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This is anOp
Abstract – The clastic sedimentary formations of the Saint Antonin basin in the French Maritime Alps
contain the record of the Early Oligocene erosional history of the Maures-Esterel massif, Sardinia and
Corsica. Detrital apatite fission-track dating and zircon fission-track/U-Pb double dating of samples
collected from the Saint Antonin basin confirm sediment provenance and allow obtaining first-order
estimates of drainage basin maximum and long-term average exhumation rates. Whereas average
exhumation rates were on the order of 0.1–0.2 km/Myr during the Early Oligocene, small parts of
the Saint Antonin basin source areas may have experienced maximum exhumation rates on the order of
0.4–0.7 km/Myr. Although zircons and apatites with Early Oligocene fission-track cooling ages make up
between 11–15% of the dated grains, a possible volcanic contribution is negligible, as only one single
volcanic zircon grain was identified by fission-track/U-Pb double dating. Regional geodynamic
processes with convergence in the Western Alps to the east and the end of the Pyreneo-Provençal
compression phase by the early Oligocene controlled the differences in basin fill history and sediment
provenance between the Saint Antonin basin and the largely contemporaneous Barrême basin in south-
eastern France.

Keywords: Saint Antonin basin / geo-thermochronology / provenance / exhumation / tectonics

Résumé – Géo-thermochronologie du bassin de Saint Antonin, sud-est de la France. Les formations
sédimentaires clastiques du bassin de Saint Antonin, dans les Alpes Maritimes françaises, contiennent les
archives de l’histoire oligocène précoce de l’érosion du massif des Maures-Esterel, de la Sardaigne et de la
Corse. La datation par traces de fission sur apatites détritiques et la double datation trace de fission/U-Pb sur
les mêmes grains de zircon des échantillons recueillis dans le bassin de Saint Antonin confirment la
provenance des sédiments et permettent d’obtenir des estimations de premier ordre des taux d’exhumation
maximaux et moyens à long terme. Alors que les taux d’exhumation moyens étaient de l’ordre de 0,1 à
0,2 km/Myr au début de l’Oligocène, de petites parties des zones sources du bassin de Saint Antonin ont pu
connaître des taux d’exhumation maximum de l’ordre de 0,4 à 0,7 km/Myr. Bien que les zircons et les
apatites avec des âges de refroidissement de traces de fission oligocène précoce représentent entre 11 et 15%
des grains datés, une contribution volcanique possible est négligeable, car un seul grain de zircon volcanique
a été identifié par double datation trace de fission/U-Pb. Les processus géodynamiques régionaux avec
convergence dans les Alpes occidentales à l’est et la fin de la phase de compression pyrénéo-provençale au
début de l’oligocène contrôlent les différences d’histoire de remplissage du bassin et de provenance des
sédiments entre le bassin de Saint Antonin et le bassin de Barrême, largement contemporain dans le sud-est
de la France.
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1 Introduction

The Haute Provence –Maritime Alps region in south-
eastern France is characterized by a complex geodynamic
evolution. North-south directed deformation during the
Eocene-early Oligocene was driven by the Pyreneo-Provençal
compression phase, which had started during the Late
Cretaceous, followed by late Oligocene-early Miocene
opening of the Ligurian Sea (Jolivet et al., 1990, 1991;
Rosenbaum et al., 2002; Lacombe and Jolivet, 2005). East-
west directed compressional deformation initiating during the
early Oligocene was related to Alpine convergence between
the Apulian and European plates (e.g., Lacombe and Jolivet,
2005; Dumont et al., 2012 and references therein). The
intersection of the two N-S and E-W deformation patterns is
well preserved in the Arc de Castellane (Fig. 1a). Eocene –
early Oligocene deposits derived from the Corsica-Sardinia
block are preserved in the Saint Antonin basin, which
experienced synsedimentary deformation during the final
stages of the Pyreneo-Provençal N-S shortening phase
(Campredon and Giannerini, 1982). Eocene to late Oligo-
cene/early Miocene sediments of the Alpine foreland basin are
preserved in basin remnants of the Barrême and Annot basins,
among others. These basins show east-west shortening (Fig. 1b
and c). The Saint Antonin, Barrême and Annot basin remnants
have received attention over the past 100 years, which is
reflected in a series of publications, culminating in a special
publication by Joseph and Lomas (2004 and references
therein) on the Grès d’Annot turbidite systems and their
equivalence in the Barrême and Saint Antonin basins.

Reconstructions of sediment provenance and potential
source areas in these basins are important for understanding
source-to-sink relationships and the evolution of the Western
Alps foreland basin in general. Provenance studies based on
heavy mineral analysis and sediment petrology in the Barrême,
Annot and Saint Antonin basins (e.g., Stanley, 1964; Bodelle,
1971; Evans and Mange-Rajetzky, 1991; Evans et al., 2004)
provided important information on sediment source areas and
routing systems. These studies showed that during the Eocene-
early Oligocene sediments were delivered to these three basins
from theMaures-Esterel massif and the Corsica-Sardinia block
located to the south. A change of sediment provenance
between about 30–29Ma has been reported for the Barrême
basin in terms of sediment petrology, paleocurrent transport
directions and zircon fission-track and U-Pb data (e.g., Evans
and Mange-Rajetzky, 1991; Evans et al., 2004; Jourdan et al.,
2013), but not for the Saint Antonin or the Annot basin,
because the Saint Antonin basin never received sediments
from the Western Alps, and deposition in the Annot basin had
ended by that time.

Detrital apatite fission-track (AFT) and zircon fission-track
(ZFT) and U-Pb single grain double dating can provide
additional information on sediment provenance, as well as the
exhumation history of sediment source areas (e.g., Zeitler
et al., 1986; Cerveny et al., 1988; Carter, 1999; Carter and
Moss, 1999; Garver et al., 1999; Bernet and Garver, 2005;
Bernet et al., 2006; Jourdan et al., 2013). The purpose of this
study is combine sediment provenance information with rates
of source area exhumation. Therefore, we present geo-
thermochronological data from six samples of detrital apatite
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and zircon collected from the three main sedimentary units of
the latest Eocene to early Oligocene sedimentary sequence
preserved in the Saint Antonin basin syncline (Tab. 1). Similar
data have already been published for the Barrême and Annot
basins (Bernet et al., 2009; Jourdan et al., 2013), which allows
for a good comparison of the thermochronological signal in the
different foreland basin remnants. The times of deposition of
the sedimentary sequences in the Saint Antonin basin have
previously been constrained by biostratigraphy (Callec, 2001).
We use the minimum age approach for comparing the youngest
age population of each sample with the biostratigraphically
constrained depositional ages of the three formations for
estimating maximum source area exhumation rates. Central
ages of the AFT and ZFT grain-age distributions of our
samples are used for first-order estimates of average long-term
exhumation rates of the paleo-drainage areas. Zircon U-Pb
ages of grains already dated with the fission-track method were
determined in order to identify a possible Paleogene volcanic
contribution, which may perturb the exhumation signal, as it
was done in a previous Barrême basin study (Jourdan et al.,
2013).
2 Geological setting

2.1 The Saint Antonin basin

The Saint Antonin basin is located in the French
Maritime Alps, within the Castellane arc, 30 km northwest
of Nice (Fig. 1a). The east-west striking basin is about 4.5 km
wide and 20 km long and more than 1000m of detrital
sediments accumulated in this basin during the late Eocene to
early Oligocene (e.g., Bodelle, 1971; Stanley, 1980 and
references therein; Callec, 2001). The Saint Antonin basin is a
structurally complex syncline with three minor sub-basins,
formed between two anticlines (Fig. 1b and c; Campredon and
Giannerini, 1982).

Typical for the Tertiary basin deposits in the Alpine realm,
the stratigraphy of the Saint Antonin basin represents the
classic trinity of Nummulitic limestone, Blue (or Globigerina)
marls, and relatively coarse grained clastic sedimentary
deposits (Fig. 2). The borders of the Saint Antonin basin
syncline are outlined by outcrops of Nummulitic limestone
(Fig. 1b). The coarse clastic deposits have been subdivided into
three units called the lower, middle and upper member of the
Saint Antonin conglomerate by Stanley (1980), or simply
Formations 1, 2 and 3 by Bodelle (1971) and Callec (2001); we
use the latter nomenclature here (Fig. 2). A series of different
depositional environments have been proposed for the three
formations, ranging from alluvial/lacustrine, fluvial- to tide-
dominated shallow marine and deep marine sediments (e.g.,
Stanley, 1980 and references therein; Callec, 2001). Following
Callec (2001), the sampled units were deposited between 33
and 28Ma.

In general, the three formations are composed of poorly
sorted coarse conglomerates, fine to medium grained sand-
stones and silt, and locally in the upper part, also of andesitic
breccias (Fig. 2). Formation 1, which is about 200–400m
thick, begins with medium to coarse grained, well-sorted
sandstones that contain sedimentary structures including
ripple marks, mud drapes and flaser bedding, typical of a tidal
f 18
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Bodelle, 1971; Stanley, 1980; Callec, 2001), and the Barrême basin (modified after Jourdan et al., 2013).

Table 1. Sample locations.

Sample number Deposition Formation GPS coordinates Elevation (m) Lithology

10SJ11 29.0 ± 1 3 N 43.91871°, E 6.98762° 866 Coarse grained sandstone

10SJ10 30.0 ± 1 3 N 43.91366°, E 6.98198° 850 Coarse grained sandstone
09SJ30 30.8 ± 0.4 2 N 43.90638°, E 6.86093° 821 Andesite breccia
10SJ06 31.0 ± 1 2 N 43.91002°, E 6.98364° 841 Medium grained sandstone
10SJ07 31.5 ± 1 2 N 43.91094°, E 6.97521° 790 Coarse grained sandstone
09SJ33 31.5 ± 1 2 N 43.91043°, E 6.98333° 840 Coarse grained sandstone
09SJ29 33.0 ± 1 1 N 43.90479°, E 6.97259° 742 Coarse marine sandstone
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flat depositional environment. Formation 1 shows a coarsen-
ing upward trend into conglomeratic layers. In the
southeastern part of the basin decametric to metric granite
blocks have been described in the literature (Toure, 1981).
The 220–350m thick Formation 2 represents another
sandy – conglomeratic coarsening upward sequence, which
is characterized by the occurrence of andesite breccias and
conglomeratic lenses (Bodelle, 1971; Stanley, 1980). Andes-
ite pebbles at the base and the top of Formation 2 have been
dated with the 40Ar/39Ar dating method to 31.1 ± 0.4Ma and
30.8 ± 0.4Ma, respectively (Montenat et al., 1999). Forma-
tion 3 is the third coarsening upward unit composed of sand
and conglomerates, but with a lower proportion of andesitic
breccias and pebbles than in Formation 2. Formation 3 is
between 180–500m thick and shows continental character-
istics including fluvial channel and overbank deposits
particularly in its upper part in the south-eastern corner of
the Saint Antonin basin (Campredon and Giannerini, 1982;
Callec, 2001).

The Saint Antonin basin area experienced a first phase of
deformation during the Late-Middle Paleogene, which is
reflected by shortening of the underlying Nummulitic
limestones and the unconformity with the overlying clastic
sedimentary rocks. Late Paleogene syn-sedimentary north-
south directed tectonic shortening caused uplift of the
southern flank of the Saint Antonin basin syncline and
exposure above sea level accompanied by fluvial sedimenta-
tion during deposition of Formation 3. A third regional
northwest-southeast directed shortening phase affected the
Saint Antonin basin area during the Miocene (Beaudoin et al.,
1977; Campredon and Giannerini, 1982; Schreiber et al.,
2010).
2.2 Sediment provenance of the Saint Antonin basin
clastic formations

In the field, the first indication of sediment provenance is
the pebble lithology present in the conglomeratic layers of the
three formations. In Formation 1, granite, gneiss, sandstone,
limestone, rhyolite and basalt pebbles can be observed. For
most of the pebbles, the origin is unknown, but the limestone
and red rhyolite pebbles in the Saint Antonin conglomerates
may have been derived from the sedimentary cover of the
Maures-Esterel massif (Bodelle, 1971). Furthermore, it has
been proposed by Bodelle (1971) that large, metric-scale
boulders of fine grained porphyritic monzogranite, particu-
larly abundant in Formation 1, were derived from a local
source to the south of the basin, which has been completely
eroded, as no equivalent monzogranites are known in
the Corsica-Sardinia block or the Maures-Esterel massif
(Toure, 1981).

In Formation 2, Bodelle (1971) identified gabbro with
characteristics typical of gabbros found in Alpine Corsica,
whereas in Formation 3, Bodelle (1971) identified syenite
pebbles that correspond to syenite from outcrops in Hercynian
Corsica. These observations of southern sources in theMaures-
Esterel massif and the Corsica-Sardinia block are consistent
with paleocurrent data (Bodelle, 1971; Stanley, 1980; Callec,
2001) and paleogeographic reconstructions as presented in
Joseph and Lomas (2004).
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2.3 The Maures-Esterel massif and the Corsica-
Sardinia block

The crystalline rocks of the Maures-Esterel massif consist
mostly of Proterozoic to Paleozoic quartzite, mica schist,
gneiss and migmatite, but also of Carboniferous granite and
Permian rhyolites. The intrusions, volcanic activity, and part of
the metamorphism in the Maures-Esterel massif are associated
with the Hercynian orogeny, which also affected part of the
crystalline basement of Corsica and Sardinia. The bedrock
geology of Corsica is divided into two parts. With the
exception of a few outcrops of pre-Hercynian basement rocks,
the so-called Hercynian Corsica consists of the Carboniferous
Corsica batholith, Permian intrusive and volcanic rocks, and
Mesozoic–Cenozoic cover units (e.g., Zarki-Jakni et al., 2004;
Danisik et al., 2007; Malusà et al., 2016 and references
therein). The second and younger part is Alpine Corsica,
consisting of an Alpine metamorphic core complex (e.g.,
Jolivet et al., 1990; Fournier et al., 1991). During the Jurassic,
Corsica and Sardina were tectonically juxtaposed, and during
the Cretaceous and Eocene the Maures-Esterel massif,
Tanneron massif, Corsica, and Sardinia supposedly formed
one block in the Pyreneo-Provençal relief (Malavieille et al.,
1998; Andreani et al., 2010, Malusà et al., 2015). Between 33
and 22Ma Corsica and Sardinia separated from the French
Maritime Alps and the Maures-Esterel massif during rifting
and opening of the Ligurian Sea (Séranne, 1999; Brunet et al.,
2000; Lacombe and Jolivet, 2005; Zarki-Jakni et al., 2004).
This rifting started in the western Gulf of Lion (Jolivet et al.,
2015).

3 Methods

3.1 Fission-track analysis

Seven samples were collected in the field, six from
sandstone layers and one from an andesite breccia of
Formation 2 (Tab. 1, Fig. 2). Apatite and zircon crystals were
separated from bulk rock sandstone samples after crushing and
sieving (80–160mm fraction), using standard magnetic and
heavy liquid separation techniques. The andesite breccia
sample yielded neither apatite nor zircon. Apatite aliquots from
the sandstone samples were mounted in an epoxy resin,
polished and etched for 20 s at 21 °C in 5.5M HNO3. The
samples, covered with muscovite sheets as external detectors,
were irradiated together with Durango and Fish Canyon Tuff
age standards and IRMM540R dosimeter glasses at the FRM II
Research Reactor in Garching, Germany.

Zircon aliquots were mounted in Teflon
®

sheets, polished
and etched in a laboratory oven at 228 °C between 10 and 35 h
in a eutectic melt of NaOH and KOH. The zircon samples, also
covered with white mica detectors, were irradiated together
with Buluk and Fish Canyon Tuff age standards and CN1
dosimeter glasses. After irradiation, all mica detectors were
etched at 21 °C for 18min in 48% hydrofluoric acid.

All fission-track analyses were done in the ISTerre fission-
track laboratory in Grenoble, France. Fission-tracks were
counted dry at 1250�magnification in grains mounted parallel
to their C-axis, using an Olympus BX51 microscope and the
FTStage 4.04 system of T. Dumitru. The grain age distributions
of all samples are presented in radial plots, and minimum and
f 18



Table 2. Apatite fission-track data.

Sample
number

Deposition
(Ma)

n Age range
(Ma)

rs
(10�5 cm�2)

Ns ri
(10�5 cm�2)

Ni rd
(10�5 cm�2)

P(x2) Central
Age (Ma)

±1s Minimum
age (Ma)

±1s

10SJ11 29.0 ± 1 52 31.1–458.2 11.2 2050 11.6 2116 7.24 0 83.1 6.4 44.3 7.4

10SJ06 31.0 ± 1 102 24.2–343.2 14.4 4191 16.0 4544 7.25 0 73.8 4.1 37.6 3.2
10SJ07 31.5 ± 1 90 25.0–328.5 14.2 3381 13.7 3258 7.25 0 85.5 4.7 46.1 4.7

Note: Samples were counted dry with a BX51Olympus microscope at 1250�magnification. Central and minimum ages were calculated with the
RadialPlotter program of Vermeesch (2009), using a zeta value of 214.63 ± 18.5 and the IRMM540R dosimeter glass. rs: spontaneous track
density; ri: induced track density; rd: track density of the fluence monitor.
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central ages (Galbraith and Laslett, 1993) were calculated with
the RadialPlotter program of Vermeesch (2009). Given the
relatively close age of deposition of about 31 ± 2Ma of the
sampled units, we combined all AFT and ZFT single grain age
data for binomial peak fitting using BINOMFIT of Brandon
(see Stewart and Brandon, 2004; Ehlers et al., 2005) to
determine the main grain age components for provenance
analysis (e.g., Bernet et al., 2004; Bernet and Garver, 2005).

The first-order drainage basin maximum and average
exhumation rates are estimated from the 1-D thermal advection
model age2edot by Brandon (see Ehlers et al., 2005 for
details), using the lag-time concept (e.g., Garver et al., 1999;
Bernet and Garver, 2005). In this study, lag times are
calculated:

–
 for the maximum exhumation rate estimates by subtracting
the depositional age from the minimum age, and;
–
 for the average exhumation rate estimates by subtracting
the depositional age from the central age of each sample.
3.2 Zircon U-Pb dating and single grain fission-track/
U-Pb double dating

A selection of zircons mounted in Teflon
®

sheets for fission-
track analysis were dated with the laser-ablation ICP-MS U-Pb
dating method at the Laboratoire Magmas et Volcans, Blaise
Pascal University, Clermont-Ferrand, France. An Agilent 7500
ICP mass spectrometer coupled to a fully computer-controlled
193nmResoneticsM-50E excimer laser were usedwith a 20mm
diameter spot size (Hurai et al., 2010 and 2012). Someof the same
grains had been dated first with the fission-track method for
double-dating of single grains. The objective was to analyse the
core of the grains to determine if they have 30–38Ma or much
older (>> 100Ma) crystallization ages, in order to identify a
possible Paleogene volcanic contribution. Certain zircon crystals
experienced lead-loss, but this is of limited relevance in this study,
as no high precision ages are needed to distinguish between
Eocene-Oligocene and Hercynian, Pan African or older
crystallization ages. All U-Pb data and Concordia plots can be
consulted in the supplementary data files.

4 Results

4.1 Fission-track results

AFTages were determined for samples 10SJ06 and 10SJ07
collected from Formation 2, and sample 10SJ11 collected from
Formation 3. The AFT data are shown in Table 2 and presented
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in radial plots in Figure 3. All these samples show similar
results with minimum ages between about 37 and 48Ma and
central ages between 73 and 86Ma. The spontaneous versus
induced track-density plot shows a wide range of values, which
is common for the analysis of detrital grains that were not reset
after deposition (Fig. 4a), and the uranium concentration
versus AFT cooling age plot (Fig. 4b) shows that the majority
of grains have uranium concentrations between 10 and 40 ppm
but with extreme values of < 5 ppm and > 120 ppm.

The ZFT data are shown in Table 3 and in radial plots in
Figure 5. The ZFT minimum ages between 33 and 49Ma and
central ages between 74 and 85Ma are very similar to the AFT
results. Similar to the apatite grains, the spontaneous versus
induced track-density plot (Fig. 6a) shows a wide range of
values, as it would expected from zircons of detrital samples.
The uranium concentration versus ZFT cooling age plot
(Fig. 6b) shows that most analysed grains have uranium
concentration between 100 and 400 ppm.

Lag-times calculated from AFT and ZFT minimum and
central ages are given in Table 4. AFT lag times vary between
6.6 and 15.3Myr, with a mean around 12.2 ± 4.3Myr for
minimum ages, and between 42.8 and 54.1Myr, with a mean of
50.3 ± 4.3Myr for central ages. ZFT lag times range from 4.4
to 19.0Myr, with a mean around 12.3 ± 4.8Myr for minimum
ages, and from 41.0 to 54.4Myr, with a mean of 46.3 ± 5.6Myr
for central ages.

Binomial peak fitting results of the AFT and ZFT data are
shown in Figure 7 (also see the data repository for single grain
data). Given the close range of depositional ages of sampled
units to obtain a general detrital age signal of the Saint
Antonin basin the grain ages can be combined and treated as
one sample. The combined 244 single grain AFT ages of the
three samples can be decomposed into four major age
components at about 37, 59, 85, and 175Ma. The best-fit
solution for the combined 206 single grain ZFT ages of the
four samples results in three major age peaks at about 33, 61,
and 134Ma.
4.2 Zircon U-Pb and fission-track/U-Pb double dating
results

A total of 109 zircons were dated with LA-ICP-MS
analysis (Fig. 8a) and 62 of these zircons were previously dated
with the fission-track method (Fig. 8b). With the exception of
one single zircon from sample 10SJ10 in Formation 3, with a
crystallization age of 30 ± 1Ma, all other zircons have U-Pb
ages ranging between 277–2812Ma (Fig. 8a). Almost 40% of
f 18
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Table 3. Zircon fission-track data.

Sample
number

Deposition
(Ma)

n Age
range
(Ma)

rs
(10�5 cm�2)

Ns ri
(10�5 cm�2)

Ni rd
(10�5 cm�2)

P(x2) Central
Age
(Ma)

±1s Minimum
age (Ma)

±1s

10SJ11 29.0 ± 1 46 23.4–394.0 60.4 3037 13.8 694 3.20 0 76.5 7.5 33.4 3.7
10SJ10 30.0 ± 1 51 27.6–398.0 73.2 2642 13.8 498 3.18 0 84.4 6.9 49.0 10.0
09SJ33 31.5 ± 1 23 33.2–239.1 86.9 2361 19.3 524 3.02 0 76.3 9.3 46.5 5.3
09SJ29 33.0 ± 1 86 24.8–184.9 95.0 8169 19.1 1641 3.04 0 74.0 4.0 43.7 4.3

Note: Samples were counted dry with a BX51Olympus microscope at 1250�magnification. Central and minimum ages were calculated with the
RadialPlotter program of Vermeesch (2009), using a zeta value of 104.39 ± 3.32 and the CN1 dosimeter glass.
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the grains show Hercynian ages (∼360–280Ma) and another
20–25% Pan African ages (∼460–660Ma).

The zircon grain with a 30Ma U-Pb age also has a
34Ma ± 25ZFTcooling age, which means that this grain has to
be considered as the only Oligocene volcanic zircon grain
observed in our samples. The ZFT data show that a few grains
with Hercynian and Pan African crystallization ages have
Eocene-Oligocene cooling ages, but otherwise show a large
spread of apparent cooling ages between ca. 55–255Ma
(Fig. 8b).

5 Discussion

5.1 Apatite and zircon fission-track ages in the
source areas

The grain age distribution of detrital apatite and zircon
samples from sandstone reflects a mixture of apparent cooling
ages in the drainage area at the time of deposition. The spread
of the observed grain age distribution depends, among other
factors, on the size of the drainage area, relief, erosion rates,
bedrock lithologies, and of course the bedrock cooling history
(e.g., Garver et al., 1999; Bernet et al., 2004). If fission-track
data are available from the present-day outcrops in the
Page 8 o
drainage area, they can be compared with the detrital grain age
distributions to provide valuable information and constraints
on potential paleo-source areas. To the best of our knowledge,
no bedrock ZFT data have been published for the Maures-
Esterel massif, but AFT ages between 21–37Ma were
determined for the Plan de la Tour granite, Moulin Blanc
granite, and Bornes gneiss in the Maures massif; of about
93Ma for the Saint Tropez granite; and around 140Ma in the
Tanneron massif west of Cannes (Fig. 9; Lucazeau andMailhé,
1986; Morillon, 1992, 1997; Jakni, 2000).

Paleozoic basement and Triassic-Jurassic cover rocks in
eastern and western Sardinia have AFT ages over 50Ma and
increase to 100 to 306Ma in southwestern Sardinia (Rossi
et al., 2005; Zattin et al., 2008, Malusà et al., 2016). AFT
cooling ages of 30Ma and younger can be found along the
central graben in Sardinia, but the majority of AFT ages in
Sardinia ranges from about 40 to 170Ma (Rossi et al., 2005;
Malusà et al., 2016). ZFT ages throughout Sardinia are
between 140–240Ma (Fig. 9;Malusà et al., 2016). Single grain
apatite (U-Th)/He data for Sardinia are as variable as the AFT
ages, ranging from 26–204Ma (Malusà et al., 2016).

A relatively dense AFT and ZFT dataset exists for Corsica
(e.g., Cavazza et al., 2001; Zarki-Jakni et al., 2004; Fellin
et al., 2005, 2006; Danisik et al., 2007). ZFTages in Hercynian
Corsica show an east-west trend from about 60–70Ma in the
East, 110–180Ma in the central part, to 220–240Ma in the
West (Fig. 9; also see summary in Danisik et al., 2007). Alpine
Corsica ZFT ages are in general younger, ranging from about
110 to 20Ma (Fellin et al., 2006). AFT ages throughout
Corsica are much more coherent at about 11–20Ma and do not
show the same regional pattern as the ZFT ages, with Alpine
Corsica showing the youngest (Tertiary) AFT and ZFT ages
(e.g., Cavazza et al., 2001; Zarki-Jakni et al., 2004).

Late Oligocene and Miocene AFT ages in the Maures-
Esterel massif, Sardinia and Corsica are related in the literature
to extension during the phase of rifting in the Provençal–
Ligurian basin and counter-clockwise rotation of the Corsica–
Sardinia block away from the Maures-Esterel massif (Vigliotti
and Langenheim, 1995; Séranne, 1999; Brunet et al., 2000;
Rollet et al., 2002; Zarki-Jakni et al., 2004; Fellin et al., 2006;
Danisik et al., 2007; Malusà et al., 2016). At the same time the
Saint Antonin area experienced a phase of compression
(Campredon and Giannerini, 1982), with gradual surface uplift
and eventual exposure of the basin syncline. Late Triassic ZFT
ages in western Corsica were interpreted to reflect partially
annealed zircons during Jurassic rifting, and Early Jurassic to
Late Cretaceous ZFT in central Corsica relate to the Liguria-
Piedmont ocean opening according to Danisik et al. (2007) and
Malusà et al. (2016). Nonetheless, the Late Cretaceous ZFT
ages are debatable, as Fellin et al. (2006) considered such ZFT
ages as well partial annealed ages.
5.2 Provenance information from
geo-thermochronological data

Based on structural, paleomagnetic and petrographic data,
Westphal et al. (1976) had already shown that the Corsica-
Sardinia block was directly connected with the Porvence area
of southern France, with Corsica in a location close to where
Nice and Cannes are today (Lacombe and Jolivet, 2005). In
f 18
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addition, from the sediment petrological and sedimentological
evidence of the Saint Antonin basins mentioned above, the
sediment source areas were located to the south and south-west
of the basin, including the Maures-Esterel massif, Corsica and
Sardina (Stanley, 1980; Campredon and Giannerini, 1982).
The question is which of the three potential source areas is the
most important? We first look at the zircon U-Pb data to
elaborate this question. Zircons with Pan-African and older U-
Pb ages are most likely derived from Permo-Triassic
sedimentary cover rocks in the Maures-Esterel massif,
Sardinia and Corsica, or from meta-sedimentary rocks of
the Alpine Corsica zone. However, large fractions of zircons
Page 9 o
dated in this study have Hercynian U-Pb ages between 280 and
350Ma. Hercynian granitic intrusions and migmatites are
widespread throughout the Maures-Esterel massif, Sardinia
and Corsica (e.g., Morillon et al., 2000; Duchesne et al., 2013).
Therefore, the zircon U-Pb data alone do not provide solid
criteria for distinguishing between the three source areas. Only
one zircon grain with an Oligocene crystallization age was
identified, which is, given its corresponding ZFT cooling age,
interpreted to be derived from a volcanic source. Because this
contribution is very small, and because the andesite breccia we
sampled in the Saint Antonin basin did not yield any apatite or
zircon, we think that Oligocene volcanic rocks are not a major
f 18
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Formations 1 to 3, determined with the BINOMFIT program of
Brandon (see Ehlers et al., 2005).
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source and the detrital AFT and ZFT cooling age signals
discussed below represent source area exhumation. Here the
questions is how can the AFTand ZFTages be linked to source
areas? A basic assumption is that for apatite and zircons with
Eocene and early Oligocene cooling ages only bedrock
exposed at the surface today which have early Oligocene or
younger cooling ages can be considered as potential source
areas (Fig. 9). In the Saint Antonin basin, we interpret apatites
with early Oligocene cooling ages being mainly derived from
source areas in Corsica and possibly from the Maures-Esterel
massif, but there outcrops with early Oligocene AFT cooling
ages are rather limited, at least from what is known from the
published data (Fig. 12). Zircons with early Oligocene cooling
ages have most likely a source area limited to Alpine Corsica,
in the northeast of the island (Fig. 9). Alpine Corsica is
separated from Hercynian Corsica by what is regarded as the
southern extension of the Penninic front (Lacombe and Jolivet,
2005).

Apatites and zircons with Late Cretaceous to Early Tertiary
apparent cooling ages may have been derived from very slowly
cooled Hercynian intrusive rocks or from partially reset
(cover?) units, which do not provide a clear age signal. Jurassic
to Early Cretaceous apparent cooling ages most likely come
from source rocks in theMaures-Esterel and Tanneron massifs,
Page 10
Sardinia and Corsica (Fellin et al., 2006; Danisik et al., 2007;
Malusà et al., 2016).

The zircon double-dating results in Figure 8b show that
these different sources need to be considered. The lack of a
dense fission-track dataset in the Maures-Esterel massif
prohibits more precise constraints. However, the published
ZFT data from Corsica and Sardinia support potential source
areas in the eastern, central and western parts of Hercynian
Corsica for zircons with Early Cretaceous and older apparent
fission-track cooling ages and Alpine Corsica for zircons with
Late Cretaceous and Paleogene fission-track cooling ages
(Fellin et al., 2006; Danisik et al., 2007; Malusà et al., 2016).
We think that all of these Corsican sources were exposed and
eroded during the early Oligocene and some of these sediments
were deposited in the Saint Antonin basin, before Corsica and
Sardinia drifted away during the late Oligocene – early
Miocene (Lacombe and Jolivet (2005), and were removed
as potential source areas, and the Saint Antonin basin was fully
inverted and uplifted (Campredon and Giannerini, 1982).
of 18



Table 4. Lag-time calculations. Bold means average values.

Apatite fission-track data

Sample Deposition
(Ma)

Error
(Ma)

Central Age
(Ma)

±1 s Minimum
age (Ma)

±1 s Central age
lag time (Myr)

±1 s Minimum age
lag time (Myr)

±1 s

10SJ11 29.0 1 83.1 6.4 44.3 7.4 54.1 5.2 15.3 5.9
10SJ06 31.0 1 73.8 4.1 37.6 3.2 42.8 3.6 6.6 3.0
10SJ07 31.5 1 85.5 4.7 46.1 4.7 54.0 4.0 14.6 4.0

Mean 50.3 4.3 12.2 4.3

Zircon fission-track data

Sample Deposition
(Ma)

Error
(Ma)

Central
Age (Ma)

±1 s Minimum
age (Ma)

±1 s Central age
lag time (Myr)

±1 s Minimum age
lag time (Myr)

±1 s

10SJ11 29.0 1 76.5 7.5 33.4 3.7 47.5 6 4.4 3.3

10SJ10 30.0 1 84.4 6.9 49 10.0 54.4 5.6 19.0 7.8
09SJ33 31.5 1 76.3 9.3 46.5 5.3 44.8 7.3 15.0 4.5
09SJ29 33.0 1 74.0 4.0 43.7 4.3 41.0 3.5 10.7 3.7

Mean 46.9 5.6 12.3 4.8

Data repository:
DR Table 1: Detrital zircon U-Pb data
DR Table 2: Detrital zircon fission-track/U-Pb double dating results
Zircon U/Pb Concordia plots
Detailed apatite and zircon fission-track data
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Given the overall younging age trend in the AFT and ZFT data
that can be observed from southern Sardinia to northern
Corsica suggests that northern Corsica was possibly the most
prominent sediment source area for the Saint Antonin basin
(Fig. 9; Malusà et al., 2016).

5.3 Source area exhumation rates

The minimum and central ages of the individual AFT and
ZFT samples are clearly older than the given depositional ages
between about 33 and 29Ma. This, together with the relatively
shallow burial of the sampled sedimentary rocks, suggests that
fission-tracks in apatite and zircon were not affected by strong
post-depositional annealing. As outlined above with the zircon
double-dating results, a volcanic contribution seems to be
negligible. Therefore, the AFT and ZFT data presented in this
study can be used for estimating drainage basin average and
maximum exhumation rates. The lag times shown in Table 4
can be used with Figure 11 to obtain first-order estimates of
exhumation rates. Drainage basin average long-term exhuma-
tion rates determined from the mean central-age lag times are
on the order of 0.1 to 0.2 km/Myr (Fig. 10). The maximum
exhumation rate estimates based on the minimum-age lag-time
calculations are on the order of 0.4–0.7 km/Myr (Fig. 10). Only
about 10 to 15 percent of the dated apatite and zircon grains
have Eocene to Oligocene cooling ages. While ignoring
potential lithologic bias, this could mean that probably only
small areas were affected by faster erosion. Overall slow
erosion in the proximate source area of the Maures-Esterl
massif is consistent white mica 40Ar/39Ar data from the
Tanneron massif, which are in the 320–300Ma range (Corsini
Page 11
et al., 2010), indicating that these rocks had cooled below
temperatures of about 400–350 °C during the Carboniferous
and where slowly exhumed afterwards, as no white micas with
younger 40Ar/39Ar cooling ages were detected. Because the
Pyrenees-Provence belt formed during the collision of the
Corsican-Sardinia-Iberia block with the European plate during
the Eocene (Arthaud and Séguret, 1981; Lacombe and Jolivet,
2005; Jolivet et al., 2015), the erosional response followed.
Erosional exhumation was slow in the sources areas and
may have accelerated only during the late Eocene – early
Oligocene, when the erosional products were transported and
deposited in the Saint Antonin basin, at the end of the Pyreneo-
Provençal compression phase, and before late Oligocene-early
Miocene Ligurian basin rifting had reached the region
(Lacombe and Jolivet, 2005; Jolivet et al., 2015).

5.4 Comparison with the Barrême basin

If we compare detrital zircon U-Pb ages of the Saint
Antonin basin with zircon U-Pb ages from sandstone deposited
between 30 and 29Ma in the Barrême basin, we see a similar
age spread and a large number of zircons with Hercynian
crystallization ages in both basins (Jourdan et al., 2013, and
this study). However, using the Kolmogorov-Smirnov (KS)
test (e.g., Press et al., 1992), we can determine if the difference
between the zircon U-Pb age distributions for the two basins is
significant or not. A P(KS) value of < 5% indicates that the
difference is systematic and a P(KS) value of>> 5% indicates
that the difference is most likely due to random chance alone.
As shown in Figure 11a, with a P(KS) = 0% the two
distributions are significantly different in as much as many
of 18
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more Oligocene volcanic zircons were identified in the
Barrême basin deposits of the Clumanc and Saint Lions
conglomerates (Jourdan et al., 2013) than in the Saint Antonin
basin sedimentary rocks.

In the ZFT data, the differences are more striking, as the 30
to 29Ma Barrême basin deposits contain large numbers of
zircons with ∼30Ma cooling ages (Fig. 11b). The P(KS) = 0
value emphasizes this significant difference. Jourdan et al.
(2013) had shown with single zircon grain double-dating that
only some of these grains are of volcanic origin, but the
Page 12
majority seems to reflect rapid source area exhumation in the
Western Alps. Whereas zircons with ∼33Ma fission-track
cooling ages in the Saint Antonin basin make up only about
11% of the dated zircons, in the Clumanc and St. Lions
conglomerates ∼30Ma zircons dominate, comprising 67–68%
of the dated grain-age distributions (Jourdan et al., 2013). In
contrast, when comparing the ZFT grain-age distribution of the
Grès de Ville, deposited between 31–30Ma in the Barrême
basin, with the ZFT grain-age distribution of the Saint Antonin
basin, we see that the two distributions are very similar and a P
of 18



Fig. 9. Compilation of published bedrock apatite and zircon fission-track data of the Maures Esterel massif and the Corsica-Sardinia block. Data
from Lucazeau and Mailhé (1986), Mailhé et al. (1986), Morillon (1992, 1997), Cavazza et al. (2001), Zarki-Jakni et al. (2004), Fellin et al.
(2005, 2006), Rossi et al. (2005), Danisik et al. (2007), Zattin et al. (2008) and Malusà et al. (2016). Because of the large volume of data not all
are shown, but the presented ages are representative. Overview map from GeoMapApp (http://www.geomapapp.org/). Corsica and Sardinia
geological maps with sample locations were taken and modified from Malusà et al. (2016).
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Fig. 10. First order estimates of source area exhumation rates from
detrital apatite and zircon fission-track minimum-age and central-age
lag times are derived from the 1-D steady-state thermal advection
model age2edot by Brandon (see Ehlers et al., 2005 for details).
Model parameters given in the plot are: Ts: surface temperature;
Tgrad: thermal gradient; Zlw: crustal thickness; Tlw: temperature at
the base of the crust; kappa: thermal diffusivity. The lag time (Myr) is
the time difference between the age of deposition and the fission-track
age. The black dotted lines show the mean lag-time estimates of the
combined AFT and combined ZFT samples. The exhumation rate is
estimated from the Y-axis.
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Fig. 11. a) Cumulative probability plots of the combined Saint Antonin
zircon U-Pb data plotted against the combined zircon U-Pb data of the
Clumanc and St. Lions conglomerates of the Barrême basin (Jourdan
et al., 2013). A P(KS) = 0% value shows that the two distributions are
significantly different. b) Cumulative probability plots of the combined
Saint Antonin ZFT data plotted against the combined ZFT data of the
Clumanc and St. Lions conglomerates of the Barrême basin (Bernet
et al., 2009; Jourdan et al., 2013). A P(KS) = 0% value shows that the
two distributions are significantly different, as is also the case with the
zirconU-Pb ages. c)Cumulative probability plots of the combinedSaint
Antonin ZFT data plotted against the Grès de Ville ZFT data of the
Barrême basin (Jourdan et al., 2013). A P(KS) = 31.1% value indicates
that the two distributions are very similar and differences are probably
only due to random chance variations.
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(KS) = 31.1% value indicates that differences are most likely
due to random chance alone (Fig. 11c). This result is not
surprising as the Grès de Ville was sourced from the Maures-
Esterel massif to the south (Fig. 12; Evans and Mange-
Rajetzky, 1991; Joseph and Lomas, 2004), similar to the Saint
Antonin deposits and in contrast to the Clumanc and St. Lions
conglomerates of the Barrême basin, which had their sources
in the Western Alps (Evans and Mange-Rajetzky, 1991;
Schwartz et al., 2012; Jourdan et al., 2013).

5.5 Regional tectonics and basin evolution

Formations 1, 2, and 3 of the Saint Antonin basin were
deposited at roughly the same time as the Grès de Ville,
Clumanc and Saint Lions conglomerates in the Barrême basin
(Callec, 2001). Both basin remnants were affected by
synsedimentary compressional deformation. The Barrême
basin experienced east-west shortening, principally on its
eastern flank between 30–28Ma, when the first sediments
arrived from the internal Western Alps (e.g., Evans and
Mange-Rajetzky, 1991; Schwartz et al., 2012; Jourdan et al.,
2013). The syn-sedimentary deformation in the Saint Antonin
basin from the late Eocene to the early Oligocene was north-
south directed and mainly affected the southern flank of the
basin. Therefore, the two basins show similar deformation
styles but with different orientation of tectonic structures while
being in the same Western Alps pro-side foreland basin stress
field (Figs. 1, 9 and 12; e.g. Ford et al., 1999; Ford and
Lickorish, 2004). The main phase of compressional tectonics
in the Saint Antonin basin is linked to the final stages of the
Pyreneo-Provençal N-S shortening phase, indicating that in
this area compression occurred until about 28Ma, during
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deposition of the 3rd clastic formation in the basin. This makes
the Saint Antonin basin being a kind of foreland basin of the
Pyreneo-Provençal thrust belt which includes the Maures-
Esterel massif, Corsica and Sardinia. Furthermore, the timing
of deformation and rate of exhumation is comparable to what
has been observed in the Pyrenees (e.g., Fitzgerald et al., 1999;
Beamud et al., 2011; Vacherat et al., 2016).

From about 28Ma on rifting, which had already started in
the Gulf de Lion region before, affected the region south of the
Saint Antonin basin. This interpretation is consistent with the
model proposed by Malusà et al. (2016) who based on AFT,
ZFT and apatite (U-Th)/He data concluded that the late
Oligocene and Miocene apparent cooling ages in Corsica are
Page 15
related to extensional cooling during rifting, but that northern
Corsica experienced exhumational cooling caused of erosion
during the late Eocene and early Oligocene times. As
mentioned above, Alpine Corsica is separated from Hercynian
Corsica by the southern extension of the Penninic front.
Shortening along the Penninic front stopped here during the
Oligocene (Lacombe and Jolivet, 2005), after the deposition of
the Saint Antoni basin units, when the regional stress regime
changed to extension during the opening of the Ligurian basin.
This change coincides with the change in convergence
between the Adriatic and European plate in the Western Alps
as outlined by Dumont et al. (2012), and rollback of the
Adriatic slab in the Mediterranean (e.g., Malusà et al., 2015).
of 18



S. Jourdan et al.: BSGF 2018, 189, 12
As mentioned above, only the Barrême basin recorded a
significant change in sediment provenance from a southern to a
north-eastern direction, whereas the Saint Antonin basin was
sourced always only from the south (Fig. 12). The change in
provenance in the Barrême basin and the east-west shorting has
been explained with a change in convergence directions in the
Western Alps between the Apulian and European plates during
the mid-Oligocene (Fig. 12; e.g. Dumont et al., 2012).
Whereas, the Barrême basin received molasse sedimentation
until the early Miocene from theWestern Alps (e.g., Evans and
Mange-Rajetzky, 1991; Callec, 2001; Schwartz et al., 2012),
and was continuously affected by east-west shortening,
thrusting and transport on the Digne thrust-sheet (Fig. 12; e.g.
Artoni andMeckel, 1998; Lickorish and Ford, 1998; Evans and
Elliott, 1999; Evans et al., 2004), sedimentation stopped in the
Saint Antonin basin and no late Oligocene to early Miocene
molasse sediments were deposited, as Corsica, the most
important sediment source area, was removed by the opening
of the Ligurian basin. Therefore, regional tectonics were the
main driver of basin subsidence, depositional environments,
sediment provenance, syn-sedimentary deformation, and even-
tual basin inversion.

6 Conclusions

The geo-thermochronologic data of the Saint Antonin
basin presented in this study are consistent with sediment
provenance from the Maures-Esterel massif, Sardinia and
Corsica. The Saint Antonin basin clastic formations were
deposited between 33 and 28Ma, at the end of the Pyrenean-
Provencal collision phase and just before the initiation of the
opening of the Ligurian Sea and rifting of Corsica and Sardinia
away from the Maures-Esterel massif, and the single grain
zircon fission-track and U-Pb dating shows that a volcanic
contribution is negligible, and apatites and zircons with early
Oligocene fission-track cooling ages are in the Saint Antonin
basin, even if rare, are regarded as the result of erosional
exhumation at maximum rates of up to 0.4–0.7 km/Myr. The
majority of the AFT and ZFT cooling ages however indicate
overall relatively slow long-term average erosional exhuma-
tion rates on the order of 0.1–0.2 km/Myr in the Maures-
Esterel, Sardinia and Corsica, consistent with the rather limited
amount of sediments deposited in the Saint Antonin basin. In
comparison, the published geo-thermochronologic data of the
Barrême basin, show similar age ranges but with the difference
of a large proportion of zircons with early Oligocene fission-
track cooling ages, partly of volcanic origin and partly derived
from rapid erosional exhumation in the Western Alps. The
Saint Antonin basin deposits did not record a significant
change in sediment provenance at about 30Ma, as it has been
documented in the Barrême basin. This means that the Saint
Antonin basin was not affected by the same changes in
foreland basin dynamics and sediment routing systems as the
Barrême basin, even if the two foreland basin remnants are less
than 50 km apart. In the Saint Antonin basin sedimentation
ended around 28Ma, with eventual basin inversion and surface
uplift and removal of the main source areas in Corsica-Sardinia
block by continued rifting in the Ligurian Sea.
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