott-Weil theorem.

Let h be a Cartan subalgebra of the Lie algebra g of G and ΓW ⊂ h∗ the lattice
of weights. Let ∆+ be a set of positive roots for G, which brings with it a generating
set of simple reflections for the Weyl group W and a corresponding word length
function l : W → N. Up to conjugacy, the minimal parabolic subgroup B ⊂ G is
the subgroup with Lie algebra b = h⊕

⊕
α∈∆+ gα, where gα is the α-root space of

the Lie algebra of G.
Let [G/B]µ ∈ KKK(C(G/B),C) =: KK

0 (G/B) be the class of the Dolbeault
operator on G/B twisted by the K-equivariant line bundle Eµ. Let ρ := 1

2
∑
α∈∆+ α

be half the sum of the positive roots. The following theorem is essentially due to
Bott.
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Theorem 1.1. In the above notation, for any weight µ of G and any w ∈W , the
identity

IndexK [G/B]µ = (−1)l(w)IndexK [G/B]w(µ+ρ)−ρ

holds in R(K) = KKK(C,C).

The focus of this article is the KK-theory which lies behind Theorem 1.1. We
show how to prove Theorem 1.1 using the theory [6] of equivariant correspondences.
For a verification of the Weyl character formula using similar techniques, see the
paper [3].

The Weyl group element w conjugates the subgroup B to another minimal
parabolic subgroup Bw. The homogeneous space G/B∩Bw admits a pair of natural
K-equivariant holomorphic fibrations to G/B and G/Bw. Since the latter space is
K-equivariantly biholomorphic to G/B, we have realized G/B∩Bw as a holomorphic
fibred space over G/B in two different ways. In fact, in each case G/B ∩ Bw is
K-equivariantly biholomorphic to the total space of a complex vector bundle over
G/B. Using the Thom class τ(qw) associated to the latter of these fibrations we
get a K-equivariant holomorphic correspondence

G/B
pw←−− (G/B ∩Bw, τ(qw)) qw−−→ G/Bw ∼= G/B

from G/B to itself. This yields an element of k̂kK(G/B,G/B) which we denote by
Λ(w) and call the Borel-Bott-Weil morphism with parameter w ∈W .

The main result of the paper is the following.

Theorem 1.2. (Borel-Bott-Weil product formula). For any weight µ and w ∈W ,
the identity

(1.3) Λ(w)⊗G/B [G/B]µ = (−1)l(w)[G/B]w(µ+ρ)−ρ ∈ KKK(G/B, ?),

holds, where Λ(w) is the Borel-Bott-Weil morphism with parameter w.

This easily implies the analogue Theorem 1.1 of the Borel-Bott-Weil theorem
above.

Remark 1.4. The ring KKK(G/B,G/B) is computed explicitly in [3], see also [9].
We will see that the class Λ(w) above corresponds to the class which is referred to
as the “intertwiner” Iw in [3].

We close by noting that we can replace K-equivariance by G-equivariance in
Theorem 1.1, using the Baum-Connes conjecture. Classically, the Borel-Bott-Weil
theorem is a statement about holomorphic (non-unitary) representations of non-
compact groups. Kasparov theory does not admit such representations. Instead,
equivariant Kasparov theory for non-compact groups uses unitary, but possibly
infinite-dimensional representations, and almost-equivariant Fredholm operators;
these are the cycles for the Kasparov representation ring KKG(C,C). There is a
restriction map

KKG(A,B)→ KKK(A,B)
when K ⊂ G is a maximal compact subgroup as above, by forgetting G-equivariance
to K-equivariance on cycles. The Baum-Connes apparatus shows this map is an
isomorphism when A has the form A = C(G/B)⊗A′ for some G-C*-algebra A′; this
follows from a theorem of Tu [10]. Since all the analytic Kasparov classes defined by
us have this form, Theorems 1.1 and 1.2 have their counterparts with K replaced
by G.
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2. Preliminaries

2.1. Equivariant correspondences. The environment in which the calculations
of this paper will take place is the topological model for equivariant Kasparov theory
developed in [6]. We refer the reader to this article for details on the framework. All
correspondences used in this paper will be smooth, which simplifies the definitions.
Let K be a compact Lie group and let X and Y be smooth K-manifolds, i.e.,
smooth manifolds with smooth actions of K. A smooth correspondence is given by
a quadruple (M,f, b, ξ) where

• M is a smooth K-manifold,
• f : M → Y is a smooth K-equivariantly K-oriented map,
• b : M → X is a smooth K-equivariant map, and
• ξ ∈ RK∗K,X(M) is a smooth K-equivariant K-theory class with compact
support along the fibres of b (in the terminology of [6], a K-theory class
with M -compact support).

We usually use the notation

X
b←− (M, ξ) f−→ Y,

as in [5] (the origin of the theory) to denote the quadruple above.
Note that ifX is compact (the case throughout in this article), then RK∗K,X(M) =

K∗K(M), the ordinary, compactly supported, K-equivariant K-theory of M .
The degree of the correspondence is the sum of the degrees of ξ and of f .
Equivalence classes of equivariant correspondences make up the morphisms in

the additive category k̂kK explained in [6]; there is a natural transformation
k̂kK → KKK to the usual analytic equivariant Kasparov category, inducing an
isomorphism k̂kK(X,Y )→ KKK(X,Y ) ifX is a normally non-singular K-manifold,
that is, if X admits a smooth, K-equivariant embedding into a finite-dimensional
representation of K. A smooth K-manifold of finite orbit type is automatically
normally non-singular, and in particular, all smooth, compact K-manifolds are
normally non-singular. All concrete K-manifolds we meet in this paper are normally
non-singular.

We generally operate in the category k̂kK in this paper.
For any pair of K-spaces X and Y , k̂kK∗ (X,Y ) denotes the abelian group of

equivalence classes of equivariant correspondences from X to Y , graded by parity of
degree.

Two standard examples of k̂kK-classes are important; to fix notation, we recall
them.

Example 2.1. If b : Y → X is a proper K-equivariant map, we define

b∗ :=
[
X

b←− (Y,1Y ) id−→ Y
]
,

where 1Y is the class of the trivial line bundle Y × C, the unit in RK∗K,X(Y ) =
RK∗K(Y ).

Example 2.2. If Φ is an equivariantly K-oriented smooth map from X to Y , where
X and Y are smooth K-manifolds, we define the wrong-way class of Φ as

Φ! :=
[
X

id←− (X,1X) Φ−→ Y
]
,

where 1X is the class of the trivial line bundle E × C in RK∗K(X).

By a complex K-manifold we shall mean a smooth complex manifold X equipped
with a holomorphic action of K. The tangent bundle TX has a canonical K-
equivariant complex structure and a corresponding K-equivariant K-orientation.
This supplies an equivariant K-orientation on the map from X to a point. The
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corresponding wrong-way class is called the (topological) fundamental class of X,
and denoted by [X]. Its image in KKK

0 (C0(X),C) is the class of the K-equivariant
Dolbeault operator on X.

Next, let M1,M2, Y be complex K-manifolds. Assume that both M1 and M2 are
normally non-singular K-manifolds.

Two smooth maps f1 : M1 → Y and b2 : M2 → Y are transverse if for every pair of
points m1 ∈M1 and m2 ∈M2 with f1(m1) = b2(m2), the map Tm1M1⊕Tm2M2 →
Tf1(m1)Y , (ξ1, ξ2) 7→ Dm1f1(ξ1) +Dm2b2(ξ2), is surjective. It is shown in [6] that
when transversality holds, the fibre product

M1 ×Y M2 := {(m1,m2) | f1(m1) = b2(m2)}

is itself a smooth K-manifold (of finite orbit type) and the projection pr2 : M1 ×Y
M2 →M2 inherits a canonical equivariant K-orientation from the K-orientation on
f1.

If f1 and b1 are holomorphic maps, the fibre product M1×Y M2 will be a complex
manifold, and the projection pr2 will be a holomorphic map; the corresponding
K-orientation agrees with the one described in the previous paragraph.

2.2. Complex semisimple Lie groups. Here we review some standard structure
theory for semisimple groups and fix notation for the remainder of the paper. For
details, see, for example, [8].

Let G be a complex connected semisimple Lie group and g its Lie algebra. Denote
by B() its Killing form. Let θ be a Cartan involution on g, so that

〈v, w〉 := −B(θ(v), w), v, w ∈ g

is a positive definite inner product on g; the archetypal example is the operation of
negative-conjugate-transpose on sln(C). The +1-eigenspace of θ is the Lie algebra k
of a maximal compact subgroup K of G.

Fix h, a θ-stable Cartan subalgebra. Let t = h ∩ k, which is the Lie algebra of a
maximal torus T in K. We have h = t⊕ a, where a = it, and we let A denote the
subgroup of G with Lie algebra a.

The set of roots will be denoted ∆, with gα denoting the root space of α ∈ ∆. We
fix a choice of positive roots ∆+, and recall that every positive root is a non-negative
integral combination of simple roots. The lattice of weights will be denoted ΓW , and
the dominant weights are those λ ∈ ΓW for which 〈λ, α〉 ≥ 0 for every positive root
α. We will frequently abuse notation by blurring the distinction between a weight
µ ∈ ΓW , the corresponding representation of T , and the corresponding holomorphic
representation of H = T ·A.

The Weyl group is W = NG(H)/ZG(H). We will frequently identify elements
w ∈ W with a lift to an element of NG(H) ⊆ G, at least when the choice of lift
makes no difference. The usual action of the Weyl group on weights will be denoted
by µ 7→ w(µ). Let ρ := 1

2
∑
α∈∆+ α be the half-sum of positive roots. We will often

refer to the shifted action of the Weyl group, which is the action:

(2.3) w : λ 7→ w(λ+ ρ)− ρ.

We fix the standard Borel subalgebra b := h ⊕ n, where n is the nilpotent
subalgebra n :=

⊕
α∈∆+ gα. The associated subgroups are denoted B and N . For

each element w of the Weyl group, there are conjugate subgroups

Bw := wBw−1, Nw := wNw−1

with corresponding Lie algebras bw and nw. We also define the Lie algebra n̄ :=
θn =

⊕
α∈∆+ g−α, as well as its conjugates n̄w := Ad(w)n̄ for each w ∈W .
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The flag variety ofG is the complex homogeneous spaceG/B. It isK-equivariantly
diffeomorphic to K/T via the map

ι : K/T
∼=−→ G/B; kT 7→ kB.

However, we shall try to distinguish the two spaces as much as possible. The
difference is technical but important: G/B, having a natural complex structure, is
canonically K-oriented, while K/T only inherits a K-orientation once it is identified
with G/B. Moreover, for any w ∈W , there is a K-equivariant diffeomorphism

ιw : K/T
∼=−→ G/Bw; kT 7→ kBw,

each inducing a different K-orientation on K/T . This technicality is of course
absolutely central to what follows.

3. The Borel-Bott-Weil theorem

3.1. Twisted Fundamental Classes. Let µ be a weight of G. As mentioned
above, it corresponds to a holomorphic representation of H, and one can extend it to
a holomorphic character of B which is trivial on N . We denote the one-dimensional
representation space by Cµ.

We shall use the notation Eµ throughout to denote the induced G-equivariant
line bundle

Eµ := G×B Cµ.
We also have Eµ ∼= K ×T Cµ by restriction.

Recall (see, e.g., A. Wassermann’s Frobenius Reciprocity Theorem [2, Theorem
20.5.5]) that K∗K(K/T ) is isomorphic to K∗T (C) = R(T ), the representation ring
of T , as a Z-module. The representation ring is just Z[ΓW ], the group ring of the
weight lattice, and the isomorphism is given by induction:

IndKT : R(T )
∼=−→ K∗K(K/T )

[µ] 7→ [Eµ]

Definition 3.1. Given µ ∈ ΓW , we define the µ-twisting class to be the element
[[µ]] ∈ k̂kK(G/B,G/B) given by the following correspondence:

(3.2) G/B
id←− (G/B, [Eµ]) id−→ G/B.

The µ-twisted fundamental class of G/B, denoted [G/B]µ, is the class of the
K-equivariant correspondence

(3.3) G/B
id←− (G/B, [Eµ])→ ?

in k̂kK(G/B, ?).

Thus, [G/B]µ = [[µ]] ⊗G/B [G/B], where [G/B] := [G/B]0 is the (untwisted)
fundamental class of G/B. The reason for the terminology is that [G/B] institutes
a duality isomorphism (see [6])

k̂kK∗ (G/B ×X,Y ) ∼= k̂kK∗ (X,G/B × Y )

valid for arbitrary K-spaces X and Y . For example if X = Y = ? then duality gives
an isomorphism

R(T ) = Z[ΓW ] ∼= k̂kK(G/B, ?).
This duality can easily be verified to send the point mass at a weight µ ∈ ΓW to
the class [G/B]µ.
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3.2. Borel-Bott-Weil Correspondences. Let w be an element of the Weyl group
W = NG(H)/ZG(H). Recall that the subgroup Bw := wBw−1 is independent of
the choice of lift of w to NG(H) ⊆ G. It is another minimal parabolic subgroup of
G.

Consider the homogeneous space G/(B ∩Bw). This admits two G-equivariant
fibrations, given by the natural maps

pw : (G/B ∩Bw) −→ G/B,

qw : (G/B ∩Bw) −→ G/Bw.

Viewing G/(B ∩ Bw) as a K-space by restriction, both of these fibrations can be
realized as K-equivariant vector bundle projections, as we now describe.

Recall that we define Nw := wNw−1, N̄w := wN̄w−1, with Lie algebras nw and
n̄w respectively. Then n = (n ∩ n̄w) ⊕ (n ∩ nw) is a decomposition of n into Lie
subalgebras. Since N is a connected simply-connected nilpotent Lie group, there is
a corresponding factorization N = (N ∩ N̄w)(N ∩Nw).

Lemma 3.4. Let w ∈ W . One can define a K-equivariant diffeomorphism
ϕw : |K×T (n∩n̄w)|

∼=−→ G/(B∩Bw) by the formula ϕw : [k,X] 7→ k exp(X).(B∩Bw)
such that the diagram

(3.5) K ×T (n ∩ n̄w) ∼=

ϕw //

πw

��

G/(B ∩Bw)

pw

��
K/T ∼=

// G/B

commutes. Moreover, ϕw is fibrewise holomorphic (with respect to the fibrations πw
and pw).

In other words, the K-equivariant fibrations K ×T (n ∩ n̄w) → K/T and
G/(B ∩ Bw) → G/B are equivalent in the category of K-equivariant fibrations
with holomorphic fibres.

Proof. To see that the map ϕw is well-defined we compute, for any k ∈ K, t ∈ T ,
X ∈ n ∩ n̄w:

ϕw([kt,Ad(t−1)X]) = kt.t−1 exp(X)t(B ∩Bw) = k exp(X).(B ∩Bw) = ϕw([k,X]).

Next, surjectivity. Let g ∈ G be arbitrary. There is a decomposition G = KNA =
K(N ∩ N̄w)(N ∩ Nw)A, and we decompose g as g = kn1n2a accordingly. Since
(N ∩Nw)A ⊆ B ∩Bw, we have ϕw([k, log(n1)]) = g(B ∩Bw).

Next suppose [k,X] and [k′, X ′] ∈ K ×T (n∩ n̄w) have the same image under ϕw.
Since B ∩Bw = T · (N ∩Nw)A, there exist t ∈ T and n2a ∈ (N ∩Nw)A such that

k′ exp(X ′) = k exp(X)tn2a = kt exp(Ad(t−1X))n2a.

By the uniqueness of the K(N ∩ N̄w)(N ∩ Nw)A-decomposition, k′ = kt and
X ′ = Ad(t−1)X, which is to say [k′, X ′] = [k,X].

Next we show that ϕw is a diffeomorphism. By K-equivariance it suffices to show
that it is a local diffeomorphism at each [e,X] where X ∈ n ∩ n̄w and e ∈ K is the
identity. The derivative of the diagramme (3.5) at [e,X] is

T[e,X] (K ×T (n ∩ n̄w)) Dϕw //

Dπw

��

g/(b ∩ bw)

Dpw

��
k/t ∼=

// g/b.
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The left and bottom maps are surjective. But also, since the exponential on
n ∩ n̄w is a diffeomorphism onto its image, Dϕw maps the vertical tangent space
n∩ n̄w ⊂ T[e,X] (K ×T (n ∩ n̄w)) onto (n∩ n̄w)/(b∩bw) = ker(Dpw). Therefore Dϕw
is surjective.

That the map is K-equivariant is straightforward, as is the commutativity of the
diagram of bundle maps. Fibrewise holomorphicity follows from the holomorphicity
of the exponential map. �

Remark 3.6. There is an alternative realization of the space G/(B ∩ Bw) as a
K-equivariant vector bundle via the diagram

(3.7) K ×T (nw ∩ n̄) ∼=

ϕ′w //

π′w
��

G/(B ∩Bw)

qw

��
K/T ∼=

// G/Bw

where the top map has essentially the same defining formula: ϕ′w : [k,X ′] 7→
k exp(X ′).(B ∩ Bw). The proof is basically identical. Thus, the holomorphic
manifold G/(B ∩Bw) admits two distinct structures as a complex K-equivariant
vector bundle over K/T , via the maps πw and π′w. This point will be of crucial
importance later.

Definition 3.8. Using the diagrams (3.5) and (3.7), we may consider the zero
sections of the two complex vector bundles K ×T (nw ∩ n̄) and K ×T (n ∩ n̄w) as
K-equivariant maps ζw : G/B → G/(B∩Bw) and ζ ′w : G/Bw → G/(B∩Bw). They
are given simply by

ζw : kB 7→ k(B ∩Bw) for k ∈ K,
ζ ′w : kBw 7→ k(B ∩Bw) for k ∈ K,

where we stress that in applying these formulas, we are obliged to choose coset
representatives k belonging to the compact subgroup K.

The importance of realizing G/(B∩Bw) as a complex K-vector bundle over G/B
is that there is a Thom class

τ(pw) ∈ K∗K(G/(B ∩Bw)),
obtained by pushing forward the Thom class from K∗(|K ×T (n ∩ n̄w)|).

Note that this Thom class is dependent upon the fibration map pw : G/(B∩Bw)→
G/B. The alternative fibration qw : G/(B ∩Bw)→ G/Bw defines a different class
τ(qw), pushed forward from K∗K(|K ×T (nw ∩ n̄)|).

Let w ∈W . The spaces G/Bw and G/B are G-equivariantly diffeomorphic, even
biholomorphic, via the right multiplication map Rw : g.(wBw−1) 7→ gw.B. We can
now define one of our main objects of study.

Definition 3.9. The Borel-Bott-Weil morphism Λ(w) ∈ k̂kK(G/B,G/B) with
parameter w ∈W is the class of the K-equivariant holomorphic correspondence

(3.10) G/B (G/B ∩Bw, τ(qw))pwoo qw // G/Bw
Rw

'
// G/B.

Example 3.11. If w = e is the identity element, then B ∩ Be = B, n ∩ n̄w is the
zero Lie subalgebra, inducing to the zero vector bundle on K/T , and τ(pe) is the
Thom class [1] of the zero vector bundle. Thus Λ(e) = 1 is represented by the
correspondence

G/B (G/B, [1])
id

oo id // G/B
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which is the identity correspondence. Thus Λ(e) = 1 ∈ k̂kK(G/B,G/B).

3.3. Product structure. For w ∈ W , we denote by ιw : K/T '−→ G/Bw the
K-equivariant diffeomorphism defined by kT 7→ kBw for k ∈ K.

Each of these maps identifies K/T with a complex manifold, with K acting
by a holomorphic action, and this complex structure induces a corresponding K-
equivariant Spinc-structure on K/T . All of these Spinc-structures will be different.
To keep track of them, we use the complex picture whenever possible.

Definition 3.12. We denote by Iw : G/B → G/Bw the (non-holomorphic) K-
equivariant diffeomorphism defined by the commuting diagram

G/B
Iw // G/Bw

K/T

ιe '

OO

id // K/T.

ιw '

OO

Thus, Iw corresponds to the identity map on K/T but with an unusual K-orientation.

If w ∈ W , then right translation Rw : G/Bw → G/B is a K-equivariant map
yielding an element R∗w ∈ k̂kK(G/B,G/Bw). The following proposition asserts,
roughly, that after twisting Rw by the change of equivariant K-orientation induced
by Iw, we get exactly the Borel-Bott-Weil correspondence Λ(w).

Proposition 3.13. Let w ∈W . Then Λ(w) = (I−1
w ◦R−1

w )∗ in k̂kK(G/B,G/B).

Proof. The map Rw is biholomorphic, so (R−1
w )∗ = Rw !. Using the realization of

G/(B ∩Bw) as a K-equivariant vector bundle over G/Bw, we can perform a Thom
modification to get

(I−1
w ◦R−1

w )∗ =
[
G/B

I−1
w←−− G/Bw

Rw−−→ G/B
]

=
[
G/B

I−1
w ◦qw←−−−−− (G/(B ∩Bw), τ(qw)) Rw◦qw−−−−→ G/B

]
.(3.14)

We claim that this is equivalent, via a bordism, to the correspondence

(3.15) Λ(w) =
[
G/B

pw←−− (G/(B ∩Bw), τ(qw)) Rw◦qw−−−−→ G/B
]
.

To see this, consider first the linear retraction γt of G/(B ∩Bw) ∼= K ×T (n∩ nw)
onto its zero section:

γt : G/(B ∩Bw) ϕ−1
w−−→ K ×T (n ∩ nw) −→K ×T (n ∩ nw) ϕw−−→ G/(B ∩Bw)(3.16)

(k,X) 7−→(k, tX).

We use this to define the smooth K-equivariant homotopy ht := I−1
w ◦ qw ◦ γt :

G/(B ∩Bw)→ G/B between h0 = pw and h1 = I−1
w ◦ qw.

We want to show that this homotopy yields a bordism of correspondences

(3.17)
[
G/B

h←−−−− (G/(B ∩Bw)× [0, 1],pr∗1τ(qw)) Rw◦qw◦pr1−−−−−−−→ G/B
]

between (3.14) and (3.15). Here pr1 denotes the projection pr1 : G/(B ∩ Bw) ×
[0, 1]→ G/(B ∩Bw), i.e., the right-hand map and the K-theory class in (3.17) are
constant in t. To verify that (3.17) is a well-defined correspondence we need to
check that the K-theory class pr∗1τ(qw) has compact support along the fibres of h.

Let kB ∈ G/B; note that we may take k ∈ K. Suppose g(B∩Bw) ∈ supp(τ(qw))∩
h−1
t (kB). The support of the Thom class τ(qw) is the zero section ζ ′w(G/Bw) =
K.(B ∩Bw) ⊆ G/B ∩Bw, so we may take g = k′ ∈ K. Then

kB = ht(k′(B ∩Bw)) = Iw ◦ qw ◦ γt(k′(B ∩Bw)) = Iw(k′Bw) = k′B.
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Therefore, the support of pr∗1τ(qw) in the fibre h−1(kB) is {kB} × [0, 1]. Hence
(3.17) is indeed a bordism between the correspondences (3.14) and (3.15). This
completes the proof. �

Corollary 3.18. The map w 7→ Λ(w) is a group homomorphism from the Weyl
group into the invertible elements of the ring k̂kK(G/B,G/B).

Proof. One just needs to check that Rw1 ◦ Iw1 ◦Rw2 ◦ Iw2 = Rw1w2 ◦ Iw1w2 . This is
immediate if one represents elements of G/B as kB with k ∈ K. �

3.4. Commutation relations in K̂KK(G/B,G/B). We begin with some gener-
alities on pullbacks of induced bundles.

Let H2 ≤ H1 ≤ G be a nested sequence of closed Lie subgroups, and let V
be a vector space with a representation of H1. If p : G/H2 � G/H1 denotes the
canonical fibration map, then there is an equivariant bundle isomorphism

(3.19) p∗(G×H1 V ) ∼= G×H2 V,

given by following pullback diagram:

G×H2 V //

��

G×H1 V

��

[g, v] � //
_

��

[g, v]
_

��
G/H2

p // G/H1 gH2
� // gH1.

Recall that each weight µ defines a one-dimensional holomorphic representation
of B. It will be convenient to use an explicit notation for this in the next few
paragraphs, so we denote it by σµ : B → End(Cµ). We shall denote by σwµ the
representation of Bw defined by conjugating by w ∈W : σwµ (wbw−1) := σµ(b).

Then there is a G-equivariant bundle isomorphism

(3.20) R∗w(G×B Cµ) = G×Bw
Cµ,

where the representation of Bw on the right-hand side is σwµ . The appropriate
pullback diagram is:

G×Bw
Cw(µ) //

��

G×B Cµ

��

[g, v] � //
_

��

[gw, v]
_

��
G/Bw

Rw // G/B gBw
� // gwB.

Lemma 3.21. For any µ ∈ ΓW and w ∈ W we have q∗wR∗wEµ ∼= p∗wEw(µ) as
G-equivariant complex line bundles over G/(B ∩Bw).

Proof. As described above, q∗wR∗wEµ ∼= q∗w(G×Bw Cµ). Restricting the conjugated
representation σwµ to B ∩ Bw yields a representation which is trivial on N ∩ Nw
and given by ew(µ) on T ·A. Thus (3.19) gives q∗wR∗wEµ ∼= G×B∩Bw

Cw(µ). This is
isomorphic to p∗wEw(µ) by (3.19) again. �

Proposition 3.22. For any µ ∈ ΓW and w ∈W , Λ(w)⊗G/B [[µ]] = [[w(µ)]]⊗G/B
Λ(w).
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Proof. We calculate,

Λ(w)⊗G/B [[µ]]

= G/B
pw←−− (G/B ∩Bw, τ(qw)) Rw◦qw−−−−→ G/B

id←− (G/B, [Eµ]) id−→ G/B

= G/B
pw←−− (G/B ∩Bw, τ(qw).q∗wR∗w[Eµ]) Rw◦qw−−−−→ G/B

= G/B
pw←−− (G/B ∩Bw, τ(qw).p∗w[Ew(µ)])

Rw◦qw−−−−→ G/B

= G/B
id←− (G/B, [Ew(µ]])

id−→ G/B
pw←−− (G/B ∩Bw, τ(qw)) Rw◦qw−−−−→ G/B

= [[w(µ)]]⊗G/B Λ(w).

�

3.5. Comparing Thom classes. We begin this section by comparing the two
Thom classes τ(pw) and τ(qw) on the space G/B ∩ Bw (see Section 3.2). It will
suffice to consider the case where w is the reflection in a simple root α. In that case
we have n ∩ n̄w = gα and nw ∩ n̄ = g−α.

Recall that τ(pw) is the pushforward of the Thom class of |K ×T (n ∩ n̄w)| =
|K ×T gα| via the bundle isomorphism of (3.5). Taking advantage of the complex
structure on the fibres, the corresponding spinor bundle is K ×T

∧•
Cgα. There is an

Ad(T )-invariant inner product on gα via the Killing form. Letting λX denote the
exterior product by X ∈ gα, we have a Clifford algebra representation

(3.23) c : gα → End(
∧•

Cgα); c(X) := λX − λ∗X .

The Thom class of |K ×T gα| is the pullback of the spinor bundle along the bundle
projection πw : K ×T gα → K/T , equipped with the bundle endomorphism which
at each point is the Clifford representation of that point.

Since K ×T
∧•

Cgα
∼= C0 ⊕ Cα, we can identify the spinor bundle over K/T with

G×B (C0 ⊕ Cα). The space Cα here identifies naturally with gα as a T -space, but
not as a B-space: we have made an arbitrary extension to a B-representation.

Using Equation (3.19), the push-forward of the Thom class by ϕw is then

(3.24) τ(pw) = (G ×
B∩Bw

(C0 ⊕ Cα), Cw),

where Cw is the bundle endomorphism defined at each point of G/(B ∩Bw) by

Cw(k exp(X)(B ∩Bw)) = c(X) for k ∈ K, X ∈ gα.

A similar calculation shows that the Thom class τ(qw) associated to the other
projection is

(3.25) τ(qw) = (G×B∩Bw
(C0 ⊕ C−α), C′w),

where
C′w(k exp(X ′)(B ∩Bw)) = c(X ′) for k ∈ K, X ′ ∈ g−α.

To compare these two classes, we define a homotopy. For t ∈ [0, 1], define a map

γt : G/(B ∩Bw) → G/(B ∩Bw),
k exp(X)(B ∩Bw) 7→ k exp(tX)(B ∩Bw), for k ∈ K, X ∈ gα.

This is just the pushforward by ϕw of the retraction of the bundle K ×T gα to the
zero section.

Consider the smooth family Φt of bundle endomorphisms of G×B∩Bw (C0⊕C−α)
defined by

Φt(z) := C′(γt(x)), (z ∈ G/B ∩Bw).
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Since γ0 has image the zero section, Φ0 is the zero endomorphism. By smoothness
and the compactness of G/B, the family

Ψt := 1
t
Φt (t 6= 0)

has a well-defined limit at t = 0, which we denote by Ψ0.

Lemma 3.26. Let θ denote the Cartan involution on g. At a point
k exp(X)(B ∩ Bw) of G/(B ∩ Bw), where k ∈ K and X ∈ gα, the limit
Ψ0(k exp(X)B ∩Bw) is the endomorphism of the fibre

∧•
Cg−α defined by

Ψ0(k exp(X)B ∩Bw) = c(−θX).

Proof. We have γt(k exp(X)(B ∩ Bw)) = k exp(tX)(B ∩ Bw). By the Campbell-
Baker-Hausdorff formula, exp(tX) = exp(t(X + θX)) exp(−tθX) exp(o(t)). Since
exp(t(X + θX)) ∈ K, we have that Ψt acts on the fibre at k exp(X)B ∩Bw by

Ψt(k exp(X)B ∩Bw) = 1
t
c(−tθX + o(t)).

which has limit c(−θX) as t→ 0. �

In the next lemma, we fix identifications of g±α with C by identifying some
arbitrary unit vector Y ∈ g−α with 1, and likewise with θY ∈ gα. Ultimately the
choice of this Y makes no difference.

Lemma 3.27. Fix Y ∈ g−α with ‖Y ‖ = 1. Define a grading-reversing map
β :
∧•

Cg−α →
∧•

Cgα by

β :
{
ω 7→ ω.θY, for ω ∈

∧0
C g−α = C,

X ′ 7→ 〈Y,X ′〉, for X ′ ∈
∧1

C g−α = g−α.

Then for any X ∈ gα,
β−1c(X)β = c(−θX).

Remark 3.28. Equivalently, β = θ ◦~, where ~ is the (anti-linear) Hodge ∗-operator
on
∧•

Cg−α.

Proof. We calculate
β−1λXβ : ω 7→ 0, for ω ∈ C,

β−1λXβ : ωY
β7−→ ω

λX7−−→ ωX
β−1

7−−→ 〈θY, ωX〉, for ωY ∈ g−α

and
λ∗θX : ω 7→ 0, for ω ∈ C,
λ∗θX : ωY 7→ 〈θX, ωY 〉, for ωY ∈ g−α.

These maps are equal since θ is anti-unitary. Also β−1λ∗Xβ = λθX , by the unitarity
of β. The result now follows from the definition c(X) := λX − λ∗X . �

The map β is not T -equivariant — it alters the weights, since it maps g−α to C0
and C0 to gα. But if we alter it by defining

β′ :
∧•

Cg−α → (
∧•

Cgα)⊗ g−α

Z 7→ βZ ⊗ Y,
then it is weight-preserving, and hence T -equivariant. It induces a grading-reversing
bundle isomorphism

(3.29) id×B∩Bw β
′ : G×B∩Bw

∧•
Cg−α → G×B∩Bw ((

∧•
Cgα)⊗ g−α)

∼= (G×B∩Bw

∧•
Cgα)⊗G/B∩Bw

p∗E−α,
which intertwines the bundle endomorphisms Ψ0 and Cw ⊗ id. Combining this with
the fact that Ψ1 = Cw, we have proven the following fact.
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Proposition 3.30. If w ∈W is the reflection in the simple root α, then τ(qw) =
−τ(pw)⊗ p∗w[E−α] in K∗K(G/(B ∩Bw)).

Remark 3.31. There is a more general formula: for any w ∈W , τ(qw) = (−1)l(w)τ(pw)⊗
p∗w[Ew(ρ)−ρ], where ρ is the half-sum of the positive roots. This can be proven along
the same lines as above with significantly more work, or deduced from results to
follow. We shall not need it.

3.6. The Borel-Bott-Weil Theorem: Action on K-homology and Indices.

Proof of Theorem 1.2. We wish to show

Λ(w)⊗G/B [G/B]µ = (−1)l(w) [G/B]w(µ+ρ)−ρ.

By the multiplicativity of the map w 7→ Λ(w), it suffices to take w a reflection in a
simple root α.

Let µ ∈ ΓW . Using the fact that [G/B]µ = [[µ]]⊗G/B [G/B], Proposition 3.22
gives

Λ(w)⊗G/B [G/B]µ = [[w(µ)]]⊗G/B Λ(w)⊗G/B [G/B]
From Proposition 3.30,

Λ(w)⊗G/B [G/B] =
[
G/B

pw←−− (G/(B ∩Bw), −τ(pw)⊗ p∗w[E−α] )→ ?
]
.

Since G/(B ∩Bw) pw→ G/B is K-equivariantly diffeomorphic to a vector bundle with
Thom class τ(pw), the latter correspondence is precisely the Thom modification of[

G/B
id←− (G/B, −[E−α])→ ?

]
= −[G/B]−α.

So we get
Λ(w)⊗G/B [G/B]µ = −[G/B]w(µ)−α.

Since w is the reflection in α, we have α = w(ρ)− ρ, which proves the result.
�

We now pass to the index-theoretic application. Let pt : G/B → ? denote the
map of G/B to a point and pt∗ ∈ k̂kK(C, G/B) its topological KK-theory class.

For a weight µ, the topological K-index of the twisted fundamental class [G/B]µ ∈
k̂kG(G/B, ?) is defined by

IndexK [G/B]µ := pt∗ ⊗G/B [G/B]µ ∈ k̂kK(C,C).

We do not bother to use different notation for the analytic index IndexK [G/B]µ ∈
KKK(C,C) ∼= R(K); which one we are talking about will be made clear by the
context. The analytic index, as a graded representation of K is the same as the
cohomology group H∗(G/B,Eµ) figuring in the classical Borel-Bott-Weil theorem,
and equals the image of the topological index under the map k̂kK(G/B, ?) →
KKK(C(G/B),C) (for a proof see [7].)

Proof of Theorem 1.1. We note that a Thom modification yields

pt∗ ⊗G/B Λ(w) =
[
?← (G/(B ∩Bw), τ(qw)) Rw◦qw−−−−→ G/B

]
(3.32)

=
[
?← G/Bw

Rw−−→ G/B
]

= pt∗.

Composing with the µ-twisted fundamental class on the right, and applying Theorem
1.2 gives (−1)l(w)IndexK [G/B]w(µ+ρ)−ρ = IndexK [G/B]µ. �
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Remark 3.33. Let us also record the action of the Borel-Bott-Weil classes on
equivariant K-theory. The induction isomorphism R(T )

∼=−→ KK(K/T ) associates to
[µ] the correspondence

[Eµ] :=
[
?← (K/T, [Eµ]) id−→ K/T

]
= pt∗[[µ]].

Thus, if we compose the commutation relation of Proposition 3.22 on the left by
pt∗ and use Equation (3.32), we get the right action:

[Ew(µ)]⊗G/B Λ(w) = [Eµ].
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