
HAL Id: hal-01881384
https://uca.hal.science/hal-01881384v1

Submitted on 25 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decoding Superposed LoRa Signals
Nancy El Rachkidy, Alexandre Guitton, Megumi Kaneko

To cite this version:
Nancy El Rachkidy, Alexandre Guitton, Megumi Kaneko. Decoding Superposed LoRa Signals. IEEE
Conference on Local Computer Networks, Oct 2018, CHICAGO, United States. �hal-01881384�

https://uca.hal.science/hal-01881384v1
https://hal.archives-ouvertes.fr

Decoding Superposed LoRa Signals

Nancy El Rachkidy(1), Alexandre Guitton(1), Megumi Kaneko(2)

(1) Université Clermont Auvergne, CNRS, LIMOS, F-63000 Clermont-Ferrand, France

(2) National Institute of Informatics, Hitotsubashi, 2-1-2, Chiyoda-ku, 101-8430 Tokyo, Japan

Emails: nancy.el rachkidy@uca.fr, alexandre.guitton@uca.fr, megkaneko@nii.ac.jp

Abstract—Long-range low-power wireless communications,
such as LoRa, are used in many IoT and environmental mon-
itoring applications. They typically increase the communication
range to several kilometers, at the cost of reducing the bitrate
to a few bits per seconds. Collisions further reduce the perfor-
mance of these communications. In this paper, we propose two
algorithms to decode colliding signals: one algorithm requires
the transmitters to be slightly desynchronized, and the other
requires the transmitters to be synchronized. To do so, we use
the timing information to match the correct symbols to the
correct transmitters. We show that our algorithms are able to
significantly improve the overall throughput of LoRa.

Index Terms—LoRa, LoRaWAN, LPWAN, Interference can-
cellation, synchronized signals, desynchronized signals.

I. INTRODUCTION

Long-range low-power communication technologies such as

LoRa [1], Sigfox [2], and Ingenu [3], are becoming widely

used in Low-Power Wide Area Networks (LPWANs). These

technologies are suitable to cover large zones and are thus

becoming attractive technologies for Internet of Things (IoT)

and monitoring applications [4], [5], [6].

LoRa [1] is a recent physical layer for LPWANs, which

extends the communication range by reducing the throughput.

LoRaWAN [7] is a simple MAC protocol based on LoRa,

which allows end-devices (ED) to communicate with a small

duty-cycle (1%) to a network server through gateways. Thus,

EDs can save energy, and the network lifetime is increased.

The main issue in LoRa and LoRaWAN is the limited

throughput: the indicative physical bitrate varies between

250 and 11000 bps [8]. Moreover, when two EDs transmit

simultaneously using the same parameters, a collision occurs

and none of the signals are decoded by LoRa. Thus, both EDs

have to retransmit, which further reduces the throughput.

In this paper, we show that it is possible to retrieve the

frames from superposed signals. For the case where super-

posed signals are slightly desynchronized, we propose a linear

algorithm based on timing information that attempts to decode

all frames. This algorithm always succeeds when there are

two signals. We prove that for three or more signals, it is not

always possible to decode each signal. Next, for the case where

superposed signals are completely synchronized, we propose a

simple algorithm requiring only one retransmission to deduce

the other colliding frame. To the best of our knowledge, this

is the first work on LoRa interference cancellation.

The remainder of this paper is as follows. Section II

describes the modulation of LoRa. Section III describes our

two cases (slightly desynchronized and completely synchro-

nized), and presents our two algorithms. Section IV gives our

simulation results. Finally, Section V concludes the paper.

II. STATE OF THE ART

In the following, we first describe the MAC protocol Lo-

RaWAN, and then the physical layer LoRa. Note that our

paper proposes an improvement to LoRa, which can be used

to improve the performance of any MAC protocol based on

LoRa (including LoRaWAN).

A. LoRaWAN

LoRaWAN (in version 1.0 [9] or in version 1.1 [7]) is

a MAC protocol based on LoRa. Three classes are defined,

depending on the communication paradigm: Class A is for

low-power uplink communications, Class B is for delay-

guaranteed downlink communications, and Class C is for EDs

without energy constraints. In Class A, the only mandatory

class of LoRaWAN, an ED can transmit at any time. It

chooses a channel randomly, sends the frame, and waits for

an acknowledgment during two successive receive windows.

After its transmission, the ED is forbidden to transmit for a

delay equal to 99 times the duration of the frame transmission.

In this way, the transmission time of EDs does not exceed 1%.

LoRaWAN adapts the bitrate to the quality of links by

implementing a trade-off between the signal robustness and

the bitrate, through the use of the Spreading Factor (SF) of

the signal: when an ED experiences a low signal quality, it

increases its SF, which results into lower bitrate, but better

decoding capabilities of the signal. This modification is con-

trolled by the datarate (DR) of LoRaWAN, which is a value

ranging from DR0 (large SF, small bitrate) to DR6 (small SF,

large bitrate).

European regional settings of LoRaWAN [8] define most

LoRa parameters. The bandwidth of channels, BW , is equal

to 125 kHz for DR0 to DR5, and 250 kHz for DR6. The SF

varies from 12 down to 7 for DR0 to DR5, and is equal to

7 for DR6. The preamble length is equal to 8 symbols. The

physical bitrate varies between 250 bps for DR0, to 11000

bps for DR6. The maximum MAC payload of a frame varies

between 59 bytes for DR0 and 230 bytes for DR6.

B. LoRa

LoRa is a physical layer technology for LPWAN, based on a

Chirp-Spread Spectrum (CSS) modulation. In this modulation,

each LoRa chirp consists of a linear frequency sweep. The

duration of the sweep is called symbol duration (SD), and

depends on the value of SF. The sweep is performed over

a frequency range of size BW . Chirps are divided into up-

chirps, where the frequency sweep is increasing, and down-

chirps, where the frequency sweep is decreasing.

Each chirp can encode 2SF symbol values. To do this, LoRa

shifts the sweep by the symbol value, as shown on Fig. 1 for

a down-chirp. The receiver is able to detect the sharp edge

in the instantaneous frequency trajectory [10]. The symbol

value is equal to the shift in the frequency at the beginning

of the symbol. It is also proportional to the time between the

beginning of the symbol and the sharp frequency edge. For

up-chirps, it is proportional to the remaining time between the

sharp frequency edge and the end of the symbol.

frequency

BW
value

value

SD

time

Figure 1. Example of a single LoRa down-chirp. Computing the symbol value
requires identifying the sharp frequency edge.

To decode the value of a symbol, the receiver needs to know

the frontier of the symbol. Thus, LoRa introduces a preamble

of a few symbols (typically, eight). In uplink communications,

the preamble consists of up-chirps and the data consists

of down-chirps. In downlink communications, the preamble

consists of down-chirps and the data consists of up-chirps.

Figure 2 shows an example of an uplink communication

with a short preamble (three symbols) and a few data symbols

(four symbols). We chose SF = 2 for the sake of simplicity,

leading to 2SF = 4 possible values per symbol. Let us assume

that a desynchronized node starts receiving the preamble, not

necessarily at the exact beginning of the preamble. The node

detects a sharp frequency edge, which indicates the frontier of

a symbol. From this information, the receiver can synchronize

itself according to the transmitter. The end of the preamble is

detected by the inversion of the chirps. In this example, the

data symbols are 3, 0, 2, 2.

sender

receiver

preamble 3 0 2 2

desynchronization information

Figure 2. Example of a LoRa uplink frame, with a short preamble and four
symbols of data, with SF = 2. The receiver synchronizes itself with the
sender during the preamble.

III. CANCELLATION OF LORA SIGNALS

LoRa gateways are able to decode superposed LoRa signals

as long as they are sent on different SFs. Notice however that

some researchers have shown that signals on different SFs are

not completely orthogonal [11], [12].

When several signals are received on the same channel and

with the same SF, a difference of received power might cause

the strongest signal to be captured [10], [13]. When several

signals have a similar receive power, a collision occurs and all

signals are considered lost.

In this paper, we focus on decoding superposed LoRa

signals of similar receive power, on the same channel, with

the same SF. To do so, we show that we can use timing

information to match the correct symbols to the correct ED.

In Subsection III-A, we describe our assumptions. In Sub-

section III-B, we provide our main algorithm, and we describe

how it can decode two signals that are slightly desynchronized.

In Subsection III-C, we extend the discussion for the case

of three signals (or more) that are slightly desynchronized.

Finally, in Subsection III-D, we apply a similar algorithm on

a different case, where signals are completely synchronized.

Note that our algorithms cannot be applied directly on

LoRaWAN, as most communications in LoRaWAN are not

synchronized. However, our algorithms could enable the de-

sign of a novel synchronized MAC layer based on LoRa,

tailored to the star like topology of LoRaWAN, to reach better

performances than the basic LoRaWAN.

A. Assumptions

We assume that there are no non-linearity effects between

down-chirps (respectively up-chirps). In other words, if two

down-chirps (resp. up-chirps) c1 and c2 overlap at a given

time t at the receiver side, the two observed frequencies are

the frequency of c1 (at time t) and the frequency of c2 (at

time t). Without additional information, it is not possible to

identify the correct frequency of each transmitter. We assume

that when an up-chirp is superposed with a down-chirp, it is

not possible to detect any of the frequencies.

We also assume that it is possible for the hardware of

the receiver to detect all frequencies of overlapping down-

chirps (resp. up-chirps) within δ time-units. In the following

examples, we will use δ = SD/4 unless stated otherwise1.

We assume that when several frequencies overlap at a

given time, only one frequency is detected by the receiver.

For instance, if there are three nodes transmitting at a given

time, but only two frequencies f1 and f2 are detected, we

assume that it is not possible to know whether two nodes

were transmitting with f1 and one with f2, or one node was

transmitting with f1 and two with f2.

1Please note that on real LoRa hardware, the decoding of signals is not
carried out by directly detecting the sharp frequency edges, but instead by
computing a fast Fourier transform and detecting the peak in the frequency
domain [10]. With our proposition, this translates into either detecting the two
sharp frequency edges in the time domain, or the two peaks in the frequency
domain.

We also assume some properties on the frames: all nodes

transmit with the same preamble duration, the frame length is

included at the beginning of the frame, and there is at least

one symbol change during the whole frame (that is, a data

payload does not consist of a sequence of identical symbols).

Finally, in the following, we consider two cases: the case

where nodes are slightly desynchronized, and the case where

nodes are fully synchronized. In the case where nodes are

slightly desynchronized, we assume that all nodes start and

finish their transmission within SD − δ time units, and that

any two nodes start and finish their transmission with a delay

of δ time units or more. We do not consider clock drift. In the

following examples, if there are three transmitting nodes, we

consider that node n1 starts at time t0, node n2 at time t0+ δ,

and node n3 at time t0 + 2δ.

B. Case of two slightly desynchronized signals

In this subsection, we consider the superposition of two

signals from two transmitters that are slightly desynchronized

(by at least δ time units, and at most SD − δ time units).

Figure 3 shows an example of the reception of two slightly

desynchronized signals. The preamble length is two symbols,

and SF = 2. The figure shows the signal of the first transmitter

n1 starting at t0, the signal of the second transmitter n2 starting

at t0+δ, and the superposed signal at the receiver. Note that the

data transmitted by n1 is (1, 1, 3, 2, 2), and the data transmitted

by n2 is (3, 0, 2, 3, 1). We will first explain our algorithm on

this example, and then proceed with a more formal description.

n1

n2

receiver

t0 t1
t2 t3

t4
t5
t6

t7
t8

t9
t10 t11

t12

0 1

11

2

2 2

33

3

δ

Figure 3. Superposition of two slightly desynchronized signals.

Example of Preamble detection and data decoding

In this paragraph, we give an example in order to explain

how the receiver, using our proposition, can detect preambles

and decode data sent by two transmitters.

Preamble detection: During [t0; t0+ δ], the receiver detects

the preamble of n1. During [t0 + δ; t0 + 2δ], the receiver is

able to detect that two slightly desynchronized signals are

transmitted, and is able to deduce the symbol frontiers of

both transmitters. At frontier t1, or more precisely, during

[t1; t1 + δ], the receiver is not able to detect the superposition

of preambles anymore (mixed up and down chirps). Thus, it

knows that the transmission of the first data symbol of n1

has started. This symbol is currently undecodable due to the

overlapping of an up-chirp with a down-chirp.

Data decoding: We define the sequence of decoded data for

n1 by d1 and the sequence of decoded data for n2 by d2. At

frontier t2, the receiver stores the current frequencies, which

correspond to Flim
−

(t2) = {0, 3}. At frontier t3, the receiver

computes Flim+
(t3) by updating the previous frequencies

Flim
−

(t2) = {0, 3}, and obtains Flim+
(t3) = {0, 1} (each

frequency is reduced by 3 since 3δ time units have passed

since t2, as δ = SD/4). It detects the current frequencies

Flim
−

(t3) = {0, 1}. There is no change in the frequencies

(Flim+
(t3) = Flim

−

(t3)), since the beginning of the data

of n1 starts with the repeated symbol 1. Thus, the algorithm

leaves ∗ for the first symbol of n1 (to be decoded later), so

d1 = (∗, 1). At frontier t4, the receiver computes Flim+
(t4)

by updating the previous frequencies Flim
−

(t3) = {0, 1},
and obtains Flim+

(t4) = {0, 3} (since δ time units have

passed). It detects the current frequencies Flim
−

(t4), and

obtains Flim
−

(t4) = {0}, which is equivalent to {0, 0}.
Thus, one frequency changed from 3 to 0, which is that of

n2, since it is a frontier of n2, hence, d2 = (3, 0). Thus,

the current symbol of n1 corresponds to frequency 0 too

(which is translated into 1 at the beginning of the symbol

frontier of n1, which was t3). At frontier t5, the receiver

computes Flim+
(t5) by updating the previous frequencies

Flim
−

(t4) = {0, 0}, and obtains Flim+
(t5) = {1, 1}. It detects

the current frequencies Flim
−

(t5) = {1, 3}. The frequency of

n1 changed from 1 to 3, hence d1 = (∗, 1, 3). So, the current

symbol of n2 corresponds to frequency 1 (which is translated

to 0 at the beginning of the symbol frontier of n2, which is

t4). The algorithm continues until t12, where no frequency

is received. Thus, the algorithm knows that all nodes have

stopped their transmissions. The algorithm removes the last

predicted symbol of n1 (indeed, at t11, it considered that

n1 was transmitting a symbol with the same frequency as

the frequency of n2). At this step, the decoded frames are

d1 = (∗, 1, 3, 2, 2) for n1 and d2 = (3, 0, 2, 3, 1) for n2.

Then, the algorithm replaces all special values ∗ with the

first known value of the frame. The algorithm uses the frame

length present in each frame to truncate the frames to their

correct length. Finally, the algorithm outputs are (1, 1, 3, 2, 2)
and (3, 0, 2, 3, 1), as expected.

Generalization of Preamble detection and data decoding

In this paragraph, we generalize the example given above

and we formulate our proposition in Algorithm 1.

Preamble detection: The superposition of preambles will

result in the superposition of up-chirp symbols, except for the

end of the last preamble. Thus, the receiver will detect two

sharp frequency edges for most preamble symbols. Each of

this sharp edge will allow the receiver to know the symbol

frontier of a transmitter. The beginning of the first data symbol

of the first node is not decodable, as it corresponds to a down-

chirp superposed with the up-chirp of the end of the preamble

of the second node.

Data decoding: From the first data symbol of the second

node, only down-chirps are superposed, and thus it is possible

to detect all sharp edges. The difficulty relies in correlating

each frequency with the symbols of each node. To do so, we

use the following property: sharp edges can occur only at the

beginning of a symbol, when the symbol changes, or once

during a symbol. When the sharp edge occurs during a symbol,

it can be predicted if the symbol value is known.

Algorithm 1 describes our proposed algorithm. It starts

after the superposed preambles have been received, and thus

considers that the symbol frontier of each transmitter is known.

The algorithm considers the frontiers of all data symbols

sequentially, apart from the first frontier of the first node which

cannot be decoded. At each frontier, the receiver updates

the previous frequencies (since frequencies change over time

in LoRa chirps, and time has passed since the detection of

the previous frequencies). Then, the receiver compares these

(updated) previous frequencies with the current frequencies2.

The following two cases are the only possible cases.

Case 1: One frequency has changed. This can only happen

when a new symbol starts, which can only occur at the symbol

frontier. Since the receiver knows if the current frontier is for

the first or the second transmitter, it knows the new symbol for

the current node (based on the new frequency), the previous

symbol for the current node (based on the frequency that has

changed), and the current symbol for the other node (based

on the frequency that did not change).

Case 2: No frequency has changed. This can only happen

when the new symbol is equal to the previous symbol (this

was the case on Fig. 3 at times t3 and t9). If the receiver knows

the previous symbol of the current node (time t9 of Fig. 3),

the new symbol can be deduced. Note that at the beginning

of the algorithm, however, the first symbol value cannot be

deduced when it is repeated (time t3 of Fig. 3). In this case,

the algorithm leaves a special value (denoted by ∗ here). As

soon as one symbol changes, the receiver is able to deduce the

values of all these repeated symbols. This is why we assumed

at least one symbol change per frame.

The time complexity of our algorithm is linear with the

number of symbols of the longest frame. Most of the symbols

are decoded on the fly, δ time units after the beginning of the

symbol, except for the symbols repeated initially (see the last

loop of the algorithm). The space complexity of our algorithm

is O(1), since the storage requirement is limited to the value of

the first non-special symbol for each node. Thus, the algorithm

is optimal in time and space, for two nodes3.

C. Case of three slightly desynchronized signals

Note that with our hypotheses, decoding three or more

signals is not always possible. For instance, Fig. 4 shows two

sets of different signals that produce the same superposition

of frequencies, and thus cannot be decoded.

2In practice, it may take up to δ time units to obtain the current frequencies,
so the receiver might have to update the current frequencies based on the
detection time.

3As we will see in Subsection III-C, our algorithm is not able to decode
all frames for three nodes or more, so it cannot be considered optimal in this
case.

Algorithm 1: Decoding of two slightly desynchronized

superposed LoRa signals.

for each frontier ti of a data chirp do
compute currentSymbol and currentNode

if currentSymbol=0 and currentNode=1 then
skip (frequencies cannot be detected)

else
Flim

−

(ti)←detect current frequencies

if currentSymbol=0 and currentNode=2 then
skip (Flim

−

(ti) is already computed)

else
compute Flim+

(ti) by updating Flim
−

(ti−1)
changedF ← Flim

−

(ti)− Flim+
(ti)

if changedF = ∅ then
the new symbol in symb[currentNode] is

equal to the previous (or ∗)

else
the previous symb. in symb[currentNode]

is equal to the value of changedF
the new symbol in symb[currentNode] is

equal to the value of

Flim+
(ti)− Flim

−

(ti)

for each node n do
replace in symb[n] all the leading ∗ values to the

first defined value

truncate the frame according to its length

n1

n2

n3

receiv.

0000

000000

111111

22

Figure 4. When three nodes that are slightly desynchronized transmit frames,
it is not always possible to decode them: these two sets of frames produce
the same superposition of frequencies.

Our algorithm is able to decode many cases of slightly

desynchronized signals for n transmitters, when n ≥ 3. It

only fails to do so when the number of received frequencies

is within [2;n − 1] (which never occurs when n = 2). In

this case, even if the algorithm knows that the frequency of

the current node has changed, it cannot determine what is the

new value, as it has n− 1 > 1 possibilities. It can still deduce

the value of the previous symbol for this node. At the next

frontier for this node, though, the value of this symbol might

be deduced, depending on the number of other frequencies.

D. Case of two synchronized signals

We now consider the case of two synchronized signals.

When the two transmitters are completely synchronized, it

can be noticed that (at most) two values for each symbol

duration are obtained, one for each transmitter. With our

assumptions, though, it is not possible to match each value

to the correct transmitter. The uncertainty of two values for

each symbol might seem large, but it is quite small compared

to the fact that each symbol carries in fact SF bits of data.

Thus, we apply a similar algorithm as the case of slightly

desynchronized signals for this case. When two synchronized

frames collide, the algorithm stores the two possible values for

each symbol. Then, the receiver requests one of the senders

to retransmit its frame. Upon receiving this new frame, the

receiver compares this frame with the collided frames received

previously, and then it can match the symbols of the second

frame, without requiring a retransmission. Overall, only one

sender had to retransmit its frame.

For example, let us assume that (0, 1, 2, 3) and (3, 1, 0, 0)
are sent simultaneously. The receiver is not able to decode any

of these two frames, but it can deduce that the first symbols

were 0 and 3, the second symbols were both 1, the third

symbols were 0 and 2, and the fourth symbols were 0 and

3. The matching between the symbols and the corresponding

sender has to be determined, for each symbol. Thus, the

receiver requests the retransmission of one frame, and obtains

(0, 1, 2, 3). At this time, the receiver deduces that the first

symbol of the second frame was 3, the third symbol was 0
and the fourth symbol was 0.

IV. NUMERICAL RESULTS

In this section, we evaluate, by simulation, the performance

of our algorithms in terms of percentage of successful decod-

ing of colliding signals and throughput. We consider the two

cases independently.

A. Parameter Settings

Simulations are carried out using our own simulator de-

veloped in Perl. We model a network with a single gateway,

a single network server, and one hundred EDs. We assume

that all the EDs transmit on the same channel with the same

SF, and that their signals are received at roughly the same

power levels at the gateway, i.e., no capture conditions. We

assume that time is divided into slots, and each ED has a

probability p to transmit a frame during a slot, with p ≤ 0.01

in order to be consistent with the duty-cycle of 1%. For our

algorithms, transmissions on the same slot are considered to

be slightly desynchronized (in Subsection IV-B) or completely

synchronized (in Subsection IV-C). We choose two values for

SF: SF7 (which is the smallest SF in LoRaWAN) and SF12
(which is the largest SF in LoRaWAN). The frame length

is set to 50 bytes. We did not force frames to have at least

one symbol change. However, the probability that a frame is

generated with the same repeated symbol is very small, and we

did not observe it during our simulations. Simulation results

are obtained by averaging over ten thousand samples.

B. Case of slightly desynchronized signals

Figure 5 shows the percentage of successful decoding of

colliding signals, as a function of the number of colliding

signals, in the case where signals are slightly desynchronized.

When there are two or more colliding signals, LoRa is not able

to decode any signal. When there are exactly two colliding

signals, our algorithm is always able to decode both of them.

When there are three or more colliding signals, our algorithm

is not able to decode some signals: the proportion of signals

that can be decoded depends on SF and on the frame length.

Indeed, when SF is large, the number of possible values

for each symbol is large, and the probability that several

transmitters use the same frequency is low. For SF = 7 and

n = 3 colliding frames, our algorithm is able to decode about

80% of the frames. This number drops rapidly as the number

of transmitters increases.

Conv.LoRa
Prop.Alg.1 (SF7)

Prop.Alg.1 (SF12)

 0

 20

 40

 60

 80

 100

1 2 3 4 5

%
su

cc
es

sf
u

l
d

ec
o

d
in

g

Number of superposed signals

Figure 5. When the signals are slightly desynchronized, our algorithm is able
to successfully decode some cases of colliding signals.

Figure 6 shows the percentage of successful decoding of

colliding signals, as a function of the SF, for n = 2 and

n = 3 superposed signals. We notice that LoRa is not able

to decode colliding signals for any SF. This is due to the

fact that in LoRa, a gateway cannot receive more than one

signal on the same channel and with the same SF. However,

we can see that our algorithm can decode both signals when

n = 2. When n = 3, the performance of our algorithm varies

significantly with SF. This is due to the fact that with a large

SF, the probability to detect a single frequency decreases.

Thus, the gateway increases its chances to receive a number

of frequencies equal to the number of symbols to decode.

Thus, compared to LoRa, our algorithm achieves a gain of

100% when the gateway received two colliding signals and a

gain between 18% and 99% when the gateway received three

colliding signals.

Conv.LoRa
Prop.Alg.1 (n=2)
Prop.Alg.1 (n=3) 0

 20

 40

 60

 80

 100

 4 6 8 10 12

%
S

u
cc

es
sf

u
l

d
ec

o
d

in
g

SF

Figure 6. Our algorithm outperforms LoRa when a gateway receives n = 2
or n = 3 colliding signals, with the same SF and on the same channel.

Figure 7 shows the throughput as a function of the duty-

cycle. In this scenario, we consider a network of one hundred

EDs with a duty-cycle less or equal to 1%. We compute

throughput for LoRa and for our algorithm for two values of

SF: SF7 and SF12. We notice that the throughput increases

when the duty-cycle increases, since each ED sends more

frames. Our algorithm enables to achieve a much higher

throughput than LoRa, with a gain of up to 60% for a

duty-cycle of 1%. This shows that our algorithm provides

remarkable throughput gains, even at the system level.

LoRa [1] (SF7)
Algo 1 (SF7)

LoRa [1] (SF12)
Algo 1 (SF12)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
h

ro
u

g
h

p
u

t
(b

it
s/

s)

Duty-cycle (in percentage)

Figure 7. Colliding signals negatively impact the throughput in LoRa.
However, our algorithm is able to increase the throughput up to 60% when
the duty-cycle is equal to 1% and the network is of 100 EDs.

C. Case of synchronized signals

Figure 8 shows the percentage of successful decoding of

colliding signals, as a function of the number of colliding

signals, in the case where signals are synchronized. Since

LoRa is unable to decode any signal when there are several

EDs transmitting on the same channel and with the same SF,

the percentage of successfully decoded signals is zero for two

and more colliding signals. With our algorithm, when there are

exactly two simultaneous transmissions, one of them can be

decoded provided that one node retransmits its whole frame.

Thus, for n = 2 colliding signals, our algorithm decodes 50%

of the frames, accounting for the retransmission time.

��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���� �� �� ��

����

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

���� ���� ��

Conv.LoRa
Prop.Alg.2

 0

 20

 40

 60

 80

 100

1 2 3 4 5

%
S

u
cc

es
sf

u
l

d
ec

o
d

in
g

Number of colliding signals

Figure 8. When the signals are synchronized, our algorithm is able to
decode one frame per collision of two frames, provided that the other one
is retransmitted.

Figure 9 shows the throughput as a function of the duty-

cycle. The throughput computed by Conv.LoRa shows the

same performance as the one computed for the desynchronized

signals. However, with our second algorithm, the gateway is

able to decode one frame for each collision of two frames, pro-

vided that the other frame is retransmitted. Thus, our algorithm

computes a gain of up to 25% compared to LoRa. Compared

to the case where transmissions are slightly desynchronized,

we observe a decrease of 50% of the throughput.

LoRa [1] (SF7)
Algo 2 (SF7)

LoRa [1] (SF12)
Algo 2 (SF12)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
h

ro
u

g
h

p
u

t
(b

it
s/

s)

Duty-cycle (in percentage)

Figure 9. Colliding signals negatively impact the throughput in LoRa.
However, our algorithm is able to increase the throughput by up to 25%
even for synchronized signals and 100 EDs.

V. CONCLUSION

Collisions in LoRa negatively impact the throughput of the

network, which is already very limited by definition. In this

paper, we assume that LoRa transceivers are able to detect fre-

quency sweeps over a duration smaller than a LoRa chirp. We

propose two novel collision resolution algorithms that enable

to decode some cases of collisions in LoRa by exploiting the

specific properties of this physical layer. Our first algorithm

focuses on the case where nodes are slightly desynchronized.

The second algorithm focuses on the case where nodes are

synchronized. Based on our simulation results, we observe

that the first algorithm is able to significantly improve the

throughput, by decoding all collisions of two signals, and

many collisions of three signals. The second algorithm is also

able to improve the throughput, but by decoding only one

signal when two signals are colliding. These results promote

the investigations of a new MAC layer based on LoRa,

leveraging on the proposed collision resolution algorithms and

thereby outperforming LoRaWAN.

REFERENCES

[1] Semtech Corporation, “AN1200.22 LoRa Modulation Basics,” Semtech,
Application note Revision 2, 2015, accessed 2018-01-29. [Online].
Available: http://www.semtech.com/uploads/documents/an1200.22.pdf

[2] Sigfox, http//www.sigfox.com.
[3] Ingenu, http//www.ingenu.com.
[4] M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, “Long-range

communications in unlicensed bands: the rising stars in the IoT and
smart city scenarios,” IEEE Wireless Communications, 2016.

[5] K. E. Nolan, W. Guibene, and M. Y. Kelly, “An evaluation of low power
wide area network technologies for the internet of things,” in Inter-

national Wireless Communications and Mobile Computing Conference

(IWCMC), pp. 439–444.
[6] J. Petäjäjärvi, K. Mikhaylov, R. Yasmin, M. Hämäläinen, and J. Iinatti,

“Evaluation of LoRa LPWAN technology for indoor remote health and
wellbeing monitoring,” International Journal of Wireless Information

Networks, vol. 24, no. 2, pp. 153–165, 2017.
[7] LoRa Alliance Technical Committee, “LoRaWAN 1.1 Specification,”

LoRa Alliance, Standard V1.1, 2017.
[8] ——, “LoRaWAN 1.1 Regional Parameters,” Standard V1.1, Revision

A, 2017.
[9] N. Sornin, M. Luis, T. Eirich, T. Kramp, and O. Hersent, “LoRaWAN

Specification,” LoRa Alliance, Standard V1.0, 2015.
[10] C. Goursaud and J.-M. Gorce, “Dedicated networks for IoT: PHY /

MAC state of the art and challenges,” EAI endorsed Transactions on

Internet of Things, 2015.
[11] D. Croce, M. Gucciardo, I. Tinnirello, D. Garlisi, and S. Mangione, “Im-

pact of spreading factor imperfect orthogonality in LoRa communica-
tions,” in International Tyrrhenian Workshop on Digital Communication

(TIWDC), ser. Communications in Computer and Information Science
(CCIS), vol. 766, 2017, pp. 165–179.

[12] G. Zhu, C.-H. Liao, M. Suzuki, Y. Narusue, and H. Morikawa, “Evalua-
tion of LoRa receiver performance under co-technology interference,” in
IEEE Consumer Communications and Networking Conference (CCNC),
2018.

[13] J. Haxhibeqiri, F. Van den Abeele, I. Moerman, and J. Hoebeke, “LoRa
scalability: a simulation model based on interference measurements,”
Sensors, vol. 17, no. 6, p. 1193, 2017.

