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[1] We study the propagation of a buoyant liquid-filled fissure from a reservoir under
constant pressure within the framework of linear elastic fracture mechanics. We
conducted laboratory experiments by injecting aqueous solutions into gelatin solid: an
analogue for elastic and brittle crustal rocks. Fissure velocity and injection rate of
liquid were measured rather than being imposed. Our experimental results allow
evaluation of how the different driving and resistive pressures evolved during fissure
propagation and highlight the influence of the fracture resistance of the host solid. In an
initial transient propagation regime, elastic pressure generated by the fissure is balanced
by the fracture pressure; the fissure propagates radially with decreasing velocity and
increasing injection rate, controlled by the source conditions. Subsequently, buoyancy
overcomes the source pressure as the driving force, and vertical steady state propagation is
established. The fissure develops a bulbous head and propagation is controlled by the
balance in this head, between buoyancy pressure and fracture pressure. Even after this
transition, the constant values of velocity, flux, and strain energy release rate reflect the
source conditions. Our model suggests that greater horizontal dyke cross section reflects
larger source pressure and that mafic dykes propagating from shallow magma chambers

are unlikely to attain steady state. Moreover, our experiments place constraints on the
mechanics of time-dependent failure of the solid as a process that resists fissure
propagation: propagation velocity scales with the square of the height of the fissure head,
and fracture toughness of rocks would be length scale dependent rather than a material

property.
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1. Introduction

[2] A major process of evolution of the Earth’s litho-
sphere is the upward transport of magma by the creation
and propagation of magma-filled cracks, or dykes, from
zones of partially molten rocks in the upper mantle to the
surface. At great depths and close to the mantellic source
region magma percolates through a porous medium. Closer
to the surface magma propagates by hydraulic fracturing.
The latter transport mechanism is a complex problem
mixing fracture mechanics, elasticity, and fluid dynamics.
However, simplifications can be made: dykes may be
idealized as planar sheets opening in mode I in brittle,
elastic solid as the average strain associated with their
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emplacement, approximately their thickness to length
aspect ratio, is typically of the order of 107> [Pollard,
1987]. Previous studies, mainly numerical, enabled us to
understand separately the effects of the elasticity, the
viscosity and the buoyancy of the fluid on crack propaga-
tion. Early studies presented static solutions for the equi-
librium shape of fluid-filled cracks [e.g., Pollard, 1987].
Nevertheless, Weertman [1971a] showed that buoyant
dykes are unstable and should move upwards. Studies that
have taken into account the flow of liquid inside the
fissure first focused on the coupling between elastic
deformation and viscous flow and similarity solutions have
been found when the injection rate is prescribed, whether
the flow is laminar [Spence and Turcotte, 1985] or
turbulent [Emerman et al., 1986]. Solutions were also
found for injection rates as a general power law in time
[Spence and Sharp, 1985] and for propagation from a
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chamber with constant overpressure [Spence and Sharp,
1985; Rubin, 1993b, 1995a]. Subsequently, fluid buoyancy
has been taken into account. Spence et al. [1987] and
Lister [1990a] found solutions to the steady state case.
According to Lister [1990a], the pressures associated with
the elastic deformation and the strength of the host solid
are only significant in the neighborhood of the fissure tip.
The problem of the fissure shape far from its tip is thus
simplified and Spence and Turcotte [1990] found solutions
for fissures of constant volume. Similarity solutions have
also been found for the lateral extent of a fissure that
propagates vertically from a point source as well as its
horizontal propagation in a stratified solid at the level of
neutral buoyancy [Lister, 1990b]. Lister and Kerr [1991]
applied these results to the propagation of magma-filled
fractures and a comprehensive review of dyke propagation
has been made by Rubin [1995b].

[3] Some experimental studies have also been carried
out. However, it should be noted that few theoretical
studies refer to them. All these experimental studies used
a gel to simulate the elastic and brittle behavior of the
Earth’s crust. By injecting dyed water in gelatin, it has
been shown that the direction of propagation is controlled
by the stress field around the fissure which may be
induced by topography [Fiske and Jackson, 1972] or by
regional tectonics [McGuire and Pullen, 1989]. Further
studies dealt with the effects on propagation direction of
planar discontinuities in the host solid and spatial gradients
in its elastic properties [Pollard, 1973], with formation of
laccoliths [Pollard and Johnson, 1973; Hyndman and Alt,
1987], and linear elasticity has been applied to explain the
shape of fluid-filled cracks in gelatin [Maaloe, 1987].
Following these static solutions, Takada [1990] seems to
be the first to propose scaling laws by means of small-
scale laboratory experiments. He found that fluid-filled
fissures of constant volume propagate at a constant veloc-
ity which depends on the height of the fissures as well as
on the difference of density between fluid and gelatin,
contrary to fissures fed with a constant injection rate; in
this latter case propagation velocity increases both with
time and with injection rate. Takada [1990] also carried
out experiments in which gelatin had been fractured prior
to the propagation of a fluid-filled fissure. In those experi-
ments, for which the strength of the gelatin was greatly
reduced, crack velocities were observed to be two orders
of magnitude greater than in experiments carried out with
virgin gelatin but nonetheless were still lower by at least
three orders of magnitude than velocity predicted by a
Poiseuille flow, hence highlighting the role of the strength
of gelatin. More recently, Heimpel and Olson [1994] put
forward a new model for the propagation of cracks of
constant volume, proposing notably that their speed might
be limited by the transmission of information on the crack
shape by elastic waves.

[4] Despite this intensive study we cannot answer some
key questions of geological importance. For instance, what
determines the flux of magma carried by a dyke? It is
unlikely that a source can maintain a constant injection rate
during fissure propagation. The few data on magma fluxes
seem to indicate that the injection rate is not constant
during the propagation of a dyke [Brandsdottir and
FEinarsson, 1979; Einarsson and Brandsdottir, 1980]. Fur-
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thermore, assuming a steady state boils down to not taking
into account the initiation process. As a consequence the
physical characteristics of the source are no longer linked
to propagation and are excluded from the model. Mériaux
and Jaupart [1998] studied crack propagation from a
reservoir under constant overpressure and showed that
the initial crack loading determines its subsequent prop-
agation. However, these authors, like others, have
neglected the fracture resistance of the solid. This was
mainly motivated by laboratory measurements on rock
samples [e.g., Atkinson, 1984]. Based on scaling analysis,
it is shown that once a dyke has been initiated and has
grown to a critical length, the pressure associated with the
strength of rocks is negligible in comparison with the other
pressure scales, especially magma viscous resistance [Lis-
ter, 1990b; Lister and Kerr, 1991]. However, field estima-
tions give values 10°—10° times greater than those
measured in the laboratory [Delaney and Pollard, 1981;
Reches and Fink, 1988]. Moreover, it is difficult to believe
that fracturing is negligible from the very beginning of the
propagation in the case of flawless solids. Hence we ask,
how may a dyke grow from a regime where the fracture
resistance of rocks would be significant to a regime where
it could be neglected?

[s] We suppose in our study that magma cannot intrude
the surrounding rock by hydraulic fracturing as long as the
fracture resistance of the rock is not overcome. Similar to
most studies on dyke propagation we base our analysis on
linear elastic fracture mechanics. Therefore, we assume that
a liquid-filled crack cannot propagate as long as the stress
intensity factor K at its tip does not reach the fracture
toughness K. of the surrounding solid. One basic question
is whether K. is a material property independent of the crack
dimensions and loading. This has been assumed in the vast
majority of the literature on dykes, although Rubin [1993a]
has argued that this vision may not be adequate for dykes at
high confining pressure. We use this simplification in our
initial approach but will return to this key issue in the light
of our experimental results. We do not deal with the
influence of the volatiles that could be present at the crack
tip [Barenblatt, 1962]. A theoretical investigation of this
effect has been made by Lister [1990a] and the hypothesis
that such volatiles could be an origin for precursor volcanic
eruptions has been experimentally investigated by Menand
and Tait [2001]. Finally, because we concentrate on the
mechanical aspects of the problem, we do not take into
account thermal effects.

[6] Fracturing processes are very difficult to handle in
numerical models whereas they are always present in
laboratory experiments using gelatin [7akada, 1990; Lister
and Kerr, 1991]. In this paper, we study with laboratory
experiments the propagation of a fissure fed by a reservoir
under a constant pressure. In these experiments, aqueous
solutions are injected in gelatin solids simulating the
elastic, brittle crust and care was taken to start fissure
propagation from a well-characterized initial condition.
We first introduce the experimental techniques that we
developed to measure in situ Young’s modulus and the
fracture toughness of gelatin solids with which we char-
acterize their rheology. We then present our experiments
and propound a new model of fluid-filled fissure prop-
agation. We conclude with a short discussion on our



MENAND AND TAIT: LIQUID-FILLED CRACK PROPAGATION

results and the geological application and implications of
our work.

2. Rheology of the Gelatin

[7] Gelatin is a clear, brittle, viscoelastic solid with a low
shear modulus and a Poisson’s ratio of nearly 0.5. It has
been used in experimental studies of dyke propagation
because its low shear modulus allows it to deform signifi-
cantly under gravity at laboratory scale [e.g., Fiske and
Jackson, 1972; Maaloe, 1987; Takada, 1990; Heimpel and
Olson, 1994]. If it was assumed in these studies that gelatin
behaves in an elastic, brittle manner, such an assumption
however has never been carefully verified. Elasticity and
brittleness are two different properties. However, Griffith
[1920] and Irwin [1957] showed that they are not inde-
pendent for elastic solids. In this ideal case, fracture tough-
ness follows the relation

Kc: \/Z’YSE7 (1)

where E is the Young’s modulus of the elastic solid and v; is
its surface energy which is thought to depend only on the
temperature [Griffith, 1920]. Elastic solids of a similar
composition at a given temperature should have surface
energies of the same order of magnitude and therefore
should differ only by their Young’s modulus. We thus
developed techniques to measure Young’s modulus £ and
fracture toughness K. of gelatin solids in situ in our
experiments, which allowed us to verify relation (1) for
gelatin.

[8] High-clarity, 200 bloom, acid, pigskin-derived gelatin
in granular form was supplied by SKW Bio-Systems. The
gelatin was prepared by dissolving the powder in distilled
water. The solution was heated until complete dissolution of
the gelatin at 60°C, after which 0.1% sodium hypochlorite
was added to prevent fungal growth. The gelatin was then
poured in two identical acrylic tanks; one to measure its
Young’s modulus and the other to measure its fracture
toughness. The gelatin was left to solidify in these two
tanks under hydrostatic conditions, horizontal strains are nil
and Poisson’s ratio v = 0.5, in an air-conditioned room at
20°C for 48 hours, timescale of gelification was approx-
imately 1 day for the concentrations used, in order to ensure
thermally homogeneous gelatin solids. A thin layer of
silicon oil was poured on the gelatin surface in order to
avoid evaporation during solidification, which would create
a gradient of gelatin properties. Once the gelatin was solid
both measurements of £ and K. were performed.

2.1. The Measurement of Young’s Modulus

[v] We measured Young’s modulus of the gelatin solid by
putting a rigid, circular cylinder, made of duraluminum, on
the surface of the gelatin. The radius of this object was
small compared to the dimensions of the tank; the gelatin
could thus be seen as a semiinfinite medium. The vertical
deflection w created was then measured and Young’s
modulus was calculated by means of the following relation
[Timoshenko and Goodier, 1970]:

7Mg(1 —1?)
o 2aw

E : (2)
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where M and a are the mass and radius of the cylindrical
weight, g is the gravitational acceleration, and v is the
Poisson’s ratio of the gelatin. The crucial point is to
measure the deflection as accurately as possible. This was
done by using a digital micrometer to determine the
position of the top of the weight with respect to a
reference position rigidly attached to the tank. This method
allowed us to measure E with an error less than 2.5%.
Solids of different Young’s modulus were made by
changing the concentration of gelatin. Note, however, that
Young’s modulus of a gelatin is not a constant but
continuously increases with time as gelification continues.
Thus, for each experiment, several measurements of
Young’s modulus were made and the experiment was
carried out when the desired value of E was attained.
Experimental durations were less than 5 min, a short time
period when compared to the time evolution of Young’s
Modulus so it could be assumed to be constant during an
experiment.

2.2. The Determination of the Fracture Toughness

[10] In the case of an edge crack embedded in a semi-
infinite elastic solid, the stress intensity factor K at the crack
tip may be expressed as [Sneddon and Das, 1971]

K = a APVxh, 3)

AP being the overpressure of the crack averaged over its
height 4. The overpressure of the crack is defined as the
difference between the pressure in the crack and the stress in
the solid in the absence of the crack. o is a dimensionless
factor which is a function of boundary conditions,
especially those at the surface of the semiinfinite solid, in
the case of a crack embedded in an infinite elastic solid we
would have o = 1.

[11] We created a small edge crack in our gelatin by
plunging a rigid, metallic blade, made of stainless steel, in
the solution of gelatin before its solidification. Once
the gelatin was solid, the blade was carefully removed.
The fissure was then filled with water as well as the part
of the tank that was free of gelatin. The tank was then
turned over in order to have the water reservoir beneath
the gelatin and the reservoir was fed in such a way that its
pressure balanced exactly the weight of the gelatin.
According to linear elastic fracture mechanics, once the
stress intensity factor K at the tip of the fracture reaches
the fracture toughness K. of the solid the crack propagates.
This was achieved by slowly increasing the crack over-
pressure: we injected some air into the crack by using
compressed air going first through a pressure reducer and
then through a small capillary positioned in the fissure. As
air was injected into the crack, the excess water was bled
from the reservoir in order to maintain a free surface
condition at the interface between the reservoir and the
gelatin. The experimental apparatus is schematically drawn
in Figure 1. Measuring the height of air in the fissure,
which gives us the crack overpressure at the onset of its
propagation, and using equation (3) we calculated the
stress intensity factor at the crack tip. The calculation
requires determination of the factor o, which was done
following the work of Sneddon and Das [1971] for an
edge crack linked to a free boundary. We identified this
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|
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reservoir of water (APr = 0)

Figure 1. Schematic diagram of the experimental appara-
tus used for the determination of the gelatin fracture
toughness. The excess of water is bled off the reservoir
while air is injected in the crack insuring a free surface
condition at the interface between the water reservoir and
the gelatin solid.

stress intensity factor with the fracture toughness of the
gelatin solid.

2.3. Relationship Between Young’s Modulus and
Fracture Toughness

[12] In the case of an edge crack embedded in a semi-
infinite elastic solid, the stress intensity factor at the crack
tip differs from the case of a crack in an infinite elastic solid
by the factor a. However, we can still apply the approaches
developed by Griffith [1920] and Irwin [1957]. Therefore, if
our gelatin solids behave in a pure elastic manner they
should obey relation (1). Figure 2 is a plot of K. of our
different gelatin solids as a function of their Young’s
modulus. The plain curve corresponds to the theoretical
equation (1). The best fit through our data is

Keexp = 0.97 E%5 Pa m2. (4)

Taking into account the error bars on K. and E our data are
in good agreement with the expected theoretical relation for
pure elastic, brittle behavior. Furthermore, equation (4)
enables us to calculate the fracture toughness of a gelatin
solid from the measurement of its Young’s modulus, the
obvious advantage being the nondestructive determination
of the latter. It also gives us the surface energy of the gelatin
solids: y; ~ 1 T m 2.

3. Propagation of a Buoyant Fissure From a
Reservoir Under Constant Overpressure
3.1. Experimental Method

[13] In this section we present the experimental apparatus
that we used to study the propagation of a water-filled fissure
from a reservoir under constant overpressure (Figure 3).
Details of experimental conditions are given in Table 1.
Gelatin was set under hydrostatic conditions in an acrylic
tank 30 cm wide by 50 cm high. A rigid reservoir filled with
dyed water was situated beneath the gelatin tank. The
injection of water into the gelatin was allowed by a 5 mm
wide and 20 cm long slit made in the undeformable roof of
the reservoir. Furthermore, the reservoir was fed by an
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additional reservoir placed on a small elevator. This elevator
enabled us to lift the additional reservoir in order to increase
the reservoir overpressure. Once the small elevator was
locked, the additional reservoir fed the main reservoir with
a given head level. This header tank was large enough to
maintain a constant head level during the propagation
because the total volume of water injected in a crack was
small, the maximum variation of the head level was 1-2
mm. Therefore the reservoir overpressure stayed constant
during the crack propagation. We also measured the injection
rate using scales placed on the small elevator and beneath the
additional reservoir. The scales were linked to a PC, which
recorded the mass of water lost by the reservoir and thus
injected into the crack. This allowed us to measure the
injection rate instead of imposing it. The propagation was
videotaped in order to measure the crack tip velocity. The
video camera was manually moved up on a vertical track to
keep it level with the tip of the fissure.

[14] Inside the reservoir was a movable plate on which a 1
mm thick, 1.5 cm high, and 12 cm long metallic blade, made
of stainless steel, was mounted. Before pouring the gelatin
solution into its tank, we initially sealed the slit with the
movable plate. This way, the metallic blade penetrated the
slit in the reservoir roof. Once the gelatin was solid, the plate
was carefully moved down. The metallic blade was thus
taken out of the gelatin solid and created a small fissure filled
with fluid from the reservoir. This technique enabled us to
propagate the fissure from a well characterized linear source.

[15] Just prior to starting an experiment, the Young’s
modulus of the gelatin was measured by the technique
described in section 2.1. The reservoir overpressure, ini-
tially nil, was slowly increased with the aid of the small
elevator and the head level was maintained constant once
the fissure started to propagate. The injection rate was then
recorded and the propagation was videotaped.

3.2. Experimental Observations and Measurements

[16] When the fissure started to propagate, we observed in
all experiments that the propagation was initiated from a

102

[\

—

fracture toughness (Pa mm)
=

3 104

—
(]

—_
o

Young’s modulus (Pa)

Figure 2. The fracture toughness K, as a function of the
Young’s modulus £ for different gelatin solids. Each point
represents a gelatin solid. The plain curve represents the
theoretical equation K, VE.
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free surface
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= gelatin solid / 30 cm
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No displacement
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Figure 3. Schematic diagram of the experimental appara-
tus used for the propagation of a water-filled fissure from a
reservoir under constant overpressure.

point of the linear source. Then, the source injection
extended laterally and the fissure propagated radially in a
nearly vertical plane. We also observed that the fissure had
an approximately elliptical cross section, as expected for a
pressurized cavity embedded in an elastic solid [Sneddon,
1946]. The form of the fissure during this early stage of the
propagation is shown on Figure 4. Afterward, the propaga-
tion became mainly vertical and the shape of the fissure
stretched out vertically. Moreover the fissure seemed to
develop a head thicker than its tail. This was not easily
observed because the fissure sometimes became slightly
curved and was not along the axis of the camera, but it
was particularly noted in experiments 19, 20, and 22. The
transition between the initially radial and later vertical
propagation occurred after typically 10—15 cm of propaga-
tion. Figure 5 shows the shape of the fissure after the
transition. In almost all experiments we observed that during
propagation in the uppermost part of the tank, after approx-
imately 25—30 cm of propagation, the fissure deviated from
vertical trajectory and followed a path that curved toward
one side of the tank, presumably due to wall effects. We will
restrict our description to the part of the fissure propagation,
which is not affected by the walls of the tank.

[17] We measured the distance of propagation of the
fissure and the mass of water injected into the fissure as
functions of time, as shown on Figure 6 for experiment 24.
Instantaneous velocity was calculated by differentiating a
linear regression through the distance data for five fissure
positions, the point on which the fit was centered and two
either side. The instantaneous volumetric injection rate was
calculated in the same manner from the mass data divided
by the density of the fluid. Figure 7 is a plot of the
velocity and the injection rate of the fissure as a function
of its length for experiment 24, deduced from the data
shown on Figure 6. The velocity data seem to be noisier
than the injection rate data. This may be due to the
measurement procedure that we used, the video camera
was manually moved up, although we cannot rule out that
this effect may be real and related to the dynamics of
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propagation. However, there are clearly two different
regimes. This is particularly visible from the injection rate
data, the transition between the two regimes occurring
after about 10 cm of propagation in this case, experiment
24. The first regime was characterized by an increasing
injection rate and a decreasing velocity. This implies that
the fissure inflated and/or propagated laterally at the level
of the source. It seems therefore that there is a corre-
spondence between these velocity and injection rate meas-
urements and the radial propagation we initially observed
in the experiments. In the second regime, both the fissure
velocity and the injection rate were essentially constant.
This steady state was not imposed in our experiments but
rather was naturally adopted by the system; we emphasize
that this steady state was approached from a regime with
an increasing flux and a decreasing velocity.

[18] Finally, in all experiments the flow inside the fissure
was always laminar. In the case of a fissure of width w,
which is filled with a liquid of density p and viscosity 1, and
that propagates at a velocity u, flow inside the fissure is
turbulent if the Reynolds number R, =~ exceeds a critical
value of order 1000. Conversely, flow 1s laminar if R, <
1000. In all experiments, the injected liquid was water, for
which density and viscosity are 1000 kg m > and 10> Pa's,
respectively, the velocity of propagation was always less
than 1 cm s~ ' and the fissure width was always less than 5
mm. As a consequence, the Reynolds number R, was
always less than 50.

3.3. The Different Pressure Scales
[19] In order to quantitatively analyze our observations,
we follow Lister [1990b] and Lister and Kerr [1991] and
define five different pressure scales. The geometry of the
fissure that we use is shown on Figure 8. The height of the
fissure is 4, its breadth is 25, its thickness is 2w and we use
the letter / when we refer to a length, # or 2b, in a
nonexplicit manner. There are three driving pressures. These
are the elastic pressure scale required to open the fissure
E w

Pesiowy 1 ®)

where / is the smallest of the height or the breadth of the
fissure, the source overpressure AP, and the hydrostatic, or
buoyancy, pressure

Py~ Apgh, (6)

where Ap is the difference between the density of the solid
and the density of the liquid, so that the fluid overpressure is

Table 1. Details of the Experimental Conditions®

Experiment  p, (kg m>) p(kgm>) n(Pas) E(Pa) AP, (Pa)
19° 1013.0 1000.6 1073 1525 749
20 1013.0 1000.0 1073 1581 327
21 1013.0 1000.3 103 929 190
22 1024.9 1001.2 1073 5529 749
24 1024.6 1001.2 1073 7899 1133

#All experiments were dyed water injected in gelatin solid. AP,
corresponds to the reservoir overpressure needed to propagate the fissure.
The overpressure was progressively increased until the fissure propagates
except in experiment 19: AP, has violently been imposed and fissure has
immediately propagated.

AP, violently imposed.
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(b)

Figure 4. The shape of the fissure during the early stage of
its propagation in experiment 22. The photo (a) taken after 9
cm of propagation shows the elliptical cross section of the
fissure. The in plane view (b) is a schematic illustration of
the radial propagation.

the sum of AP, and P;. The two other scales are resistive
pressures. One is the viscous pressure drop

3nul

Py~

i ™
where 1 is the viscosity of the fluid, u the average velocity
of the fluid inside the fissure, which is also the fissure
velocity, and / the length of the fissure. The other is the
fracture pressure

(8)

This is the overpressure needed by the liquid to generate a
stress intensity factor K at the crack tip, which should be at
least equal to K. for the host solid to be fractured.

[20] The elastic pressure (5) and the fracture pressure (8)
are quasi-static from an elastic point of view, which means
that they are not necessary valid for the dynamic problem
of the propagation of a fissure. However, the use of these
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equations in the present study is justified by the fact that
fissures propagated with velocities that were two orders of
magnitude less than the velocities of elastic waves, hence
propagated quasi-statically: in the range of the experimen-
tal conditions, shear wave velocities were approximately

{ _._L-u—-yﬂvl"':

N

(b)

Figure 5. The shape of the fissure in cross section, in
experiment 22, after 21 cm of propagation (a). The fissure
seemed to develop a head thicker than its tail. Initially
radial, the propagation became mainly vertical as schema-
tically illustrated by the in plane diagram (b).
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Figure 6. The distance of propagation of the fissure (a)
and the mass of water injected in the fissure (b) as a function
of time in experiment 24.

time (s)

equal to 1 m s™"
than 1 cm s .

while fissure velocities were always less

3.4. [Initial Propagation Regime

[21] We initially observed that the propagation was radial
and in a vertical plane or nearly so, in short, there was no
specific direction for fissure propagation. This suggests that
the buoyancy pressure (6) was initially negligible compared
with the other pressure scales. The initial height of the
fissure was indeed small, 1.5 cm. Moreover, the fissure
velocity was low as well as the viscosity of the injected
liquid, water for which n = 107> Pa s, suggesting that the
viscous pressure drop (7) could be neglected as well.

[22] This can be shown quantitatively by comparing
terms explicitly. The fissure was observed to have an
ellipsoidal shape and to resemble “half a penny” so that
its breadth was approximately equal to twice its height. Its
basal width, 2w, is thus easily expressed as a function of its
volume ¥, which is known from the data of the mass of
injected fluid:

3V
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It appears that, except in experiment 24, the basal width
of the fissure remains nearly constant, influenced by the
lower boundary condition of no displacement on the
lower gelatin surface, as expected. In experiment 24,
however, the fissure width appears to be proportional to
the fissure length implying that the elastic pressure
remains constant, as would be expected if slip occurred
between the base of gelatin solid and the base of the tank.
We assume that in this case, the gelatin adhered less well
to the tank base than in the other experiments, although
we were unable to check it independently. Equation (9)
enables us to express the pressure scales as functions of V'
rather than w. Figure 9 represents the evolution of the four
pressure scales (5)—(8) during the fissure propagation for
the two boundary conditions: no displacement and slip
displacements. It shows that the buoyancy pressure and
the viscous pressure drop can be neglected during the
initial propagation regime in both cases. Note that, in this
transient regime, the viscous pressure drop stayed constant
in most experiments and even decreased in the slip
displacement case. This suggests that, initially, propaga-
tion occurred in a regime characterized by an approximate
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fissure as a function of its length in experiment 24.

fissure length (m)



ECV 16 -8

height h

breadth 2b

Figure 8. Schematic diagram of a fissure. The fissure has
a height £, a breadth 2b, and a thickness 2w such as 2w <
2b < h.

balance between the elastic pressure (5) and the fracture
pressure (8); as propagation was quasi-static, dilation of
the fissure occurred much faster than propagation and
during this initial regime the elastic pressure balanced the
source overpressure while propagation was controlled by
the stress intensity factor at the tip of the fissure:

E K
Y AP, ~

2(1-v2) 1 vVl

[23] The quasi-static behavior of the fissure is not
assumed but observed. The volume of the fissure V is
function of the constant fissure width (equation (9)). By
differentiating it with respect to time and dividing by the
velocity u = dl/dt, we obtain the ratio of the flux g = dV/dt
over the crack velocity u as a linear function of the crack
length. In experiment 24 however the elastic pressure
rather than the fissure width was constant and V7 must
be expressed as a function of the constant overpressure in
the fissure AP, before differentiating it with respect to
time, by combining equations (9) and (10). We therefore
obtain that

(10)

(11)

with the numerical factor 3 = 2 for experiments 19—-22 and
B = 3 for experiment 24. Figure 10 shows that the
experimentally measured ratios g/u follow the quasi-static
relation (11).

[24] We therefore have observational evidence that the
fissure is behaving quasi-statically, from an elastic point of
view, even though it is propagating and even though the
stress intensity factor at its tip K is larger than the fracture
toughness K., as suggested by equation (10). Moreover,
equation (10) implies that the rate of propagation of the
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fissure was being controlled in some way by time-depend-
ent failure of the solid ahead of the tip. Before discussing
the implications of this idea for dyke propagation we
describe the propagation observed during the latter stages
of experiments.

3.5. Steady State Regime

[25] After 10—15 cm of propagation we observed a new
regime characterized by a constant fissure velocity and a
constant injection rate. Furthermore, we observed that the
propagation became mainly vertical which suggests that the
buoyancy pressure had become an important driving force.
Indeed, according to Figure 9, the buoyancy pressure P
becomes comparable to the elastic pressure P, at approx-
imately this height. As the fissure propagated, the buoyancy
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Figure 9. The evolution of the four pressure scales during
the fissure propagation for two different lower boundary
conditions: (a) no displacement, experiment 19 in the
present case, and (b) slip displacements, experiment 24. In
both cases, the stress intensity factor at tip of the fissure has
been assumed to be equal to the fracture toughness of the
solid during the whole propagation. The vertical dashed line
separates the transient initial regime from the steady state
one, as observed from the velocity and injection rate data.
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Figure 10. The ratio of the volumetric injection rate g over
the crack velocity u as a function of the ratio of the volume
of the fissure Vover its length /. 3 = 2 for experiments 19—
22 and 3 = 3 for experiment 24 in order to compare all the
data on the same graph (see text). Each symbol represents
an experiment: O 19, @ 20, B 21, A 22, and 4 24. The
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increased. Ultimately, when the fissure reached a critical
height

AP,

lc ~ 5
Npg

(12)

the buoyancy pressure and the fissure overpressure were of
the same order. Moreover, the viscous pressure drop P, was
negligible in comparison to the fracture pressure (Figure 9).
It is therefore reasonable to assume that propagation was
controlled subsequently by a balance between P, and P;:

Apgle ~ (13)

K
vl
This new balance explains the transition from a radial to a
vertical propagation. We also observed qualitatively that the
fissure developed a bulbous head although this was not
practically possible to quantify. We propose that once the
buoyancy pressure overcame the source pressure, the fissure
developed a bulbous head of length /. (equation (12)) that
was connected to the source by a thinner tail and that the
propagation was controlled by the balance which took place
in this head between the buoyancy pressure and the fracture
pressure. Figure 11 is a schematic illustration of such a
propagation. At this point, the fissure head, in which elastic
and buoyancy pressures are in balance, had a thickness

2(1 —1?)
E

2(1 —12) AP?

AP, I. ~ .
E Apg

We ~

(14)

The fissure tail was thinner and viscous pressure drop is
expected to be important there. Figure 9 shows that, in the
steady state regime, it increased linearly with the height of
the tail. So did the buoyancy pressure. Our interpretation is
that the buoyancy balanced exactly the viscous pressure
gradient as the tail of the fissure steadily lengthened and
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adjusted elastically its thickness wy in order to maintain such
a balance. According to White [1974], this thickness was

4ng

1
3
e (ﬂbApg) ’

where b is half the breadth of the fissure tail.

[26] At the transition between regimes, when the fissure
had a height /., the buoyancy pressure generated a stress
intensity factor K, at the tip of the bulbous head. At the
transition, both balances (10) and (13) should be approx-
imately valid. By combining these two equations with the
ratio g/u, used as a kinematic estimate for the cross-sec-
tional area of the fissure ww/., we obtain that

(15)

E qr

fe ~ {2(1 — ) wApgul’ (16)

and

K, ~ l: EApg g:lz (17)

2(1—v¥)u

There is therefore a correspondence between a constant
stress intensity factor at the fissure tip, which controls the
fissure propagation, and the observed steady state propaga-
tion, with a constant ratio g/u. We propose that the steady
state propagation was established by the constant head
height /., and therefore the constant stress intensity factor
K,, that was determined at the transition between regimes. In
this interpretation, the tail fed in a passive manner the
steadily propagating fissure while the buoyancy pressure in
its head overcame the fracture pressure and we suppose that
the fracturing processes that controlled the propagation
operated in a quasi-static manner.

4. Discussion
4.1. Results

[27] We have found that a buoyant liquid-filled crack fed
by a reservoir under constant pressure can steadily prop-
agate. The shape of the fissure in the steady state regime
was the same as in the “viscous model [Lister and Kerr,
1991].” In fact, once the steady state regime is achieved,
the head regime that we describe and the tail regime of the
“viscous model” are exactly balanced, and hence we
cannot tell the difference in a sense. That our model,
controlled by fracture resistance of the host solid, and the
“viscous model” give identical steady state regimes might
seem a paradox. It is not: we show that we must take
account of the transient regime through which the steady
state is approached in order to know what the steady state
will be. The “viscous model” determines what shape of
crack is required to satisfy the assumed steady state
propagation. This assumption means that the source is
excluded, and thus we lose important information: we
cannot say what kind of a geological source we are dealing
with, at least not more than that it must be able to maintain
a constant flux. We should therefore expect that in this
steady state framework, the fracture toughness does not
affect the rate of propagation, as the ‘“viscous model”
indeed shows.
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Figure 11. Schematic illustration of the fissure propaga-
tion in the steady state regime in cross section (a) and in
plane (b) views. Once the fissure reaches a height /., the
hydrostatic pressure and the source pressure become
comparable. Then, the fissure propagates mainly vertically
and develops a bulbous head of length /.. The propagation is
controlled by the balance that takes place in the fissure head
between the hydrostatic pressure and the fracture pressure.

[28] But this vision is too restrictive. At steady state the
head and the tail must have the same speed, but different
physical balances determine their respective velocities. We
show that if the source is characterized by relatively con-
stant pressure, which is reasonable physically, the speed of
propagation in fact initially depends on the pressure in the
source and the fracture toughness (Figure 9) and this also
determines the speed of the head in the subsequent steady
state. Once a dyke has reached a buoyancy-driven steady
state, although the source is no longer directly “visible”
(i.e., as in the “viscous regime”), the source is “remem-
bered” in the following sense. The flux and velocity of the
dyke transiently adjust in the fracturing regime to the steady
state that is consistent with the source pressure and the
fracture characteristics of the host as well as the density and
viscosity of the liquid. Hence it is important geologically to
characterize as well as possible this fracturing regime that
we have shown to exist.

[20] However, the way fracturing processes operate at the
fissure tip remains unclear. In our experiments, the viscosity
of the liquid appears to exert no active control on the
velocity of crack propagation. Propagation is controlled
by time-dependent failure of the gelatin solid at the tip of
the crack. The linear elastic fracture mechanics framework
does not contain any timescale and thus cannot provide a
model for propagation velocity; it only provides a threshold
above which the solid fractures and thus crack propagation
takes place. Nevertheless, our experiments provide some
constraints on failure-controlled crack propagation. In the
case of buoyant liquid-filled cracks of constant volume, it
has been argued that, all else being equal, the velocity of
cracks should be proportional to the square of their height
[Heimpel and Olson, 1994, equation (8)]. Recently, it has
been observed that fissures that have a growing gas pocket
at their tip propagate with velocities proportional to the
square of the height of the gas pocket, which is the fissure
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head [Menand and Tait, 2001]. There is no conceptual
difference between this study and the steady state regime
observed in our experiments; the tail of gas driven fissures
does not play any role in the propagation, the latter being
entirely controlled by the fissure head. We should therefore
find that our fissures and those driven by gas are subject to
the same fundamental control. Figure 12 shows that velocity
data from both sets of experiments can indeed be correlated:

uoc AplP. (18)
This relationship highlights that as /. was determined by the
source conditions, I, ~ AP/(Apg) and AP, ~ K./\/=l,
so was the crack velocity even in the steady state regime.

[30] We can illustrate this result in another way. In the
steady state regime the stress intensity factor K, ~ A
P, /w1, was constant. The propagation being quasi-static,
K, may also be written as

(19)

where G is the strain energy release rate during the steady
propagation [Lawn, 1993] and, like K, stayed constant. At
the onset of fissure propagation

K. =+/2v,E ~ AP,+/7[; = constant,

(20)
and combining equations (12), (19), and (20) we obtain

AP,

G2y —
Vs Apgl,

(21)

Therefore the strain energy release rate G in the steady state
regime was a function of v, and the ratio AP,/(Apgl;). All
our gelatin solids being characterized by the same surface
energy vy, G in the steady state regime was thus determined
by the ratio of the source overpressure and the buoyancy
pressure in the initial fissure, that is to say by the initial
source conditions.

[31] This result resembles that obtained by Weertman
[1971a]: once the buoyancy pressure became nonnegligible
and hence became the driving pressure, the length of the
fissure head was determined. On the other hand, we found
that the propagation was steady contrary to Weertman
[1971Db]. This difference comes from a discrepancy in his
argument. Indeed, Weertman [1971b] assumed that the
crack velocity was controlled by the fluid in the fissure,
more specifically by the viscous pressure drop, but he also
assumed that the crack had a constant volume. However, it
is not possible to completely extract the fluid out of the
crack tail as it closes. In other words, Weertman [1971D]
took the fluid viscosity into account in the thicker part of the
fissure to calculate its velocity but by assuming that the
fissure could close to maintain a constant volume he
implicitly neglected the viscosity in the thinner part of the
fissure. In our work, we have shown that the viscosity
affected only the thickness of the tail, which fed the fissure
in a passive manner. The rate of propagation was seemingly
entirely controlled by the fissure head and the mechanics of
failure at its tip in response to its buoyancy.
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Figure 12. Fissure velocity scales with Ap/Z. Both liquid-
filled fissures, same symbols as in Figure 10, and gas-driven
fissures from the work of Menand and Tait [2001] identified
by ® are represented.

[32] The propagation was limited by the fracturing pro-
cesses while the fissure overpressure remained constant
during the initial regime. This would imply that the stress
intensity factor K increased and became larger than the
fracture toughness K.

KNAP,\/-NINKC£>KC.

NE (22)
If this is correct, then our experimental results show that a
fissure may steadily propagate in a quasi-static manner even
if the stress intensity factor at its tip is greater than the
fracture toughness of the solid. In our experiments K, could
be up to 4 times greater than K. Note however that
although K apparently increased during the initial propaga-
tion regime, we observed that the fissure slowed down. This
suggests that the resistance to the propagation, performed by
the fracturing processes, did not stay constant but increased
as the fissure propagated, and hence that fracture resistance
is not a material property but is length scale dependent.

4.2. Geological Application

[33] Is it possible to apply our model to dyke propaga-
tion? Answering this question requires knowledge of the
fracture resistance of rocks. Our experiments suggest that
time-dependent failure of the gelatin solid controls the
propagation of fissures and one can argue that mechanics
of time-dependent failure might be different for gelatin and
rocks. However, when applied to dyke propagation, such
complex mechanics are still not well understood as time-
dependent failure depends on the deformation of rocks
around the dyke tip, which in turn is affected by failure
of rocks at the dyke tip [Mériaux et al., 1999]. On the other
hand, despite that linear elastic fracture mechanics does not
provide any timescale, such a framework was nevertheless
successful to explain the regimes we observed in our
experiments. Moreover, we have shown that gelatin
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behaves as an elastic, brittle solid, which is the behavior
thought to be relevant for rocks, at least to leading order.
We therefore think that such a framework should be enter-
tained for dyke propagation and briefly outline the geo-
logical implications, although these should be considered as
preliminary at this stage.

[34] A typical value for the fracture toughness of rocks
measured in laboratory is K. ~ 1 MPa m'? [Atkinson, 1984]
whereas estimations deduced from field measurements are
two to three orders of magnitude greater [Delaney and
Pollard, 1981; Reches and Fink, 1988]. By comparing P,
and P, we see that these two pressure scales are comparable
when a dyke has a length

kw2 \3
I~ (3 VT u) '
We may take for a typical mafic dyke from Hawaii a
thickness 2w ~ 1 m and a velocity u ~ 1 m s™'. We
therefore obtain that P, and P, are comparable when a
Hawaiian dyke has a length / ~ 60 m if we take K. ~ 1 MPa
m'? or / ~ 3.8 km if we take K. ~ 500 MPa m'2. Thus, this
would suggest that, depending on the value of K, the
resistive pressure may be the viscous pressure drop rather
than the fracture pressure. However, several remarks may be
made. First, the rock has to be fractured so that a dyke may
propagate. If the rock has no weaknesses, in the light of the
linear elastic fracture mechanics it is not possible to prop-
agate a dyke as long as K, has not been reached. If the rock
is not fractured there is no propagation, which means P, <
Py Second, as previously mentioned, our experiments
showed that in the case of a crack propagation initially
controlled by a balance between P, and Py the viscosity of
the liquid acted on the propagation in a passive manner,
affecting only the tail thickness. We therefore think that
dyke propagation is not controlled by the viscous pressure
drop but is rather controlled by the fracture resistance of the
rocks. However, if rocks have weaknesses then things may
be different. It has been observed that sometimes magma
invades older fractures rather than propagating its own
hydraulic fracture [Delaney et al., 1986]. In those cases,
the fracture resistance would be much lower and P, may
become the dominant resisting pressure scale. So the key
question is: what is the real fracture resistance of rocks? It
seems to be the key parameter for determining the prop-
agation regime of a dyke.

(23)

4.3. Geological Implications

[35] Coupled with field measurements of dyke cross
sections, our model enables us to estimate the source over-
pressure at the time of the emplacement of dykes and to
infer whether they propagated in a steady state regime or
not. We apply our model to two different magmatic systems:
Hawaii and the MacKenzie Dyke Swarm, Canada. In the
model framework, we have to make a number of assump-
tions. We first assume that the source pressure remains
constant during dyke propagation. Moreover, although we
are dealing with dykes that propagated toward the surface
and in most cases reached it, we make the strong assump-
tion that the surface did not have any effect on their
propagation. Finally, we also assume that dykes have been



ECV 16 - 12

propagating in a steady state regime up to the surface. Such
an assumption will be tested in order to infer the propaga-
tion regime of the dykes: if it is incompatible with the field
measurements, then dykes would have been propagating in
the initial transient regime.

[36] Combining equations (12) and (16), the source over-
pressure AP, may be expressed as a function of the ratio g/u
in the steady state regime:

1

2 3
AP, ~ E(Apg) q}.

2(1—v?)wu 24)

As q/u is a kinematic estimate for the fissure cross section
mwl, it increases with the length of the fissure during the
transient regime and is therefore greater in the steady state.
Hence, substituting measured cross sections of dykes,
assumed to have reached steady state propagation, into
equation (24) enables us to infer a minimum value for the
overpressure AP, in the magmatic source that fed those
dykes. Moreover, equation (16) enables us to estimate the
transition height between the transient and steady state
regimes from the measurements of these dyke cross
sections. Figure 13 represents the dyke cross section as a
function of the source overpressure (equation (24)) and of
the critical height for the transition between regimes
(equation (16)), we use £ = 40 GPa, v = 0.25 and Ap =
300 kg m ™~ as typical values for the Earth’s crust and for
the density contrast between rock and magma. Typical cross
sections for dykes from Hawaii and the MacKenzie Dyke
Swarm, shown as ellipses, have been drawn as well. Table 2
gives the estimations of dyke cross sections, source
overpressures and transition heights (equations (16) and
(24)) for Hawaii and the MacKenzie Dyke Swarm.

[37] The magma chamber in Hawaii is thought to be about
1.5 km below the surface [Ryan et al., 1981; Rubin and
Pollard, 1987]. This depth is comparable to our transition
height estimation. However, our density contrast may be an
overestimation for that between magma and rocks close to
the surface. This would increase the transition height and
thus suggests that Hawaiian dykes fed by shallow regions of
the magma chamber may be unlikely to attain the steady
state regime. Equation (24) estimates the source overpres-
sure to be between about 40 and 100 bars. These values are
close to those given by Rubin and Pollard [1987]. However,
an overestimation of the density contrast would also lead to
an underestimated source overpressure suggesting that AP,
would therefore be greater than 100 bars.

[38] In the Canadian shield, the MacKenzie Dyke Swarm
is more than 2000 km long and 500 km wide with a mean
dyke thickness of 30 m. It is thought to appear 1.27 Ga ago
because of a giant mantellic plume [Fahrig, 1987; LeChe-
minant and Heaman, 1989] the head of which would have
measured 1000 km in diameter [Ernst and Baragar, 1992].
According to Ernst and Baragar [1992] the flow in dykes
was vertical above the plume head and horizontal around it.
Although such a plume would have strongly thinned the
lithosphere, this thinning remains unknown and a compar-
ison with our transition height estimation is therefore
difficult. However, the presence of sills [LeCheminant and
Heaman, 1989] as well as the indication of horizontal flow
[Ernst and Baragar, 1992] suggest that the propagation was
dominated by the overpressure in the plume head rather than
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Figure 13. Dyke cross section as a function of (a) source
overpressure (equation (24)) and (b) transition height
(equation (16)). E = 40 GPa, v = 0.25, and Ap = 300 kg
m . Ellipses are estimations of typical dyke cross sections
estimated for Hawaii and MacKenzie Dyke Swarm.

by the buoyancy of the magma. Vertical dykes would have
therefore propagated in a non-steady state regime and our
estimations of transition height and source overpressure
would be underestimated. This would suggest an enormous
overpressure in the plume head, more than 1500 bars, at the
time of the swarm emplacement. If we have overestimated
dyke cross sections, because we considered dykes that
propagated laterally and not vertically, our model would
still predict overpressures of several hundreds of bars.
Another possibility is that a giant mantellic plume such as
this one would have dramatically modified the thermal
structure of the lithosphere and, as a result, its stiffness
would have been strongly reduced. In that case, our esti-
mated source overpressure would be lowered.

[39] Are such overpressures realistic? We have assumed
that dyke initiation and propagation are controlled by the
fracture toughness of rocks, which is thought to be inde-
pendent of the dimensions of the dykes as well as their
loading. This seems to be in contradiction with our results
that suggest a greater source overpressure is needed to create
a greater geological object, such as a giant dyke swarm, and
therefore that fracturing processes depend on a length scale.
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Table 2. Source Overpressures and Transition Heights Between
Regimes Estimated for Hawaii and the MacKenzie Dyke Swarm

Parameter Hawaii MacKenzie
Dyke cross section (m?) 10°-10* 3 x 10°-3 x 107
Source overpressure (bar) 40-80 600—-1200
Transition height (km) 1-3 20-40

The source overpressures and transition heights have been estimated
using equations (24) and (16), respectively.

However, fracture toughness estimated from field measure-
ments are 10°— 10> greater than those measured in laboratory
on rock samples [Delaney and Pollard, 1981; Atkinson,
1984; Reches and Fink, 1988] and it has been argued that
the fracture energy required to propagate a dyke, or meas-
ured for earthquakes, is many orders of magnitude larger
than laboratory-scale measurements [Rudnicki, 1980; Dela-
ney et al., 1986]. Both field and laboratory observations can
only really be consistent if fracture toughness is scale
dependent. Indeed, it has been argued that rock fracture
toughness does scale with the size of the fracture because the
volume of rock affected, and hence undergoing damage, is
greater [King, 1983; Scholtz et al., 1993]. Increase in the
resistance to propagation of a fault with the length of the
fault can explain why small earthquakes occur; if this were
not the case, earthquakes would always propagate unstably
and therefore become “megaearthquakes.” In short, damage
and fracture at one scale lead not to catastrophic failure of the
rock (as happens in small-scale experiments on rock sam-
ples) but to damage and fracture at larger scales in a process
of evolving damage [King and Sammis, 1992]. It therefore
seems that the fracture dominated regime, which we
observed in our experiments and in which a dissipative,
scale-dependent process resists fissure propagation, is likely
to exist under geological conditions.

5. Conclusion

[40] Fissure propagation from a reservoir with constant
overpressure is characterized by two regimes. Initially, the
propagation is controlled by a balance between the source
pressure and the fracture pressure. In this transient regime
both the injection rate and the fissure velocity depend on the
initial conditions. Once the buoyancy pressure overcomes
the source pressure, a steady state is achieved. The fissure
develops a bulbous head, in which buoyancy pressure
balances the fracture pressure that resists the propagation,
fed by a thinner tail, the thickness of which is determined by
a balance between buoyancy and viscous pressure gradient.
Fissure velocity and injection rate become constant at the
transition between regimes. Even in the steady state regime,
the velocity and the injection rate reflect the source con-
ditions because the fissure latches onto a steady state regime
that is consistent with the source characteristics. Likewise,
the strain energy release rate during the steady propagation
is determined by the initial source conditions.

[41] Although our model cannot, at this preliminary stage,
predict the propagation velocity of a liquid-filled fissure, it
does nevertheless provide constraints on the failure mech-
anism: the steady propagation velocity appears to be propor-
tional to the square of the height of the buoyant fissure head.
Moreover, the fissure can propagate steadily even though
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the stress intensity factor at its tip is greater than the fracture
toughness of the host solid.

[42] Our model suggests that the cross-sectional area of
dykes provides two quantitative pieces of information. It
first gives the nature of the propagation regime of the dykes,
whether it is steady or not. Second, it gives an estimation of
the overpressure present in the source at the time of their
emplacement. These overpressures appear to depend on the
dimensions of the dykes, suggesting a length scale depend-
ence of time-dependent failure of rocks. Hence, like fault
propagation, dyke propagation seems very likely to be
controlled by the fracture resistance of rocks.
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