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ABSTRACT

Mass–dimensional relationships (m2D) have been published for decades to characterize the microphysical

properties of ice cloud particles. Classical m2D retrieval methods employ a simplifying assumption that

restricts the formof themass–dimensional relationship to a power law, an assumption thatwas proved inaccurate

in recent studies. In this paper, a nonstandard approach that leverages optimal use of in situ measurements to

remove the power-law constraint is presented. A model formulated as a linear system of equations relating ice

particle mass to particle size distribution (PSD) and ice water content (IWC) is established, and the mass re-

trieval process consists of solving the inverse problemwith numerical optimization algorithms. First, themethod

is applied to a synthetic crystal dataset in order to validate the selected algorithms and to tune the regularization

strategy. Subsequently, the method is applied to in situ measurements collected during the High Altitude Ice

Crystal–High IceWaterContent field campaigns. Preliminary results confirm themethod is efficient at retrieving

size-dependent masses from real data despite a significant amount of noise: the IWC values calculated from the

retrieved masses are in good agreement with reference IWCmeasurements (errors on the order of 10%–15%).

The possibility to retrieve ice particle size–dependent masses combined with the flexibility left for sorting

datasets as a function of parameters such as cloud temperature, cloud type, or convective index makes this

approach well suited for studying ice cloud microphysical properties.

1. Introduction

a. Motivation

The representation of ice particles, especially the pa-

rameterization of their microphysical properties, is an im-

portant part in atmosphericmodels and spaceborne sensors

retrieval algorithms. It has long been acknowledged that ice

particlemass, size, and related quantities such as density are

key modules in ice microphysical schemes (Schmitt and

Heymsfield 2009; Erfani and Mitchell 2016; Cotton et al.

2013), hence the acute need for improved representation of

ice particles. Furthermore, interest inparticlemicrophysical

properties has continued to grow since high-altitude ice

crystals were identified as a threat to commercial aviation,

causing aircraft engine and air data probe icing. This led

aircraft industry leaders, aviation regulatory authorities, and

research facilities to join forces to launch the High Altitude

Ice Crystal–High Ice Water Content (HAIC–HIWC) pro-

jects with the overall objective to enhance flight safety when

flying in mixed and glaciated icing conditions. Technical

developments of detection and awareness technologies and

modeling of ice accretion mechanisms within engine mod-

ules andair dataprobes require better characterizationof ice

particle mass, size, and concentration. These are the main

rationale for the observation of ice particle physical prop-

erties and for the development of an empirical model that

accurately describes particle mass as a function of size,

temperature, and any other relevant physical parameters.

b. State of the art

To address the abovementioned research topics, many

studies have been conducted in the past with the primary

goal to characterize cloud microphysical properties and

to derive expressions for ice particle mass. In the fol-

lowing subsections, some state-of-the-art studies pro-

viding mass–size relationships (m2D) from particle

measurements are reviewed, with emphasis placed on the

hypotheses and analytical tools they use.

1) EARLY STUDIES ON ICE CRYSTALS:
COLLECTION ON GROUND

Early studies related to natural ice crystal mass focused

on solid precipitating particles collected on ground (Nakaya

and Terada 1935; Zikmunda and Vali 1972; Kajikawa 1972;Corresponding author: Pierre Coutris, p.coutris@opgc.fr
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Locatelli and Hobbs 1974; andmore recentlyMitchell et al.

1990, among others). In these studies, ice particles ranging

from hundreds of micrometers to several millimeters in size

were collected, photographed, and classified into habit cat-

egories. The individual crystal mass was estimated from the

droplet produced by crystal melting, and habit-dependent

m2D relationships were derived for each subset. The re-

trieval process consists of fitting the individual mass against

sizedatapoints using linear regression tools in log–log space,

which produces power-law-typem2D relationships, noted

asm5 aDb, where the prefactor a and the exponent b are

constant values that are specific to each habit. Since high-

altitude ice cloud particles and precipitating particles may

have very different microphysical properties, the m2D

relationships derived in these studies may not be applicable

to airborne in situ measurements.

2) IN SITU MEASUREMENTS TO IMPROVE

MASS–SIZE RELATIONSHIPS

The use of aircraft in atmospheric research projects has

given access to a large panel of cloud types, and with

concomitant improvement of airborne instrumentation

and data processing techniques, in situ measurement

datasets have laid the groundwork for the study of natural

ice cloud particles’ microphysical properties. In the early

days, Heymsfield (1972) applied the on-ground mass

measurement principle on board a research aircraft in or-

der to analyze natural crystals sampled in cirrus clouds.

Since then, technical developments of optical array probes

(OAPs), total water content (TWC) probes, and cloud

radar have made ice crystal ensemble properties, such as

particle size distribution (PSD), ice water content (IWC),

and radar reflectivity (Ze), readily accessible. As a result,

the mass of ice cloud particles is now indirectly estimated

from PSD and IWC (Brown and Francis 1995; Heymsfield

et al. 2004, 2010; Cotton et al. 2013; Leroy et al. 2016) or

from PSD and Ze (McFarquhar et al. 2007; Fontaine et al.

2014) rather than measured as in earlier studies.

One of today’s most popular relationships has been es-

tablished in Brown and Francis (1995) with data from two

flights realized in the frame of the International Cirrus

Experiment field campaign (Raschke et al. 1990) in 1992.

IWC values were estimated by integrating m2D re-

lationships given in Locatelli and Hobbs (1974) over 5-s

average PSDs (2650 in total). Brown and Francis (1995,

p. 411) compared these calculated values to the measured

IWC values and found that the m2D relationship estab-

lished in Locatelli and Hobbs (1974) for ‘‘aggregates of

unrimed bullets, columns and side-planes’’ produced the

best fits. They concluded that the Locatelli and Hobbs

parameters a5 7:383 10211gmm21:9 and b5 1:9 were

suitable for populations of quasi-spherical irregular crystal

populations of midlatitude cirrus clouds.

More sophisticated techniques for determining the pa-

rameters of the power law arise in recent publications. For

example, Schmitt and Heymsfield (2010) consider ice

particles as fractal objects and developed a self-consistent

retrieval method in which both a and b are inferred from

2D images. They used simulated crystal populations

to establish a relationship between ice particle two-

dimensional and three-dimensional fractal dimensions.

The exponent b, identified as the three-dimensional fractal

dimension, is inferred from 2D projected images for each

5-s data point, assuming that the relationship between

fractal dimensions established for synthetic aggregates

holds for natural ice crystals. Then they indirectly estimate

a from area measurements, thereby making several as-

sumptions: 1) the area–dimensional relationship derived

from 2D image analysis is accurate; 2) a particle having an

area ratio of 1 is spherical and has a density of 0.91gcm23;

and 3) the prefactor a calculated from this particle, having

an area ratio of 1, is applicable across the whole size range.

Similarly, Leroy et al. (2016) found from simulated crystal

populations that b can be inferred from a combination of

exponents of the area–dimensional (s) and the perimeter–

dimensional (t) power-law relationships. For each 5-s data

point,b is computed froms and t values retrieved from the

2D imagery. Then the prefactor a is iteratively estimated as

the value thatminimizes the discrepancy between the IWC

value calculated from PSDs and an independently mea-

sured bulk IWCvalue.While these two dynamical retrieval

methods may capture the natural variability in ice particle

ensembles along the flight path (e.g., the change in particle

morphology, dominant habits, density), they both implic-

itly assume that the dependence of mass on size conforms

to a single power law irrespective of the particle size.

Furthermore, they produce as many (a, b) pairs as there

are points in the dataset, whichmight be impractical for use

in models unless reduced to a single averaged m2D.

As plots in log–log space of relationships found in lit-

erature show evidence that m2D is not linear over a

broad size range, Erfani and Mitchell (2016) recently

argue that a singlem2D power law cannot satisfactorily

represent the variation of mass over the size range

spanned by atmospheric ice particles. To account for the

curvature, they search for an m2D expression of the

form lnm5 a0 1 a1 3 (lnD)1 a2 3 (lnD)2, where co-

efficients are derived from a second-order polynomial

curve fit of Small Particles in Cirrus (SPARTICUS) data

(Mace et al. 2009). The retrieval method combines

Mitchell et al.’s (1990) mass measurements, Baker and

Lawson’s (2006) mass retrieval technique, and a method

for estimating themass of small ice crystals (D, 100mm)

fromCloudParticle Imager (CPI)measurements in order

to derive a self-consistent m2D expression from in

situ data corresponding to three temperature and two
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cloud-type (synoptic vs anvil cirrus) categories.While this

method compares favorably with the m2D expressions

of Cotton et al. (2013) and Heymsfield et al. (2010), IWC

values calculated by integration of this new parameteri-

zation over PSDs have not been directly compared to an

independently measured and accurate bulk IWC value.

In an attempt to better account for the dependence of

ice particles’ microphysical properties on size, Jackson

et al. (2012) introduced a habit-dependentm2D retrieval

method. Ice particles collected in Arctic mixed-phase

stratus clouds were classified into nine habit classes using

the CPI imagery. Then a composite m2D relationship

was derived from habit-specific power-law relationships

reported inMitchell (1996) andBrown and Francis (1995),

thereby weighting by the number fraction of each crystal

habit in each bin. The quality of themass retrieval method

was assessed with mass closure tests in which IWC values

calculated from measured PSDs and the habit-dependent

scheme were compared to IWC values measured by two

independent bulk instruments [the deep-cone Nevzorov

probe and the Cloud Spectrometer and Impactor (CSI)].

These tests showed that this habit-dependent scheme 1)

gives IWC values that agree reasonably well with the

measured values and 2) outperforms the mass–area re-

lationship derived in Baker and Lawson (2006), although

the latter is based on a detailed morphological analysis of

particles’ projected images.

c. Mass–size relationships: Limitation and
opportunities for improvement

In conclusion of this partial literature review, there is a

consensus in using power laws to describe the dependence

of ice particlemass on sizewith a fewexceptions, such as the

Erfani and Mitchell (2016) scheme and the Jackson et al.

(2012) habit-dependent approach. In practice, the power-

law assumption 1) reduces the search of m2D to the

computation of two scalars, a and b; 2) produces

m2D curves that are globally matching theoretical ex-

pectations (in terms of magnitude and tendency for ice

particle density to decrease with size); and 3) enables the

calculation of particle ensemble properties (IWC or Ze for

instance) that agree reasonably well with observations.

However, most of the publishedm2D relationships based

on this power-law assumption are subject to a fundamental

weakness, as acknowledged by recent authors (Schmitt and

Heymsfield 2010; Erfani andMitchell 2016): theymight not

accurately reflect the contribution of the different growth

processes to the ice crystals’ masses. Especially, they cannot

capture potential irregular variations of the mass with size

for crystals ranging from a fewmicrons to a few centimeters

in size. Because of the preponderance of different ice

growth mechanisms within distinct size intervals, the

smaller size classes up to a few hundred micrometers are

generally populated by small pristine ice crystals formed by

vapor deposition, whereas crystal aggregation dominates in

the largest particles. It is well known that the properties of

dense pristine ice and fluffy aggregates may be significantly

different (Pruppacher and Klett 2010). The effect of riming

could also change themass properties in some intermediate

bins so that the resulting curve may significantly deviate

from a regular power-law relationship. The results reported

in Jackson et al. (2012) support these considerations, which

suggest that accounting for the size dependence of particles’

properties, such as crystal habit distribution, could improve

the mass retrieval. The situation is even worse when only

one (a, b) pair is derived from an entire dataset. In this case

the m2D parameterization fails to capture the spatio-

temporal variability in the microphysical properties of ice

particles within clouds.

Since earlier methods based on individual crystal mass

measurements are impractical for use in large datasets of

mixed-habit ice particles, there is still a strong need for the

development of alternative concepts for m2D retrieval

methods.

This study presents a nonstandard approach that lever-

ages the optimal use of common in situ measurements—

namely, PSD and IWC—to waive the power-law con-

straint and therefore better capture the dependence of

particle microphysical properties on size. Section 2 in-

troduces the assumptionsmade to set up a simple forward

model that relates particle-size-dependent mass to PSD

and bulk IWC values, as well as the mathematical for-

malism and tools selected to retrieve the particles’ mass by

solving the inverse problem. Themethod is then applied to

simulated crystal populations (section 3) and to real cloud

in situ measurements extracted from the HAIC–HIWC

dataset (section 4). In this article, the emphasis is placed on

the problem statement and technical aspects of this new

mass retrieval process rather than on the implications of

the preliminary results presented in section 4 for modeling

and remote sensing retrieval algorithms.

2. Conceptual model and numerical optimization
tools

a. Forward model

1) MODEL INPUT: CLOUD IN SITUMEASUREMENTS

The mass retrieval method developed within this study

is based on two coincident and collocated 5-s averaged

in situ measurements—PSD and IWC—that are shortly

described hereafter.

(i) PSD

PSDs characterize the size distribution of particles within

a population. Individual crystals are sized into size classes,
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or bins, using a size parameter derived from the OAP im-

agery: in this study, the equivalent projected area diameter

Deq, defined as the diameter of a disk having the same area

as the particle’s 2D projection, is used. In the following,

PSD concentrations are calculated as the number of parti-

cles per volume of sampled air per bin (m23 bin21), al-

though in atmospheric sciences, conventional numberPSDs

are usually expressed inm23mm21, thereby normalizing the

number of particles counted in each bin by the bin width.

The in situ measured PSDs are derived from 2D projected

images of the 2D Stereo (2D-S) probe (Lawson et al. 2006)

and the Precipitation Imaging Probe (PIP; Baumgardner

et al. 2011), as further detailed in section 4. PSDs are subject

to measurement uncertainties in both sizing and concen-

tration as a result of optoelectronic limitations and post-

processing algorithms applied to remove artifacts, such as

shattering/splashing effects or particle coincidence (more

than one particle in one image frame). More details on the

measurement uncertainties of OAPs can be found in

Baumgardner et al. (2017). Also, the attempt to character-

ize ice particles’ complex 3D volume with a single size pa-

rameter inferred from 2D shadow images is inherently

approximate, as exemplified in section 3b.

(ii) IWC

The IWC value gives the amount of ice in a sampled

cloud volume (gm23). Variousmeasurement techniques

exist but they can be sorted into two categories: the ‘‘hot

wire probes’’ that rely on the measurement of the elec-

trical power necessary to maintain the probe at a con-

stant temperature and the ‘‘evaporator probes’’ that rely

on humidity measurements. In section 4, the IWC

measurements are provided by the IKP-2 isokinetic

evaporator probe (Davison et al. 2009; Strapp et al.

2016b). This probe was developed in the frame of the

HAIC–HIWC project and is considered as a reference

instrument for IWC measurements. IWC measurement

uncertainty is documented in Davison et al. (2016).

2) PHYSICAL CONSIDERATIONS AND

APPROXIMATIONS

The IWC value is by definition the sum of the individ-

ual crystal masses within a sampled cloud volume. The

massMof an iceparticle ismostly determinedby the air and

ice fractions and the respective densities of these two

components. Actually, it is known from theoretical con-

siderations that the particle mass is not evenly distributed

over the particle volume as a result of complex interactions

of several growth processes, such as water vapor diffusion,

aggregation, and riming (Pruppacher and Klett 2010). An

accurate computation of the mass of ice particles would

require knowledge about how these different mechanisms

contributed to the particle’s growth throughout its life cycle.

In this Lagrangian-like approach, in situ measurements

would follow theparticle transportation from thenucleation

site across different cloud parcels. However, the complex

transport of ice particles within a cloud—especially within

deep convection, where turbulent mixing processes occur

over several kilometers in height—makes such data almost

impossible to collect. Therefore, the proposed model uses

the Eulerian approach, which is prevalent in literature,

whereby the ice particles are characterized at a given loca-

tion and time by collocated and coincident in situ mea-

surements of the cloud environment. It is postulated that

a series of measured parameters can be identified and used

to determine the mass of ice particles. Among others, one

can think of environmental parameters such as static air

temperature (ambient temperature) and cloud type (the

dependence of particle properties on cloud type is reported

in several studies quoted in section 1), and morphological

parameters derived from the analysis of OAP images of

individual particles (e.g., dominance of some crystal habits,

presence of riming) as potentially characteristic parameters.

In the following, these parameters are denoted as

P1, P2, . . . , Pn. In summary, themass of a particle depends

on its volume and on some other characteristic parameters,

as formally written in Eq. (1):

M5M(V,P
1
, . . . ,P

n
) (1)

Two simplifying assumptions are made to establish

the forward model.

(i) Characteristic parameters

Time invariance of the parameters is assumed for each

5-s average data point: all particles sampled during a 5-s

time interval are characterized by the same parameters

(e.g., the time-averaged value computed from the 1-Hz

original measurements). Subsequently, datasets can be

sorted into subsets of consistent data points using these

parameters as sorting criteria. In such a subset where the

characteristic parameters are invariant, the mass de-

pends only on volume. Equation (1) becomes

M5MjP1,...,Pn
(V,P

1
, . . . ,P

n
)5M(V) . (2)

(ii) Volume

In the ith bin of the PSD, the variability in the particle’s

size, Deq, depends on the bin width wi. As wi is generally

small, the variability in Deq is small. It is further postulated

that the spread in volume is also reasonably lowwithin a bin

(discussed in more detail in section 3b). This assumption

implies that PSD bins are natural subensembles, where the

crystals’ mass is uniform, provided data points have been

sorted as per assumption i. As a consequence, a statistical
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‘‘reference mass’’ can be defined for each bin:

MjV(V)5 Mref. We notemi as the reference mass of the

ith bin in the PSD, such that m1 and mN are the refer-

ence masses of the first bin (the smallest particles with

D1 2w1/2, Deq ,D1 1w1/2) and the last bin (largest

particles with DN 2wN/2,Deq ,DN 1wN/2, where N

is the number of bins in the PSD), respectively. There

are as many reference masses as bins in the PSD, and in

the following we note m5 (m1 m2 . . . mN)
T the vector

of reference masses.

With the two abovementioned assumptions, we now de-

velop the mathematical equations that relate bin reference

masses to PSD and IWC measurements. For a data point

measured at t5 t1, the ice water content is calculated by

summation over the PSD bins of the number of crystals in

each bin [PSD(t1, Di)] times the bins’ reference mass (mi):

PSD(t
1
,D

1
)3m

1
1PSD(t

1
,D

2
)3m

2
1⋯1PSD(t

1
,D

N
)3m

N
5 IWC(t

1
) . (3)

Equation (3) can be written as many times as there are

data points in a subset satisfying assumption i, say P

points in this explanation. This results in a system of

linear equations with N unknowns and P equations:

8>>><
>>>:

PSD(t
1
,D

1
)3m

1
1PSD(t

1
,D

2
)3m

2
1⋯1PSD(t

1
,D

N
)3m

N
5 IWC(t

1
)

PSD(t
2
,D

1
)3m

1
1PSD(t

2
,D

2
)3m

2
1⋯1PSD(t

2
,D

N
)3m

N
5 IWC(t

2
)

..

.

PSD(t
P
,D

1
)3m

1
1PSD(t

P
,D

2
)3m

2
1⋯1PSD(t

P
,D

N
)3m

N
5 IWC(t

P
)

. (4)

For the sets of synthetic data (section 3) and experimental

data (section 4) presented in the next sections, N5 93 and

240 and P5 186 and 1051, respectively. This system of

linear equations can be written as a matrix equation:

PSD �m5 iwc , (5)

where

d PSD 2 R
P3N is a matrix in which PSDs are vertically

concatenated,
d iwc 2 R

P is a vector of P IWC values, and
d m5 (m1 m2 . . . mN)

T is the vector of N unknown

reference masses.

Thus, the forward model is formulated as a matrix

equation that relates in situ measurements to the unknown

bin reference masses. It is worth mentioning that the model

does not require prior knowledge of the descriptors

P1, P2, . . . , Pn. Sensitivity studies in which reference

masses are retrieved from two distinctive subsets will reveal

whether the parameter that differentiates between the two

subsets influences the mass of ice particles (see section 4 for

an example with sampling temperature as a descriptor).

b. Solving the inverse problem

1) SOLVING AN ILL-CONDITIONED INVERSE

PROBLEM

The mass retrieval process now consists of solving the

inverse problem. Estimates of the problem condition

number—defined as c5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
smax/smin

p
, where smax and

smin are the largest and smallest singular values of the

PSD matrix, respectively—indicate that measurement

uncertainties and noise inherent to the measured data

significantly influence the solution: the problem written

with synthetic data (case presented in section 3) is se-

verely ill-conditioned (c. 104) and the problem using

HAIC–HIWC real data (case presented in section 4) is

ill-posed (c/‘). To circumvent the difficulty related to

numerical instabilities, we follow the regularization ap-

proach presented in Idier (2008) and search for a solu-

tion that minimizes a composite criterion, noted as J(m):

J(m)5
defkPSD �m2 iwck2 1 l � R(m) , (6)

where J(m) is twofold:

d The first term is referred to as the least squares term.

Minimizing that term forces the solution vector to fit

the measurements and to satisfy Eq. (5).
d The second term, referred to as regularization term,

allows the introduction of some prior information that

the solution should fulfill in order to qualify from a

physical point of view and helps in reducing the noise

propagation on the solution.

The retrieved solution will be a trade-off between

fidelity to the measured data and compliance with prior

information embedded in the regularization term. The

compromise between the two sources of information is

adjusted via the value of the regularization parame-

ter l. Since the retrieval process relies on a series of
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measurements, a measurement error covariance ma-

trix Se is added to weight the contribution of each data

point according to their respective uncertainty, as

presented in Borsdorff et al. (2014). The cost function

J becomes

J(m)5
defkS21/2

e (PSD �m2 iwc)k2 1l � R(m) . (7)

In the synthetic case, data points are generated from

populations of synthetic crystals, so there is no mea-

surement error associated with the data: they are all

equally uncertain and the covariance matrix is an iden-

tity matrix. The real data are impacted by measurement

errors that may vary from one data point to the other: Se

is a diagonal matrix (measurement errors are assumed

uncorrelated between data points) and its coefficients

are specified in section 4.

2) REGULARIZATION

A regularization term is added to the least squares

problem in order to stabilize the inversion and to in-

corporate some prior information about the wanted

solution into the minimization process. The definition of

the regularization term is qualitative and depends on

what known properties the solution should comply with.

In this study, a data-based regularization approach has

been chosen: R(m)5 kLkD
21mk2, where Lk is the dis-

crete approximation to a kth-order derivative operator

(Tikhonov regularization matrix) and D is a diagonal

weighting matrix. The regularization is defined to pro-

mote two properties:

d Curve smoothness: The discrete approximation to the

first-order derivative operator is chosen [with matrix

L1 as defined in Huckle and Sedlacek (2012)]

d Superlinear increase of mass with size: The weighting

matrix D balances the effect of the regularization on

the elements of the bin reference mass vector

Elements of D are initially set as the mass of spherical

ice particles: D5 diag[msph(D1 1 5), . . . , msph(DN 1 5)],

where D1, . . . , DN are bin centers and

msph(D)5 ðp/6ÞriceD3. The rationale for this definition,

particularly the 15 offset added to bin centers in the

definition of D, is explained in section 3. As suggested

in Huckle and Sedlacek (2012), an iterative regulari-

zation process may be conducted to improve results

whereby the elements of D are updated at each new

optimization run with the results from the previous run.

The mass vectors presented in section 3 and section 4

result from solely one run of optimization, since a

double run did not significantly improve or change the

results.

3) OTHER ALGEBRAIC OPERATIONS

The particle mass is proportional to volume and in-

creases superlinearly with the size parameter. When the

size range of interest spans several orders of magnitude,

the reference masses are also expected to span several

orders of magnitude, which makes the problem poorly

scaled. A diagonal scalingmay be applied to improve the

problem formulation and to decrease the condition

number. The optimization problem is solved in terms of

the new variablem0, defined asm5D0 �m0, whereD0 is a
diagonal matrix as defined below:

D0
i,j 5

(
[(p/6)r

ice
D3

i ]
21 if i5 j

0 elsewhere
. (8)

This operation is applied to HAIC–HIWC data, where

the size range of interest is (102 12 840)mm. It is not

applied to synthetic data, where the size range of interest

is limited to (102 940)mm.

4) OPTIMIZATION ALGORITHMS

All algorithms used in this paper are sourced from

Nocedal and Wright (2006). The problem is considered

as an unconstrained optimization problem and a line

search strategy is adopted to identify the minimizer

m* 2 R
N of the objective function. Briefly, the solution

is found by creating a convergent sequence of iterates

fm(k)gk such that fJ(m(k))gk decreases. At each itera-

tion, the new iterate is calculated as per Eq. (9):

m(k11) 5m(k) 1a
k
d
k
, (9)

where dk is the search direction and ak is the step length.

At the kth iteration, Newton’s method is used to

compute dk from the gradient and the Hessian matrix of

the objective function [Eq. (10)]. Since the computation

of the Hessian matrix is not cumbersome for small size

problems, this method was chosen for its fast rate of

convergence and because it is relatively insensitive to

poor scaling.

d
k
52$2J(m(k))21 � =J(m(k)) . (10)

The step length ak is computed either iteratively

with a backtracking line search algorithm given in

Nocedal and Wright (2006) (applied to the HAIC–

HIWC dataset in section 4) or explicitly from Eq. (11)

(applied to synthetic data in section 3):

a
k
52

=J(m(k))Td
k

dT
k$

2J(m(k))d
k

. (11)
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The new iteratem(k11) is computed fromEq. (9), and this

calculation is repeated until convergence of the sequence

fJ(m(k))gk is reached, with «5 2.22043 10216 as the

stopping criterion.

The regularization parameter l controls the degree of

regularization applied to the problem. Several techniques

are available to identify the optimal l, that is, the value

yielding the best compromise between the two terms of

the objective function. The L-curve technique, a simple

graphical way of determining lopt from plots of the least

squares term against the regularization term, is used here

(Hansen 1992). An example of such a curve is given in

section 3c.

3. Validation of the method

In this section the algorithms defined in section 2 are

applied to a synthetic dataset presented in section 3a. In

section 3b, the data are used to improve the un-

derstanding of real aircraft data in order to tune the

regularization function accordingly. The validation of

the retrieval process is presented in section 3c, where the

retrieved masses are compared against reference values

computed from the actual mass of simulated 3Dparticles.

a. Generation of the synthetic dataset

The generation of a synthetic dataset starts with the

simulation of ice particle models using an Interactive

Data Language (IDL) program (Fontaine 2014; Fontaine

et al. 2014). A model is characterized by its shape and

dimensional properties, which are defined in Fig. 1 and

summarized in Table 1. Each model is randomly rotated

in space and projected to produce a 2D image. This

process reproduces the working principles of OAPs and

how 2D images are produced from real 3D crystals. The

rotation/projection step is repeated 100 times, such that

100 2D images are created from each 3D model. The

images are then processed to derive Deq using the same

image processing software as for OAP images. The re-

sulting size interval ofDeq available for each crystal habit

is indicated in the last column of Table 1.

Mass is calculated from the 3D volume by prescribing

a constant ice density rice 5 0:917 gcm23 for all particles: it

has the effect of fixing all physical parameters in the for-

ward model (assumption i is satisfied), hence the particle

mass depends solely on volume. For each habit, a lookup

table is createdwhere a single theoreticalmass is associated

with 100Deq resulting from the 100 respective projections.

The next step is the creation of a synthetic data point

that replicates a 5-s average in situ measurement data

point. It consists of forming a population of thousands of

simulated ice particles described by one PSD and its

corresponding theoretical IWC value, noted IWCth.

Two input requirements (user’s input) control the gen-

eration of a simulated crystal population:

d PSD shape: The size range considered in the synthetic

test cases is (102 940)mm. Simulated crystals are sized

into 93 equally spaced 10-mm-wide bins, and the

number of particles per bin is prescribed by a normal

probability density function of the bin midpoint multi-

plied by a prefactor so that there are approximately

10000 elements in each population (or data point). The

normal distribution parameters—namely, its mean

m and standard deviation s—are changed from one

data point to the other when generating the synthetic

dataset, as detailed below.
d Habit mixing: A mixing law is defined to describe the

fraction of each crystal habit within each bin, as in

Table 2, for example.

PSD bins are then populated by randomly picking up

crystals based on theirDeq from habit tables with respect to

the number and habits prescribed by the user’s input. For

each bin the theoretical bin reference mass,mref ,i for the i
th

bin, is calculated as the average of the theoretical masses of

the binned particles. This value is stored for later compar-

ison with the bin reference mass retrieved by solving the

inverse problem. IWCth is calculated by summing the actual

mass of all the elements in the population.

Finally, a synthetic dataset is composed of P different

data points that are generated by randomly varying

m (m0 #m#m0 1 100) and s (100#s# 200). To test

the retrieval method, three synthetic datasets are used:

d One optimization dataset, noted as DS1: this is the

dataset to which the optimization process is applied.

Twice as many PSDs as unknowns are generated

(P5 2N) to ensure that the PSD matrix in Eq. (5)

has a full rank. In DS1, m0 5 300. The unknown mass

vectorm of Eq. (5) (whose elements are the sought bin

reference masses) is found by minimizing Eq. (6)

written with PSDDS1 and IWCth,DS1 quantities.

FIG. 1. Simulated crystals: habit and size definitions.
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d Two validation datasets, noted DS2 and DS3, are

used to test the mass vector retrieved from DS1 on

populations dominated by small (m0 5 100mm) and

large (m0 5 600mm) particles, respectively. IWC

values, noted IWCcal,DS2 and IWCcal,DS3, are calcu-

lated from the retrieved mass vector m and PSDDS2

and PSDDS3 matrices, respectively. These calculated

values are then compared to the corresponding

IWCth for each data point.

Furthermore, some statistical reference vectors can be

defined, since the masses of all individual particles in the

population are known:

d Lower and upper bounds: vectors whose elements are

the minimum and maximum theoretical bin reference

masses, respectively, found across the dataset
d Average bin reference mass [mth 5 (mth,1 mth,2 . . .

mth,N)]: vector whose elements are the average of the

theoretical bin reference mass (mref,i) calculated over

the dataset

Some quantitative criteria are calculated to estimate

the quality of retrieved values:

d Mass percent error (PE) is computed for eachbin from the

retrieved mass value (mi, optimization output) andmth,i:

PE
i
(%)5 100

m
i
2m

th,i

m
th,i

d Mass mean absolute percentage error:

Mass MAPE(%)5
100

N
�
N

i51

jm
i
2m

th,i
j

m
th,i

,

whereN is the number of bins in the PSD, indicates the

accuracy of the mass retrieval process
d IWC mean absolute percentage error:

IWC MAPE(%)5
100

P
�
P

i51

jIWC
cal;i

2 IWC
th;i

j
IWC

th;i

,

where P is the number of data points in the set,

indicates the accuracy of the IWC retrieval process

b. Study of input noise in PSD data

The mass retrieval process uses PSD as input data.

In addition to the unavoidablemeasurement uncertainties,

approximations made in the forward model also make the

PSD a noisy input for inversion. In the frame of the pro-

posed inverse problem approach, the synthetic dataset is

TABLE 2. Mixed-habit population: Mixing laws for different size intervals.

Size interval (bin centers in mm) Crystal habit (fraction in %)

15–45 P1a (25%) C1g (25%) P1c (25%) P1d (25%)

55–145 P1a (33%) C1g (33%) P1c (33%)

155–205 P1a (50%) C1g (50%)

215–795 CP1a_1 (50%) CP1a_2 (50%)

805–935 CP1a_1 (33%) CP1a_1 (33%) Sph (33%)

TABLE 1. Synthetic dataset: habits and sizes of simulated crystal models.

Code Habit

Size descriptors

No. of models

Observed sizes

L, a, and D (mm) Deq (mm)

Sph Sphere D 2 (52 1000) 583 5–1000

Cyl_R5 Cylinder R5 5, L 2 (102 300) 146 11–65

Cyl_R10 Cylinder R5 10, L 2 (102 500) 246 17–116

Cyl_R30 Cylinder R5 30, L 2 (302 1500) 317 46–353

Cyl_R60 Cylinder R5 60, L 2 (302 1500) 257 68–489

Cyl_R90 Cylinder R5 90, L 2 (302 1500) 262 86–597

Cyl_R120 Cylinder R5 120, L 2 (302 1500) 197 102–688

Cyl_R150 Cylinder R5 150, L 2 (302 1500) 197 111–769

C1e Solid column c/a5 1, a 2 (52 900) 395 5–1114

C1g Solid thick plate c/a5 0:2, a 2 (102 1000) 260 5–939

P1a Hexagonal plate c/a5 0:1, a 2 (202 1000) 212 8–924

P1c Crystal with broad branches c5 10, a 2 (112 188) 236 10–146

P1d Stellar crystal c5 10, a 2 (82 125) 218 5–48

CP1a_1 Column with plate a/a0 5 3, c/a5 1, a 2 (102 1000) 289 9–1137

CP1a_2 Column with plate a/a0 5 5, c/a5 0:2, a 2 (202 1000) 213 13–939
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first used as an opportunity to study the noise contained in

PSDs based on OAP images.

The concept of bin reference mass relies on the as-

sumption that PSD bins are natural subensembles where

the crystals’ mass is uniform, which in turn holds if: 1)

PSD bins are narrow and 2) the size descriptor used to

generate PSD accurately describes the particles’ vol-

ume. These conditions are hardly met in reality. On the

one hand, the width of a PSD size class is driven by the

OAP specifications: it cannot be smaller than the probe

resolution, which is nonnegligible (e.g., 10–100mm, as

detailed later in section 4). On the other hand, any size

descriptor derived from 2D projected images will fail to

accurately describe particle volume: with exception of

spherical particles, whose volume is precisely described

by a single size parameter (e.g., its diameter); an accu-

rate volume description of real ice particles with com-

plex geometry (e.g., plates, columns, bullet rosettes,

capped columns, or even aggregates of those) would

require several size parameters. In addition, the pro-

jection of 3D objects onto a 2D plane inevitably distorts

the volume’s dimensional properties so that the arbitrary

projected 2D image scarcely represents the original 3D

volume information. This results in a large variability of

particle masses when sized into bins based on Deq or

similar size parameters derived from2Dprojected images.

Figure 2a illustrates this variability for a population

of simulated hexagonal plates (c/a5 0:2, code5 C1g in

Table 1). The particles are sized into equally spaced

10-mm-wide PSD bins using Deq and the minimum,

mean, and maximum of particle masses in each bin are

plotted against bin centers. For that specific habit, the

particles’ minimum and maximum mass differ by at

least one order of magnitude in the 15–465-mm size

interval. Above 465mm, the maximum mass curve

plateau observed up to 935mm indicates that the larg-

est available simulated particle in this population

(L5 1000mm; M’ 1:2443 1024 g) can end up in 48

different bins depending upon its spatial orientation

before projection.

Similarly, the box plot given in Fig. 2b illustrates the

mass spread for different crystal shapes ending up in the

105 6 5-mm size bin, with habit codes as indicated in

Table 1. Each box plot gives the median, 25th, and 75th

percentiles, as well as extreme values. One can see that

generally the spread increases as the particle shape departs

from the sphere. It is worth mentioning that the process of

sizing multidimensional 3D particles with a size parameter

derived from 2D projected images is not the only source of

variability: a nonnegligible mass spread is also observed for

spherical particles (code5 Sph) as a result of the bin width,

that is, sorting particles whose diameters range from 100 to

109mm into the same 10-mm-wide bin. A preliminary study

where the population of simulated hexagonal plates

(c/a5 0:2; code 5 C1g in Table 1) is sized using dif-

ferent size parameters reveals that using the maximum

dimensionDmax as a size parameter decreases the spread

of mass values within bins, compared to using Deq.

This spread in the particles’ mass within a bin is ex-

pected to be even more pronounced in real data: OAP

images reveal that several particle habits are mixed

within the ice cloud particle populations sampled in

airborne field campaigns. These considerations give an

insight into the level of noise included in PSD data,

which is detrimental to the accuracy of themass retrieval

process. It also underlines the need for regularization

FIG. 2. (a) Mass variability in PSD bins for C1g population; (b) spread in mass in one bin

(1056 5mm) for all simulated habits.
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when attempting to inverse the forward model pre-

sented in section 2a. With this in mind, we proceed with

OAP measurements for lack of better inputs.

c. Application and validation of the mass retrieval
process to synthetic data

1) TEST POPULATIONS

The method has been applied to three test cases with

increasing degree of complexity:

1) Spherical particles: The populations are composed of

spherical particles only (code 5 Sph in Table 1). It

limits the source of noise in input data to the binning

process, since the characteristic dimension of a

sphere is insensitive to 2D projection.

2) Hexagonal plates: The populations are composed of

solid thick plates with an aspect ratio c/a5 0:2

(code 5 C1g in Table 1) only. Since the geometry

deviates significantly from the ideal sphere case, it

allows for a preliminary assessment of projection

noise effects on the retrieval process.

3) Mixed habit populations: In these populations, the

crystals’ habit varies with size according to a habit

mixing law presented inTable 2with habit codes given

in Table 1 (and shown in Fig. 4). This habit mixture

law applies to the three datasets (DS1–DS3).

The results obtained for the first two test cases are not

reported in the present article, but they helped in the

definition of the regularization term and specifically in

the choice of D elements: if masses of spherical ice

particles of diameter equal to the bin center were se-

lected as weighting coefficients in the regularization

matrix for simplicity reasons, it was found by trial and

error that adding the 15-mm offset to sphere diameters

yielded improved estimates of the retrieved masses in

small size bins, that would have been otherwise under-

estimated when particle habits significantly depart from

spherical shape. The last test case is quite challenging

because abrupt changes in crystal habits between two

consecutive bins produce sharp variations of mass with

size. Classical power-law-based mass retrieval methods

would typically fail to capture these features by

smoothing discontinuities into a simplistic power-law

curve. Given the size range (102 940mm) and the

number of bins (93 equally spaced 10-mm-wide bins) of

this synthetic test case, there are 93 unknown reference

masses to be solved.

2) RESULTS AND DISCUSSION

Figure 3 presents optimization results for the mixed-

habit population. Figures 3a and 3b show the mass vectors

retrieved for the nonregularized (l5 0) and the optimally

regularized (l5 lopt 5 7. 53 1025) least squares problem,

respectively. It highlights the importance of the regulariza-

tion to extract meaningful information from noisy data.

Qualitatively, one can see that the mass vector re-

trieved for l5lopt matches expectations: masses are all

positive and increase with size in close relation with the

average bin reference masses, computed from actual

masses of simulated particles (Fig. 3b). The regularization

has an obvious effect of smoothing sharp discontinuities

that are present in the synthetic data: the pronounced

discontinuity between 795 and 805mm, where bin mean

mass is approximately multiplied by 4 due to the in-

troduction of spherical particles, is spread between 695 and

865mm. Smaller discontinuities, like the one between 205

and 215mm, are totally smoothed out. Figure 3c illustrates

howlopt is selected: the curve, referred to as theL curve, of

the least squares term against the regularization term has a

characteristic L shape, hence its name, and the value of

l that yields the best compromise in amplitude between

the least squares term and the regularization term can be

found at the L-shaped ‘‘corner.’’ Finally Figs. 3d–g give a

quantitative assessment of the solution accuracy:

d The mass PE is plotted in Fig. 3d for each bin. If large

disagreements are found in boundary binswhere particle

habits change abruptly (Deq 5 45, 145, 205 and 795mm,

with PE in excess of 50%), the resulting mass MAPE of

only 18.1% indicates that bin reference masses com-

puted by optimization algorithms are generally in good

agreement with theoretical values.
d Figures 3e–g illustrate how the calculated IWCcal values

compare to the theoretical IWCth values for DS1–DS3

[scatterplots, where the red curve underneath the data

points (blue symbols) is the x5 y line]. The mass vector

retrieved from DS1 produces excellent estimates of the

IWC in the validation sets: as shown in Table 3, IWC

MAPE values calculated for DS2 and DS3 are less than

1.6% and 0.6%, respectively.

The effective density reff, defined in this study as the bin

reference mass divided by the volume of a sphere of di-

ameter equal to the bin center, is plotted against size in

Fig. 4. The retrieved effective density varies between 0.115

and 0.928gcm23 following a pattern controlled by the

crystal habits. The retrieved effective density values (blue

cross symbols) generally compare well with the theoretical

values

r
eff,th

(i)5
m

th,i

(p/6)3D3
i

,

(black dots in the figure) especially for particle sizes

above 250mm, where the plateau values are well re-

produced notwithstanding the smoothing effect of the
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regularization. The results are not as good for smaller

particles: this is due to the low contribution of these

particles to the total ice mass resulting from 1) the small

individual weight of these particles and 2) the relatively

small number of particles in these bins as a result of the

choice of normal distribution centered around 300 and

400mm. This demonstrates the potential of this method

to capture size-dependent features much better than any

power-law-based method, producing a regular poly-

nomial curve by construction:

r
eff
(i)5

6a

p
Db23

i .

4. Application toHAIC–HIWC field campaign data

In this section the inversion method is tested on in situ

measurements extracted from theHAIC–HIWC dataset in

order to evaluate its potential in atmospheric sciences

problems.

FIG. 3. Mass retrieval from synthetic data: (a),(b) m2D plots for l5 0 and l5lopt, respectively; (c) L curve; (d) mass PE between

calculated and theoretical bin reference masses; (e)–(g) comparison between retrieved and theoretical IWC for DS1–DS3, respectively.
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a. HAIC–HIWC dataset

In the frame of HAIC–HIWC projects (Dezitter et al.

2013; Strapp et al. 2016a), two airborne field campaigns

were held in Darwin, Australia, in 2014 and out of Cay-

enne, French Guyana, in 2015. With the overarching goal

of characterizing ice particles in mesoscale convective

systems (MCSs), these campaigns resulted in nearly

15000 data points each, sampled at different stages of

cloud life cycle in both oceanic and continental convec-

tion. This makes the HAIC–HIWC dataset one of the

most comprehensive datasets on MCSs from the stand-

point of the microphysical properties of hydrometeors.

In this section we use data taken from three flights, as

reported in Table 4. The optimization is conducted on the

data ofDarwin flight 16 (D16): all data points were sampled

in the same oceanic MCS at a single temperature level

(236.1K) such that the dataset is consistent with respect to

two parameters (cloud temperature and cloud type) po-

tentially influencing the particles’ mass. The other reasons

for choosing D16 as the optimization dataset is the high

number of data points (1051 data points) and the large size

range covered by the sampled particles.

The validation is carried out on data from two arbi-

trarily chosen flights:

d Darwin flight 19 (D19) was conducted in an oceanic

MCS 2 days after D16. Two temperature levels (237

and 226K) were sampled but only the 212 data points

sampled at 237K (consistent with the temperature

range of D16) are used in this study.
d Cayenne flight 26 (C26) was performed one year later in

coastal convection. Three temperature levels (264, 244.2,

and 229.4K) were sampled, and all data points (1298 in

total) are conserved so that the potential effects of

temperature on the retrievedparticlemass canbe assessed.

The analysis considers only data points measured

during level flight periods in areas where IWC values are

larger than 0.1 gm23. As documented in Davison et al.

(2016), the uncertainty in IWC measurements mostly

depends on the temperature and the IWC value: al-

though relative uncertainty remains below a few percent

in most of the operating conditions, it can reach 50% for

warm temperatures (263.15K) and small IWC values

(0.1 gm23), hence the need to consider measurement

errors in the retrieval process. Given the conditions of

D16, the coefficients of the matrix Se are derived from

IWC relative uncertainty values uIWC, calculated using

Eq. (12) (adapted from Fig. 1 in Davison et al. 2016):

�
u
IWC

(%)5 0:0204 IWC20:2344 for IWC 2 (0:12 0:5) g m23

u
IWC

(%)5 0:023 579 IWC20:025 532 for IWC. 0:5 g m23
. (12)

The in situ measured PSD are derived from 2D pro-

jected images of the 2D-S probe (Lawson et al. 2006;

10–1280-mm size range; 10-mm resolution) and the PIP

(Baumgardner et al. 2011; 100–6400-mm size range;

TABLE 3. Optimization results for the synthetic dataset.

Mass

MAPE (%)

IWCDS1

MAPE (%)

IWCDS2

MAPE (%)

IWCDS3

MAPE (%)

18.1 0.55 1.56 0.57

FIG. 4. Test case 3: Effective density against size.
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100-mm resolution). The particles are sorted into size

classes according to theirDeq, and a composite PSD with

bin centers ranging from 15 to 12800mm is computed by

combining data from the two imaging probes. The com-

position technique is adapted fromLeroy et al. (2016) with

two minor deviations: 1) the overlap limits are 800–

1250mm; and 2) the width of the PSD bins is kept as per

the OAPs’ original resolution except in the overlap

(8002 1250)mm, where the width of PIP bins is numeri-

cally decreased from 100 to 10mm by linear interpolation

to ease merging with 2D-S data. As a result, composite

PSDs have 240 bins with a bin width of 10 mm from 15

to 1245mm and a bin width of 100 mm from 1300 to

12 800mm. For D16, the 10513 240 PSD matrix has a

rank of 231 because 9 bins out of 240 are empty

throughout the flight. These bins are at the largest end of

PSDs (bin centers are 1.17, 1.19, 1.2, and 1.23–1.28 cm)

where the concentrations are almost insignificant if any.

The uncertainty in concentration measurements uPSD is

quite hard to establish because of the paucity of data

published in literature for these two probes. In this study,

estimates provided byBaumgardner et al. (2017) are used

with minor deviations:

(
u
PSD

51100%/2 50% for D
eq
, 100mm

u
PSD

5150%/2 33% for D
eq
. 100mm

. (13)

The impact of concentration uncertainties on the re-

trievedmasses is evaluated by solving the Eq. (7) for two

extreme conditions: once with concentrations system-

atically underestimated (PSD5PSD1 uPSD 3PSD,

with negative values of uPSD) and once with concentra-

tions overestimated (PSD5 PSD1uPSD 3PSD, with

positive values of uPSD) which gives the upper and lower

mass bounds in Fig. 5, respectively.

b. Mass retrieval from in situ measurements

The retrieved m2D relationship is plotted in Fig. 5a

(blue cross symbols) along with the upper and lower mass

bounds (shaded area) computed from the underestimated

and overestimated PSDs. The red and yellow

dashed lines represent the masses of spherical ice

particles (r5 917 kgm23) and spherical air particles

(r5 1:225 kgm23), respectively. Qualitatively, the

difference between the retrieved curve and the straight line

that any power-law based method would have produced is

noticeable. Masses are found to globally increase over the

size interval although the function is not monotone, espe-

cially in the (5002 2000)mm subinterval. The plot of ef-

fective density (Fig. 5b), calculated from this mass vector,

confirms the tendency of the effective density to decrease

with size, as commonly reported in literature (e.g.,

Pruppacher and Klett 2010), albeit for other density defi-

nitions. Qualitatively, the shape of the curve reveals quite

irregular variations of the effective density as a function of

particle size and two distinctive regimes for small

(Deq # 300mm) and large (Deq $ 2000mm) particles: the

effective density of small particles, lying between 0.66 and

0:28 g cm23 as the size increases from 15 to 300mm, is one

order of magnitude larger than the effective density found

for particles above 2000mm, where the values lie below

0:015 g cm23. A preliminary assessment of the impact of

the choice of the regularization term (different weighting

matrices were tested) on the effective density shows that

the effective density calculated for the bins of the PSDends

(for particle sizes below 200mm and for sizes above

3000mm to a lesser extent) can be significantly influenced

by the definition of the regularization term. In contrast,

effective density values are more consistent for intermedi-

ate size bins. In the 200#Deq # 3000mm size range, the

effective density decreases from 0.3 to 0:025 g cm23 ap-

proximately, regardless of the definition of the tested

weighting functions (the results of the preliminary sensi-

tivity study are not presented here). The unusually low

values retrieved for particles larger than 2000mm, especially

the trough between 2700 and 7700mm, are subject to dis-

cussion. In this size range, the larger bins are populated in

only a few data points [90% of the bins above 2000mm are

empty inmore than 50%of thedata points (529out of 1051)

and 1022 data points havemore than 90%of the bins empty

above 4000 mm], and for these data points the measured

concentrations are extremely small. Therefore, the contri-

bution of largest particles to the total ice mass is negligible.

As a consequence of the small significance of the totalmass

TABLE 4. HAIC–HIWC dataset: Overview of the data from selected flights.

Flight label (identification) Date, location, cloud type

Temperature level IWC values No. of data points

Mean (std dev) (K) Mean/max (gm23) Number

Darwin 16 (D16) 7 Feb 2014, Broome, oceanic MCS 236:1 (0:363) 1.07/2.75 1051

Darwin 19 (D19) 9 Feb 2014, Broome, oceanic MCS 236:6 (0:545) 0.54/1.46 212

Cayenne 26 (C26) 29 May 2015, Cayenne, coastal MCS 229:4 (0:191) 0.47/3.03 936

244:2 (0:2) 1.25/2.52 186

264 (0:49) 1.49/3.04 176
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of the smallest and largest particles in the least squares

term, it could be argued that the masses of these par-

ticles are neglected by the minimization algorithms.

This limitation could probably be alleviated with better

scaling of the data (here, the applied scaling focuses on

balancing the reference masses’ contributions with re-

spect to a supposed superlinear increase with size).

Alternatively, truncated PSDs could be used as input

data. However, in this study, the span of PSDs is pur-

posely kept as defined in other HAIC–HIWC studies

[i.e., up to 1.28 cm as in Leroy et al. (2016)] in order to

demonstrate the method’s ability to handle a large

number of unknowns.

Since the particle’s truemasses are unknown, the quality

of the mass retrieval is indirectly estimated by comparing

the IWC values calculated from this mass vector to the

reference IWC values measured by the IKP-2 instrument.

A comparison between the calculated and measured IWC

values is presented in Figs. 5c–e for the three datasets, and

the quantitative results are summarized in Table 5. Un-

surprisingly, the best agreement (IWCMAPE5 10:5%) is

found for D16, which supports the minimization process.

The IWC prediction is equally satisfying for D19

(IWC MAPE5 12:1%), where efforts have been made to

sort data points into a coherent subset with respect to

sampling temperature. Perhaps most interesting are the

FIG. 5. Mass retrieval from real HAIC–HIWC data: (a) m2D plot for l5lopt and (b) effective density. (c)–(e) Comparison between

IWCcal and IWCth for D16, D19, and C26 datasets, respectively.

2470 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 34

Unauthenticated | Downloaded 11/17/21 10:53 AM UTC



results of the IWC retrieval fromC26 data. In Fig. 5c, points

are color coded with temperature and three distinct groups

are clearly visible (dark blue for the 229.4K level, light blue

for 244.2K, and yellow for 264K). Data points measured

at a sampling temperature close to that of D16 yield the

most accurate IWC predictions, as they are well distributed

along the x5 y line. In the other two temperature subsets,

the accuracy of IWC prediction decreases as the sampling

temperature departs from 236.1K. At 244.2K, IWCcal

compares well with IWCth, although the method produces

underestimated IWC values. Finally, IWCth values are

generally underestimated by a factor of 1.5–4 for the points

measured at 264K. The good overall agreement found for

C26 (IWCMAPE5 15:1%) contrasts with the noticeable

differences observed between the predicted and measured

IWC values for the two warmest temperature levels: it can

be explained by the dominance of data points sampled at

229.4K in the C26 dataset (936 out of 1298; see Table 4).

These results suggest that 1) ice particles observed in the

D16,D19, andC26MCSs at comparable temperature levels

may have similar mass properties and 2) in the same cloud,

particles sampled at different temperature levels may have

different mass properties.

Since the good agreement between calculated and

measured IWC values observed for D19-244.2K and

C26-229.4K may hide compensating errors, the next step

will be to apply the method on subsets sampled at the

same temperature level in different clouds and compare

the retrieved quantities. Subsequently, themethodwill be

applied to subsets sampled at different temperature levels

in order to evaluate whether a first-order approximation

model describing the mass of ice particles as a function of

their size and the cloud temperature produces consistent

results. If not, we will expand the study to a multipa-

rameter approach and search for potential correlations

between the crystal mass and some other yet undefined

parameters by applying the method to different subsets

with specific environmental conditions. This, as well as

any specific findings in ice particle microphysical prop-

erties and the implications for modeling and remote

sensing retrieval algorithms, is well beyond the scope of

this technical paper, which is focusing on the develop-

ment of the technique and the numerical tool.

Last but not least, the convergence of the optimiza-

tion algorithms is reached after a very small number of

iterations. Practically, the mass vector plotted in Fig. 5

is computed within few seconds on an ordinary com-

puter. It underlines the efficiency of the present

method in retrieving particle mass from large datasets

of collocated and simultaneous PSD and IWC in situ

measurements.

5. Conclusions and perspectives

This article presents a new approach for the retrieval

of ice particles’ size-dependent masses from in situ

measurements. A conceptual model is formulated as a

linear system of equations relating particle mass to

PSD and IWC measurements. The mass retrieval

process consists of solving the inverse problem with

numerical optimization tools. The strength of this

technique is to make optimal use of common in situ

measurements in order to waive the power-law as-

sumption that is classically employed to constrain

m2D relationships, although it has been proved in-

accurate by recent studies. The new technique sim-

plifies the computation of ice particle mass from large

in situ measurement datasets and proves its worth

when applied to aircraft data collected during HAIC–

HIWC field campaigns: IWC values estimated from the

retrieved particle masses match the measured values

with 10%–15% accuracy. The preliminary m2D test

calculations reveal some interesting size-dependent

features otherwise hindered by the power-law as-

sumption. In future work, this data processing

technique will be applied to process the whole HAIC–

HIWC dataset with the overall objective to develop a

statistical model of ice particle mass, taking into ac-

count temperature and any other relevant physical

parameters (IWC value, cloud type, etc.) susceptible to

influence the mass of ice particles. The method is

thought to be directly applicable to any collocated PSD

and IWC measurement datasets, provided the number

of available data points is compatible with the number

of unknown elements of the mass vector to be

solved. The authors believe such an approach could

be adapted to retrieve ice particle mass from PSD

and other bulk measurements, such as radar

reflectivity factors, as long as an inverse problem can

be formulated.

TABLE 5. Optimization results for HAIC–HIWC partial dataset.

Regularization parameter Iterations

IWCMAPE(%)

D16 (1051 data points) D19 (212 data points) C26 (1298 data points)

lopt 5 7:53 106 2 10.5 12.1 15.1
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However, the model and mathematical tools have

been developed heuristically, which leaves room for

improvements in both the formulation of the forward

model and the numerical tools selected to solve the

inverse problem. On the one hand, the proposed for-

ward model uses particles’ 2D imagery as input. It

makes the assumption that the particle volume is

correctly described by a size parameter derived from

the 2D projected images: this greatly simplifies the

problem into a linear system of equations but the as-

sumption is known to be inaccurate. Further studies

on the relation between particles’ 2D projected im-

ages and 3D volume could help in establishing a new

forward model relating the mass of ice particles to

their volume. On the other hand, the technical choices

made to solve the inverse problem are open for dis-

cussion. In this article a regularized least squares ap-

proach is adopted, although a regularized total least

squares approach could probably help in handling

uncertainties in the PSD data. Since mass is a positive

quantity, positivity or box-constrained optimization

approaches and a penalty term, such as a logarithmic

barrier function, could be advantageously tried. Our

regularization term is defined to minimize the

roughness of the curve and to account for the non-

linear increase of mass with size, with use of a

weighted first-order difference operator. Since the

choice of the prior information about the solution is

qualitative, other definitions of the regularization

terms, such as such those including density-based

properties, should be tried.
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