

A method for electric field simulations and acceleration measurements for intraoperative test stimulation

Daniela Pison, Fabiola Alonso, Karin K Wårdell, Ashesh Shah, Jerome Coste, Jean-Jacques Lemaire, Erik Schkommodau, Simone Hemm-Ode

► To cite this version:

Daniela Pison, Fabiola Alonso, Karin K Wårdell, Ashesh Shah, Jerome Coste, et al.. A method for electric field simulations and acceleration measurements for intraoperative test stimulation. 7th international IEEE EMBS Conference on Neural Engineering, Apr 2015, Montpellier, France. 7th international IEEE EMBS Conference on Neural Engineering, poster 485, 2015, IEEE/EMBS Conference on Neural Engineering, poster 485, 2015, IEEE/EMBS

HAL Id: hal-01866542 https://uca.hal.science/hal-01866542v1

Submitted on 5 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A METHOD FOR ELECTRIC FIELD SIMULATIONS AND ACCELERATION MEASUREMENT FOR INTRAOPERATIVE TEST SIMULATION IN DBS

D. Pison¹, F. Alonso², K. Wårdell², Member, IEEE, A. Shah¹, Member, IEEE, J. Coste³, JJ. Lemaire³, E. Schkommodau¹, Member, IEEE and S. Hemm-Ode^{1,2}, Member, IEEE

¹Institute for Medical and Analytical Technologies, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland

² Department of Biomedical Engineering, Linköping University, Linköping, Sweden

³ CHU de Clermont-Ferrand, EA 7282, IGCNC, Université d'Auvergne, France, CHU de Clermont-Ferrand, France

Background

Despite an increasing use of deep brain stimulation (DBS) the fundamental mechanisms underlying therapeutic and adverse effects as well as the optimal stimulation site remain largely unknown. So far no group has considered simulations of electric entities for intraoperatively obtained test stimulation data to identify the stimulated volume around intraoperative DBS electrodes. The aim of the present paper is to introduce a method allowing patient-specific electric field simulations for stimulation amplitudes at different anatomical positions and taking

into account the obtained clinical results objectively evaluated by acceleration measurements [1].

Methods

PATIENTS

- 2 patients with Essential tremor (ET)
- bilateral implantation of DBS electrodes in the VIM (University Hospital in Clermont-Ferrand, France (Clinical study 2011-A00774-37 / AU905))

- <u>Preoperative</u> anatomical planning: manual outlining of **VIM** and its anatomic neighbors (Fig. 1) using iPlan (Brainlab, Feldkirchen, Germany) and choice of target and trajectory
- Intraoperative microelectrode
 - (patient 2) (4 traj. per patient)

Results

- 115 electric field simulations performed for the eight trajectories
- Data can be visualized in 3D and together with the anatomical images (Fig. 3)
- E-field maps show that not always best intraoperative clinical results can be observed in the **VIM** but in the surrounding regions (Fig. 4)
- The visual representation for all performed simulations (Fig.4) of the structures structure and combinations the touched by isoeletrical field and in relation to clinical the corresponding improvement shows:
 - together with the VIM
 - \rightarrow In several cases, FF or PLR are touched by the isoelectrical field when the improvement

Contact: Dr. Simone Hemm-Ode T +41 61 4674-796 F +41 61 4674-701 simone.hemm@fhnw.ch

Daniela Pison T +41 61 4674-413 daniela.pison@fhnw.ch

Prof. Karin Wårdell T +46-10-1032455 karin.wardell@liu.se Determination of structures included in the stimulated volume and of the percentage of structure's volume covered

Analysis per patient group:

Comparison of structure volume covered by isoelectrical field for all stimulation positions and amplitudes of both ET patients

Figure 2: Workflow for generation of patient-specific electric field simulations on patient specific anatomy

Discussion

- Workflow and methodology for electrical field simulations on manually outlined anatomical structures have been designed and successfully applied to two patients.
- First results seem to confirm published data hypothesizing that the stimulation of other structures than the VIM might at least partially be responsible for good clinical effects: Vassal et al. [Vassal, 2012] already suggested that parts of the ventro-oral nucleus (VO) could be appropriate targets as well.
- New concept including a detailed analysis of the isofield maps will allow the analysis of the analysis of
- New successful methodology for the interpretation of multiple patients' intraoperative data in relation to the anatomical structures and the objective clinical improvements.

References

Åström M et al. Method for patient specific finite element modelling and simulation of deep brain stimulation, Med Biol Eng Comput, 47; 21-28, 2009 [Åström, 2009]

- Shah A et al. A method to quantitatively evaluate changes in tremor during deep brain stimulation surgery. In: 2013 6th International IEEE/EMBS Conference on Neural Engineering, 1202–1205 [Shah, 2013]
- Vassal F. et al. Direct stereotactic targeting of the ventrointermediate nucleus of the thalamus based on anatomic 1.5-T MRI mapping with a white matter attenuated inversion recovery (WAIR) sequence. Brain Stimul. 5(4):625-33. [Vassal, 2012]

Institute for Medical and Analytical Technologies, Head: Prof. Dr.-Ing. Erik Schkommodau, Gründenstrasse 40 et al. Fhnw.ch/lifesciences

central electrode track, color coded following the induced clinical change (green: high improvement; red: low or no improvement) and superimposed to the anatomical structures (brownish color). MRI T1 axial image a) superimposed to 3D structures and isoelectrical fields. b) 3D frontal view of structures and isoelectrical fields.

function of the obtained clinical improvement (y-axis) including all performed simulations. Structures appearing in the same simulation have the same improvement value (=same horizontal level). The radius of the circles is proportional to the volume of the structures inside the *isoelectrical field [%].*