Using acceleration sensors to identify rigidity release threshold during Deep Brain Stimulation surgery
Ashesh Shah, Jerome Coste, Jean-Jacques Lemaire, Erik Schkommodau, Raphael Guzman, Ethan Taub, Simone Hemm-Ode

To cite this version:
Ashesh Shah, Jerome Coste, Jean-Jacques Lemaire, Erik Schkommodau, Raphael Guzman, et al.. Using acceleration sensors to identify rigidity release threshold during Deep Brain Stimulation surgery. 7th international IEEE EMBS Conference on Neural Engineering, Apr 2015, Montpellier, France. poster 520, 2015, IEEE/EMBS Conference on Neural Engineering (NER), 2015. hal-01866559

HAL Id: hal-01866559
https://uca.hal.science/hal-01866559
Submitted on 19 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
USING ACCELERATION SENSORS TO IDENTIFY RIGIDITY RELEASE THRESHOLD DURING DEEP BRAIN STIMULATION SURGERY

A. Shah1, Member, IEEE, J. Coste2, J.J. Lemaire2, E. Schkommodau2, Member, IEEE, R. Guzman3, E. Taub3 and S. Hemm-Ode2, Member, IEEE
1Institute for Medical and Analytical Technologies, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
2CHU de Clermont-Ferrand, EA 7282, IGCN, Université d’Auvergne, France, CHU de Clermont-Ferrand, France
3Departments of Neurosurgery and Biomedicine, University Hospital Basel, Basel, Switzerland

Background
Deep brain stimulation (DBS) is now a widely accepted surgical treatment for Parkinson’s disease (PD). Electrodes are implanted in the patient’s brain after intraoperative test stimulation. Changes in parkinsonian rigidity during test stimulation are detected by an evaluator, usually a neurologist, by identifying changes in the resistance of the patient’s arm to a passive movement. When a stimulation-induced reduction in rigidity is observed, the stimulation amplitude is noted; this is the clinical rigidity release threshold. The aim of the present study was to test the hypothesis that, at the moment of reduction in rigidity, the speed with which the evaluator moves the patient’s arms increases, and that this change and its amplitude can be detected with an acceleration sensor.

Methods

Step 1: Data recording setup. A 3 axis accelerometer evaluation board (STEVAL-MK0022V1, ST) housed in a non-conductive printed plastic case (FullCure 830 Vero White, Objet Geometries Ltd) is mounted on the evaluator’s wrist using a Velcro strap. This sensor is connected to a laptop with in-house developed recording software. This software is also connected to the deep brain stimulation system which provides current during the test stimulations.

Step 2: Synchronization of two data sets. Accelerometer data is recorded during all test stimulations in synchronization with the electrophysiology system.

Step 3: Statistical features are extracted from the recorded acceleration data in a windowed manner. Features extracted from data during test stimulation are normalized to those extracted from baseline data when there was no test stimulation. Wilcoxon signed rank test was used to identify which features changed with change in rigidity.

Step 4: The data set with the highest change compared to baseline is identified and the stimulation threshold is determined.

Results

• Three statistical features were identified to well describe rigidity release (Standard Deviation, Signal Energy and Spectral Amplitude of the Peak Frequency)
• Out of the 190 test stimulations, rigidity release thresholds were found using the clinical method for 144 evaluations, while using quantitative method, 160 thresholds were found. For 138 test stimulations, thresholds were found using both methods.
• The rigidity release thresholds found using accelerometer evaluation are significantly lower than those found clinically (Fig 5).

Discussion

• The additional acceleration measurements during the surgery did not increase operation time or the patient’s discomfort.
• Sufficient baseline data is necessary for proper identification of acceleration thresholds.
• There is an inherent subjective component in the acceleration analysis because the evaluation is done by the neurologist.
• Further analysis in relation to anatomy could result in better target structures and could raise additional knowledge of the mechanisms of action of DBS.

Conclusion

• The acceleration of the neurologist’s movement is inversely proportional to change in patient’s rigidity.
• Acceleration measurements confirm the subjective evaluation, but they seem to be more sensitive (Fig 5).
• Quantitative rigidity evaluation is feasible during DBS surgery.

Acknowledgements
This research has been supported by the Swiss National Science Foundation (SNSF) and the Germaine de Staél program.