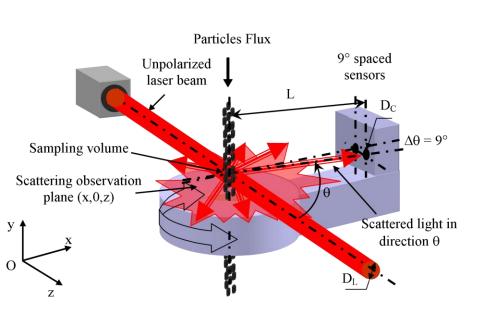


Qualification du néphélomètre polaire à double polarisation pour la mesure des propriétés optiques des aérosols


C. Verhaege*(1), P. Personne(1) et D. Daugeron

(1) LaMP : Laboratoire de Météorologie Physique, UMR CNRS 6016 Université Blaise Pascal Clermont-Ferrand

Le néphélomètre

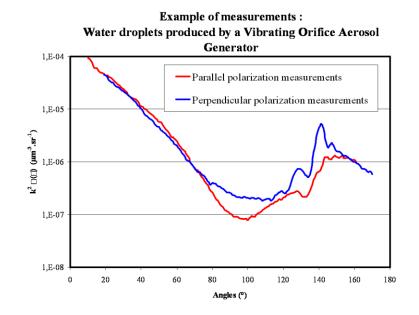
 Mesure directe de la lumière diffusée par une population d'aérosols suivant 2 polarisations :

 $- \perp$: de 10° à 160°

– //: de 19° à 169°

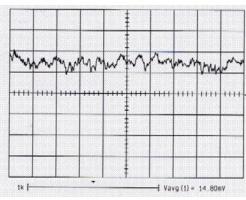
- Volume d'échantillonnage = 0,67 cm³
- $D_1 = 10 \text{ mm}$
- $D_C = 0.5 \text{ mm}$
- L = 150 mm
- Longueur d'onde du laser = 0,8 μm

Le néphélomètre

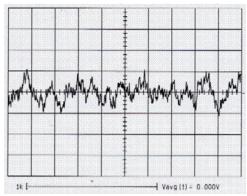


Les mesures

- Une mesure tous les degrés
- Puissance mesurable de 10 pW à 2 µW
- Mesure simultanée de la polarisation // et ⊥
- Obtention du degré de polarisation linéaire



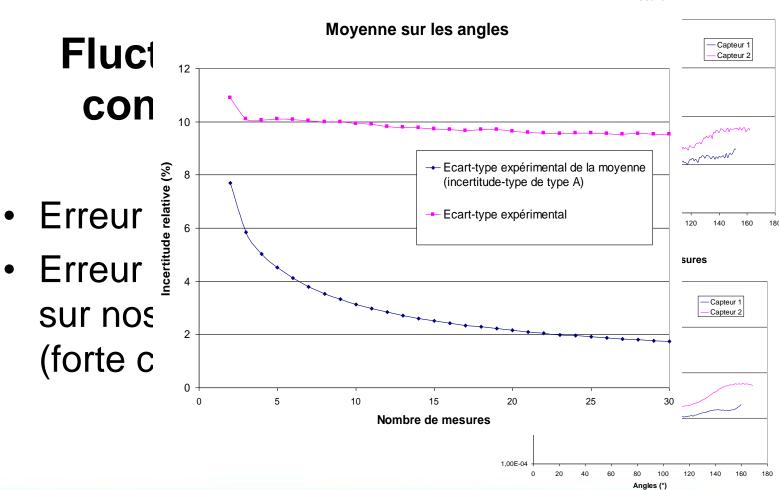
Les bruits de mesures


Bruit éléctronique (dans le noir) :

Une composante continue de 15 µV

- + composante aléatoire de 12 µV crête à crête
- → $k^2\phi=2,5.10^{-8} \mu m^{-3}.sr^{-1}$ (30μV)

Tension de sortie avec composante continue de l'ensemble capteur-amplificateur dans l'obscurité (gain 1000 - calibres 10mV/div et 1ms/div)


Tension de sortie sans composante continue de l'ensemble capteur-amplificateur dans l'obscurité (gain 1000— calibres 5mV/div et1ms/div)

Les bruits de mesures

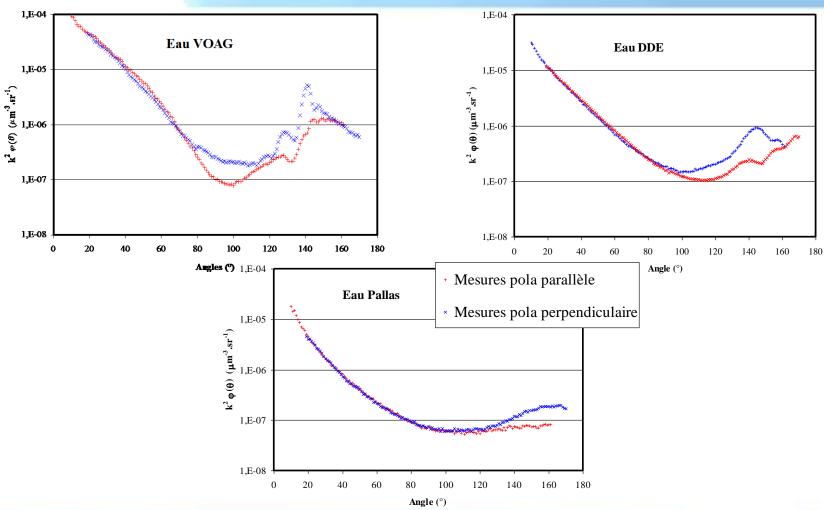
1 mesure

Concentration minimale

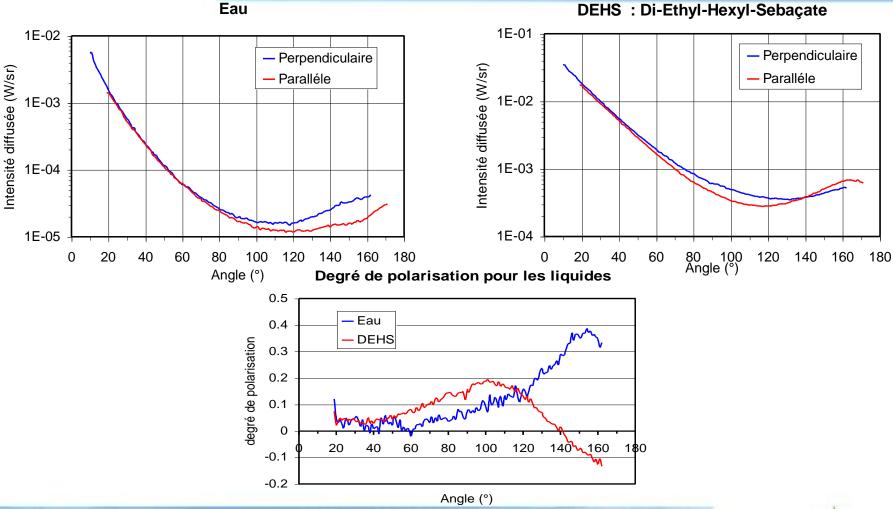
- Le bruit dans le noir correspond à une indicatrice de diffusion normalisée k²φ=2,5.10-8 μm-3.sr-1
- Si la diffusion faîtes par des particules est en dessous, la mesure est dans le bruit.
- Ce qui nous impose la limite base de concentration des particules

Concentration minimale

Diamètre	Concentration minimale en nombre pour avoir $k^2\phi > 2,5 .10^{-8} \mu m^{-3}.sr^{-1}$	Concentration minimale en volume pour avoir $k^2\phi > 2,5 .10^{-8} \mu m^{-3}.sr^{-1}$
500 µm	3,99 .10 ¹ cm ⁻³	7,55 .10 ⁻⁴ μm ³ /μm ³
100 µm	3,46 .10 ² cm ⁻³	8,50 .10 ⁻⁵ μm³/μm³
50 μm	7,36 .10 ² cm ⁻³	2,27 .10 ⁻⁵ μm ³ /μm ³
20 µm	1,96 .10 ³ cm ⁻³	3,87 .10 ⁻⁶ μm³/μm³
10 µm	4,42 .10 ³ cm ⁻³	1,09 .10 ⁻⁶ μm³/μm³
5 µm	9,93 .10³ cm ⁻³	3,06 .10 ⁻⁷ μm³/μm³
2 µm	4,56 .10 ⁴ cm ⁻³	8,99 .10 ⁻⁸ μm ³ /μm ³
1 µm	2,57 .10 ⁵ cm ⁻³	6,33 .10 ⁻⁸ μm³/μm³
0,5 µm	2,21 .10 ⁶ cm ⁻³	6,81 .10 ⁻⁸ μm³/μm³
0,2 μm	7,24 .10 ⁷ cm ⁻³	1,52 .10 ⁻⁷ μm³/μm³


Taille minimale

- Le néphélomètre peut voir toutes les tailles de particules du moment qu'elles sont assez nombreuses
- Par contre, on ne peut pas distinguer 2 groupes de particules de taille < 0,2 µm de diamètre (limite Rayleigh-Mie pour la longueur d'onde de notre laser)
- Relation Conc.D⁶ = Cte (issue de la théorie de Rayleigh)


Différentes tailles

Différents indices

Conclusion et prospectives

- Limitations de l'appareil déterminées
- Appareil testé et validé avec des particules sphériques de différentes tailles et indices
- Différences visibles suivant la taille et l'indice des particules
- Possibilité de mesurer la diffusion par des aérosols non sphériques
- Possibilité de retrouver l'indice et la distribution d'une population de particules

