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ARTICLE

Reduced ultrafine particle levels in São Paulo’s
atmosphere during shifts from gasoline to
ethanol use
Alberto Salvo1, Joel Brito 2,4, Paulo Artaxo2 & Franz M. Geiger3

Despite ethanol’s penetration into urban transportation, observational evidence quantifying

the consequence for the atmospheric particulate burden during actual, not hypothetical,

fuel-fleet shifts, has been lacking. Here we analyze aerosol, meteorological, traffic, and

consumer behavior data and find, empirically, that ambient number concentrations of 7–100-

nm diameter particles rise by one-third during the morning commute when higher ethanol

prices induce 2 million drivers in the real-world megacity of São Paulo to substitute to

gasoline use (95% confidence intervals: +4,154 to +13,272 cm−3). Similarly, concentrations

fall when consumers return to ethanol. Changes in larger particle concentrations, including

US-regulated PM2.5, are statistically indistinguishable from zero. The prospect of increased

biofuel use and mounting evidence on ultrafines’ health effects make our result acutely policy

relevant, to be weighed against possible ozone increases. The finding motivates further

studies in real-world environments. We innovate in using econometrics to quantify a key

source of urban ultrafine particles.
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Vehicular emissions are main contributors to urban air
pollution within megacities1. Of key relevance to both
health2–5 and climate change6, 7 policies is particulate

matter (PM), a broadly defined class of ambient air pollutants8, 9.
Around the world, gasoline is the typical fuel source for the
passenger-car and motorcycle fleets that circulate in urban areas,
outnumbering heavy-duty diesel vehicles by an order of magni-
tude or so. With the introduction of biofuel ethanol to the fuel
mix witnessed in countries, such as Brazil, Sweden and the United
States, as both a substitute for gasoline and as a fuel additive, it is
timely to assess the effect such changes have on ambient particle
levels across the size range10. Some controlled emissions studies
show improved combustion efficiency and lower tailpipe
emissions as the ethanol fraction in gasoline increases and,
in particular, research in the laboratory indicates that
gasoline combustion can lead to larger amounts of ultrafine
particles (<100 nm in diameter) when compared to ethanol
combustion11–19. Beyond the tailpipe and the lab, a few modeling
studies have focused on ambient air, attempting to predict the
impact on PM2.5 levels (PM up to 2.5 µm in diameter) of the
adoption of E20 or E8520–22, yet such studies are based on
hypothetical fuel shifts, and ignore the currently unregulated
health-relevant ultrafine range23–27. The variation in PM
concentrations in ambient air during actual fuel shifts, in the
real-world setting of a major metropolitan area undergoing a
period of large-scale fluctuations in gasoline vs. ethanol use, has
not been assessed, nor has the particle size dependence on the fuel
mix been evaluated until now.

The one location that features episodes of large-scale shifts in
fuel mix as well as well-maintained monitoring networks for air,
weather and road traffic is the subtropical megacity of São Paulo.
Urban São Paulo is home to about 20 million people and 6
million passenger cars, with gasoline-ethanol “flex-fuel” vehicles
accounting for over half of vehicle miles traveled. Due to sig-
nificant investment into sugarcane ethanol supply and demand28,
ethanol prices that fluctuate with the world sugar market, and
government-controlled gasoline prices, there has been large-scale
switching by consumers between ethanol (E100) and gasoline
(a E20 blend typically), fuels that are ubiquitous at retail29, 30.

In this study, we combine aerosol size distribution measure-
ments between 7 and 800 nm and mass concentration measure-
ments for black carbon (BC) and PM2.5 with an econometric
approach to evaluate how the gasoline-ethanol fuel mix impacts
ambient particle levels in urban São Paulo across a wide range of
sizes. The method incorporates consumer responses to price
movements at the pump and examines pollutant concentration,
meteorology and road traffic observations at the street-hour level.
The longest sample period among the data sets that we use is
November 1, 2008 to May 31, 2013, excluding the colder months
of June to September. This sample period includes two episodes
of large variation in ethanol prices and subdued movement in
gasoline prices, over the spring to fall 2009–2010 and again over
the spring to fall 2010–2011. These large fluctuations in the price
of ethanol relative to gasoline, and the induced shifts in consumer
choice at the pump between ethanol and gasoline, were driven by
developments in world food and energy markets,31, 32 and not
concerns about air quality in São Paulo. Short-run fluctuations in
relative fuel prices, while shifting consumers’ choice of fuels,
did not impact price-inelastic demand for driving or travel
behavior33. Tunnel studies in the area attribute particle sizes
below 100 nm to direct emissions from both light and heavy
vehicles34, and diesel combustion, used exclusively in a fleet of
0.3 million heavy vehicles, was invariant to movements in the
ethanol-to-gasoline price ratio. Given this background, we
determine how particle concentrations across PM2.5 to ultrafines
varied in the real-world setting of São Paulo as the metropolis

underwent periods of increased—followed by decreased—gasoline
relative to ethanol use, once potential confounding factors are
accounted for, including temperature, wind, boundary layer height,
precipitation, the spatial distribution of traffic, and even drifts.

A previous application of the econometric method to these
price-induced natural experiments addressed only regulated
gaseous pollutants routinely measured by the environmental
authority33, compared to the field-derived particle size distribu-
tion measurements we now examine35, 36. That study found that
shifts from gasoline to ethanol use increased ozone concentra-
tions, countering the reduction in ambient number concentra-
tions of <50 nm diameter nanoparticles that we now report. Our
“purely empirical”37 approach provides a concrete benchmark
for alternative approaches used to evaluate urban air pollution,
specifically those based on emissions inventories, the analysis of
exhaust emissions or smog chambers, source apportionment
studies and chemical modeling38, 39. Motivated by a recent
modeling study associating PM with higher mortality when
compared to ozone3, a proposed next step in this research agenda
is to evaluate how public health outcomes co-varied with the
ethanol fraction relative to gasoline, as ozone rose whereas
ultrafines fell while PM2.5 remained invariant.

Results
Ultrafines rose with shift to gasoline and fell upon return. Our
two-step multivariate regression model considers price-induced
shifts in consumer fuel shares in a first step, and the impact of
these consumer choices, gasoline vs. ethanol, on ambient air in a
second step33, 40. As the first step, we require a consumer demand
model30, 41 to predict day-to-day quantities from day-to-day
prices because high-frequency fuel quantity data for the São Paulo
metropolis are not available, only daily price data. In the second
step, the econometric/statistical approach corrects for37, 42, 43

potentially high variability in particle levels. Specifically, the
analysis fixes or controls for potential factors of nanoparticle
variation8, 10, including the distance of measurement from roads,
the time of day, the day of the week, seasonality, longer term
trends such as growth and compositional changes in the vehicle
fleet, key meteorological variables, traffic congestion, and the
combustion of fuels other than gasoline and ethanol, which are
our object of interest (Table 1). The econometric approach
requires that the analyst give careful consideration to whether
remaining, unobservable determinants of nanoparticles might
co-vary with the gasoline-ethanol mix, and the evidence suggests
not (Methods).

Figure 1 and Table 2 summarize our main results. We both plot
and in the table’s first row report the estimated changes in
ultrafine (7–100-nm diameter), PM100-800 nm, BC, PM2.5, and
ozone concentrations scaled for a 50-percentage point shift in the
gasoline share in the flex fleet, from 30 to 80%. Induced by the
most marked episode of fluctuation in ethanol prices in the past
decade, shifts in gasoline use of this magnitude—a rise followed
by a fall—were observed from mid-summer to mid-fall of 2011
(Fig. 2a). This was quite a seasonally homogeneous five-month
period, for example, with temperatures trending downward only
slightly and during which there were no school breaks, noting
that large seasonal influences on ambient particles might
otherwise be hard to control (correct) for.

Both Fig. 1 and Table 2 report 95% confidence intervals (CI),
i.e., with about two standard errors on either side of a point
estimate (point estimate± 1.96 × standard error; see Table 2
notes). Estimated effects from raising the gasoline share on BC
mass concentration (reported for 08:00), PM2.5 mass concentra-
tion (24-h) and PM100-800 nm number concentration (08:00)
are statistically insignificant from zero (Supplementary Notes 1, 2
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Table 1 Description of the different data sets that the present study combines including summary statistics

Variable and unit of measurement
(and method, if relevant)

Data Source Full sample
perioda

Sampling
sites

Data
frequency

No. of
obser-
vations

Mean Std.
Dev.

Min. Max.

Particle pollution variable
PM2.5 mass concentration, 24-h filter
(µg m−3)

CETESB 11/2008–5/2013 Threeb 24-h 727 16.39 9.91 1.00 68.00

PM2.5 mass concentration, beta
continuous (µg m−3)

CETESB 1/2011–5/2013 Threec 1-h 43,571 20.44 14.94 0.00 160.00

Black carbon (BC) mass concentration,
MAAP (µgm−3)

Own 10/2010–4/2011d One (USP) 1-h 6,152 3.23 2.69 0.06 15.67

Ultrafine particle number concentration
(UFP) 7–100 nm, DMPS (cm−3)

Own 10/2010–9/2011 One (USP)e 1-h 6,454 14,561 6,384 1,339 56,019

PM 100–800 nm number concentration,
DMPS (cm−3)

Own 10/2010–9/2011 One (USP)e 1-h 6,454 3,161 2,900 86 22,291

Fuel mix variables (light vehicles and motorcycles)
Ratio of ethanol-to-gasoline regular-grade
prices per litre (%)

ANP (at the
pump)

11/2008–5/2013 Median
SPMAf

Daily 1,673 0.64 0.07 0.49 0.85

Gasoline share in the flex-fuel light-vehicle
fleet (%)

Salvo-Huse
(2013)

11/2008–5/2013 Estimatedg Daily 1,673 0.35 0.14 0.11 0.76

Ethanol share in the flex-fuel light-vehicle
fleet (%)

Salvo-Huse
(2013)

11/2008–5/2013 Estimatedg Daily 1,673 0.65 0.14 0.89 0.24

Gasoline share among all gasoline and
ethanol consumers (%)

ANP
(wholesalers)

11/2008–5/2013 SP stateh Monthly 55 0.63 0.09 0.51 0.82

Ethanol share among all gasoline and
ethanol consumers (%)

ANP
(wholesalers)

11/2008–5/2013 SP stateh Monthly 55 0.37 0.09 0.49 0.18

Control variables
Solar radiation (Wm−2) CETESB 11/2008–5/2013 Mean SPMAf 1-h 40,112 175.73 257.95 0.00 1280.40
Ground temperature (oC) CETESB 11/2008–5/2013 Mean SPMAf 1-h 40,144 20.77 4.84 5.53 38.40
Relative humidity (%) CETESB 11/2008–5/2013 Mean SPMAf 1-h 40,013 77.28 17.73 12.30 98.90
Wind speed (m s−1) CETESB 11/2008–5/2013 Mean SPMAf 1-h 40,145 1.37 0.76 0.00 4.36
Wind blows from North–East (yes= 1) CETESB 11/2008–5/2013 SPMAf,i 1-h 155,308 0.15 0.35 0.00 1.00
Wind blows from South–East (yes= 1) CETESB 11/2008–5/2013 SPMAf,i 1-h 155,308 0.41 0.49 0.00 1.00
Wind blows from South–West (yes= 1) CETESB 11/2008–5/2013 SPMAf,i 1-h 155,308 0.10 0.30 0.00 1.00
Wind blows from North–West (yes= 1) CETESB 11/2008–5/2013 SPMAf,i 1-h 155,308 0.17 0.38 0.00 1.00
Precipitation (mm h−1) INMET 11/2008–5/2013 SPMAf 1-h 40,085 0.21 1.57 0.00 58.40
Thermal inversion at 09:00 with base of
layer 0–199m (yes= 1)

FAB 11/2008–5/2013 SPMAf Daily 1,671 0.08 0.27 0.00 1.00

Thermal inversion at 09:00 with base of
layer 200–499m (yes= 1)

FAB 11/2008–5/2013 SPMAf Daily 1,671 0.26 0.44 0.00 1.00

Road congestion at the citywide level (km) CET 11/2008–5/2013 SP cityh 1-h 40,152 24.65 36.57 0.00 294.66
Road congestion in the North region of SP
city (km)

CET 11/2008–5/2013 SP cityh 1-h 40,152 0.65 1.56 0.00 21.59

Road congestion in the East region of SP
city (km)

CET 11/2008–5/2013 SP cityh 1-h 40,152 6.23 10.03 0.00 99.51

Road congestion in the South region of SP
city (km)

CET 11/2008–5/2013 SP cityh 1-h 40,152 5.15 8.44 0.00 77.55

Road congestion in the West region of SP
city (km)

CET 11/2008–5/2013 SP cityh 1-h 40,152 5.50 9.19 0.00 89.76

Road congestion in the Center region of SP
city (km)

CET 11/2008–5/2013 SP cityh 1-h 40,152 7.11 11.03 0.00 81.35

Number of aircraft departing from
Congonhas airport (h−1)

ANAC 11/2008–5/2013 CGN airportj 1-h 40,140 9.03 6.43 0.00 32.00

Number of aircraft landing at Congonhas
airport (h−1)

ANAC 11/2008–5/2013 CGN airportj 1-h 40,140 9.01 6.51 0.00 29.00

Diesel prices and usage (heavy vehicles)
Diesel real price index (October
2008= 100, IPCA)

IBGE 11/2008–5/2013 SPMAf Monthly 55 86.06 6.36 78.25 100.85

Ridership on diesel buses in the public
transport system (×106 day−1)

SPTrans 11/2008–5/2013 SPMAf Monthly 55 7.96 0.44 6.78 8.65

aSamples described here include the colder months of June to September and all days of the week
bCerqueira César, Ibirapuera and Pinheiros air monitoring sites
cCongonhas, Pinheiros and University of São Paulo/IPEN air monitoring sites
dSampling additionally occurred during 8–11/2012
eDMPS data validated against an independent CPC operated concurrently
fSPMA denotes São Paulo Metropolitan Area (São Paulo metropolis)
gEstimated using actual consumer choices at varying prices
hSP denotes São Paulo
iWind monitors at Ibirapuera, Osasco, Pinheiros and Santana stations
jCGN denotes Congonhas. See Methods for the data sources beyond the acronyms provided here
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and 4). Previous research identifies diesel use in heavy vehicles as
the main source of BC in the metropolis,34, 44, 45 and diesel
combustion did not fluctuate in tandem with the gasoline-ethanol
mix (Supplementary Figs. 5–8). This provides an explanation for
the insignificant impact on BC (CI −0.3± 1.9 µg m−3) from
raising the proportion of the flex fleet burning gasoline rather
than ethanol. Figure 3 shows that all estimated gasoline vs.
ethanol effects reported in Fig. 1 and Table 2 remain unchanged
when we include monthly ridership in diesel buses in the
metropolis as an additional control in our regression models
(Supplementary Fig. 6).

In contrast to the large size ranges, concentrations of ultrafines
during the morning commute show a clear 30% increase with
higher gasoline penetration. Taking the largest estimated change
over the day, at 08:00, a 30–80% increase in gasoline penetration
(equivalent to a 70–20% decrease in ethanol penetration) is
associated with a 8,713± 4,559 cm−3 increase in ambient number
concentrations of <100 nm diameter nanoparticles, i.e., a CI
between +4,154 and +13,272 cm−3. The fact that the experimental
lever, the share of gasoline, was pulled in both directions—up
then down—coinciding with movement in ultrafine levels—up
then down—strengthens our result. In particular, the co-variation
that we uncover is not estimated off a trend, which our regression
models correct for (Table 2), and as such is unlikely to suffer from
omitted variable bias.

Also reassuring is the estimated association between meteor-
ology and pollutant concentrations reported in Table 2, such as
the negative and statistically significant effect of wind speed on all
measured parameters46. To illustrate the method, the last column
of Table 2 reveals the reduction in afternoon ozone levels

Table 2 Changes to particle and ozone concentrations associated with variation in the gasoline-ethanol fuel mix

Column number: (1) (2) (3) (4) (5)
Dependent variable: BC PM2.5 PM 100–800 nm UFP 7–100 nm Ozone
Unit: µgm−3 µg m−3 cm−3 cm−3 µg m−3

Mean over hour window: 08:00 24-h 08:00 08:00 12:00–16:00
Sample period: Oct/2010 to Apr/2011 Nov/2008 to Jan/2011 to Jan/2011 to Nov/2008 to

& Oct to Nov/2012 May/2013 May/2011 May/2011 May/2013
Number of sampling sites: 1 3 1 1 12
Source: Own CETESB Own Own CETESB

Share of Gasoline E20/E25 in the flex fleet rises
from 30 to 80%

−0.3± 1.9 0.2± 3.9 −1,249± 1,669 8,713± 4,559 −8.3± 5.0

Equivalently, share of Ethanol E100 in the flex fleet
falls from 70 to 20%

Control variables (to correct for the influence of other determinants of particles)
Site-specific linear trend Yes Yes Yes Yes Yes
Week-of-year fixed effects No Yes No No Yes
Day-of-week fixed effects Yes Yes Yes Yes Yes
Radiation (+100Wm−2) 0.5± 0.7 −0.4± 2.2 4± 825 235± 1,798 4.2± 0.7
Temperature (+1 oC) 0.0± 0.2 1.2± 0.5 236± 235 −847± 836 3.1± 0.4
Humidity (+10%) 0.1± 0.7 −1.0± 1.6 349± 721 −1,020± 1,712 −4.9± 1.3
Wind speed (+1 m s−1) −3.2± 1.2 −6.5± 2.8 −2,102± 1,410 −4,217± 3,489 −13.2± 2.1
Other meteorological and road traffic conditions
(see notes)

Yes Yes Yes Yes Yes

R2 62.0% 73.4% 76.0% 69.8% 70.7%
Number of observations 129 511 80 80 13,203
Number of regressors 18 74 19 19 96
Mean value of dependent variable 6.0 13.8 3,577 18,659 72.2

Coefficients and 95% confidence intervals, i.e., point estimate± 2 standard errors. An observation is a date (columns 1, 3, 4) or a date-site pair (columns 2, 5). Samples exclude the colder months of June
to September, and include all days of the week (columns 2, 5) or non-holiday weekdays only (columns 1, 3, 4). Radiation, temperature, humidity, and wind speed in the recorded unit. All columns
additionally include several precipitation, thermal inversion and road traffic congestion indicators. Columns 1 to 4 further control for wind direction and column 5 follows Supplementary Table 4. Since the
longer samples encompass 2010, columns 2, 5 include site-specific intercepts indicating the opening of the Greater São Paulo beltway’s southern section on March 31, 2010. The effect of raising the
gasoline share in the flex fleet is scaled for in-sample variation from 30 to 80%. The corresponding variation in the ethanol share is one minus variation in the gasoline share. Ordinary Least Squares
(OLS) estimates, with standard errors calculated by bootstrapping (200 samples each): (i) the consumer-level fuel choice data, to account for sampling variation in the predicted gasoline share in a first-
step consumer demand model, and (ii) the pollutant-meterology-traffic data in the second-step particle regression, clustering by date

–15 –10 –5 0 5 10 15

Estimated Δ[BC], Δ[PM2.5], and Δ[O3] (μg m–3)
and Δ[PM100-800 nm] and Δ[UFP] (cm–3 × 103)

Ozone

PM100-800 nm

Black carbon (BC)

PM2.5

Ultrafines (UFP)

Fig. 1 Estimated changes in pollutant concentrations. For varying
composition, size range, and time-of-day window, in the São Paulo
metropolitan area as the gasoline share in the flex-fuel fleet rises from
30 to 80 percentage points. Submicron particles and BC correspond to
readings at 08:00, PM2.5 are 24-h means, and ozone are afternoon means
between 12:00 and 16:00. Sample periods are January to May 2011 for
submicron particles, October 2010 to April 2011 and October to November
2012 for BC, and November 2008 to May 2013 for PM2.5 and ozone. 95%
Confidence Intervals (CI) are shown. Source: Specifications reported in
Table 2
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previously reported for shifting ethanol to gasoline use33,
consistent with a hydrocarbon-limited regime37, but estimated
here from a longer sample than previously, namely 2008 to 2013,
rather than to 2011 (Supplementary Note 3).

Tight co-variation during morning rush hour. Figure 2b and c
provide a graphical representation of these submicron results. We
separately plot residual concentrations at 08:00 for PM100-800
nm and for ultrafines, obtained after filtering out all co-variation
with control variables, against the residual gasoline share,
obtained in the same way. For clarity, from each raw data series—
the 7–100 nm values at 08:00, the 100–800 nm values at 08:00,
and the gasoline share—we “partial out” (correct for) any co-
variation with observed meteorological and road traffic condi-
tions, as well as systematic day-of-the-week (e.g., Monday vs.
Friday) and trending variation (Supplementary Note 6). The
illustration considers the two-step model specification reported in
Table 2, columns (3) and (4), for a sample restricted to non-

holiday weekdays between January 20 and May 31, 2011, and
wind direction and a linear trend added to the vector of controls.
We choose this as our preferred specification with a view to
limiting unobserved determinants of the particle size distribution,
which might bias our estimates of the effect of the fuel mix or
make them less precise (Supplementary Note 5 reports robustness
to these choices and Methods provides an overview of all esti-
mated regression specifications).

Indeed, the panels show the strong positive association with
gasoline for 7–100 nm (Fig. 2c), but not for 100–800 nm (Fig. 2b),
at 08:00. We repeat the exercise for 7–100 nm and 100–800 nm
measurements in the evening, at 18:00 (Supplementary Fig. 17f,g),
and there is no clear relationship.

Figure 2d plots the strikingly tight and statistically significant
day-to-day correlation at 08:00: the ultrafine particle levels we
uncover, after correcting for the influence of other observed
factors, move in lockstep with the gasoline share. In the context of
a regression equation, both the outcome variable, ultrafines, and
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Fig. 2 Submicron particles and the gasoline share. a Fuel share variation among flex-fuel vehicles from January to May 2011. b Co-variation of PM 100–800
nm and c ultrafine number concentration residuals with gasoline share residuals for the weekday morning hour of 08:00 in the same period. The red line
marks the best linear predictor. d Morning-hour variation of ultrafine number concentration and gasoline share residuals over the period. Source:
Specifications reported in Table 2
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the key regressor of interest, the gasoline share (which is assumed
orthogonal to any remaining unobserved determinants of
ultrafines) together move up until the beginning of April, and
down thereafter. To emphasize, the result not only accounts for
changes in observable meteorological parameters—for example,
average daily minimum temperatures in this sample varied from
21 °C in January to 15 °C by May—but also for an unobservable
seasonal trend (which should be mild in this sample).

The increase in ultrafine particle concentrations due to
increased gasoline penetration manifests itself most clearly in
the early morning commute. Figure 4a shows that once corrected
for other factors, the positive association between the remaining
(residual) concentration in ultrafines and gasoline use is most
significant during the morning rush hour. This relationship is not
significant during the evening rush hour (though, given a CI of
−3,956 to +5,858 cm−3 at 18:00, a positive effect cannot be
statistically rejected either). Figure 4b shows that changes in
PM100-800 nm concentrations with the gasoline share remain
indistinguishable from zero during the course of the day.

Sub-50 nm ultrafines vary most. To further zoom into which
sizes in the ultrafine mode contribute the most to the increased
PM concentrations, we integrated the aerosol number con-
centrations over size bins having increasing width, starting at 7
nm and going up to 800 nm. Figure 4c shows that the most
important contributor to the increased (resp., decreased) particle
concentration in the ultrafine mode that coincides with the
observed increase (resp., decrease) in the gasoline share is the bin
of particles having diameters up to 50 nm. No detectable change
occurs in the particle concentration beyond that diameter, even
all the way up to 800 nm. For comparison, Fig. 4c also shows the
100–800 nm mode, whose number concentration change with
fuel mix variation is again indistinguishable from zero. In sum,
changes in PM concentrations that coincide with consumers

transitioning from ethanol into gasoline and back to ethanol are
not driven by the accumulation mode but instead by the
nucleation mode, specifically nanoparticles having diameters
<50 nm.

Variation in 24-h means. Table 3 reports on regressions that
examine variation in 24-h means for: the contribution of
nucleation (10–50 nm), Aitken (30–120 nm) and accumulation
(70–280 nm) modes to the aerosol particle size distribution47; BC
mass concentrations; and PM2.5 mass concentrations. We pro-
vide two-step model estimates in the odd-numbered columns
and, for sensitivity analysis in the even-number columns, esti-
mates from an alternative model based on two-stage least squares
(2SLS), with the ethanol-to-gasoline price ratio serving as an
“instrumental variable (IV)” for the predicted gasoline share
(Methods). Moreover, compared to Table 2, the submicron par-
ticle regressions that we report on in Table 3 use samples that are
longer, starting October 2010 rather than January 2011, and
contain all days of the week, including weekends and holidays. To
control for the additional seasonal and weekly variability, we
include quarter-of-year and additional day-of-week fixed effects
(these allow fitted particle levels to vary systematically by quarter,
on public holidays, on Saturdays, etc). PM2.5 levels, routinely
monitored by the environmental authority48 rather than our field
campaign, are over multiple years, so we can add more granular
week-of-year fixed effects, as these do not subsume the temporal
source of fuel mix variation that is our main variable of interest.
Two-step model estimates for PM2.5 in column (9) are as in
Table 2, column (2).

Across the two model variants (two-step or 2SLS), we obtain a
statistically significant and positive association between the
gasoline share and the 24-h average contribution of nucleation
mode particles, i.e., a 2,794± 1,456 cm−3 increase, or a 95% CI,
between +1,338 and +4,250 cm−3 as gasoline usage in the flex fleet
rises from 30 to 80% (Table 3, column (1)). This association is
consistent with the results over the day and across the size range
presented earlier in Fig. 4. Also consistent with the preceding
analysis, we do not detect significant associations between
gasoline and particle number in the Aitken and accumulation
modes (columns (3) to (6)). Consistent with Table 2, the gasoline
share is not significantly associated with 24-h BC concentrations
in the all-day sample used in Table 3 (columns (7) and (8)). Two-
step model estimates are very similar to 2SLS estimates; for
example, compare 24-h PM2.5 concentrations in columns (9) and
(10). In sum, the findings presented in Table 3 are consistent with
those in Table 2.

Discussion
The empirical pattern that emerges is characterized by a positive
and significant association between the gasoline share and 7–100
nm particle levels in the peak hours of morning travel, and the
absence of a statistically significant relationship outside this size
range and time window. We repeat the several aspects that give us
confidence that our findings are not mere statistical artifacts.
First, we infer “differences in differences”: differential results for
different particle size ranges, namely the nucleation vs. the Aitken
and accumulation modes, and the 7–100 nm vs. 100–800 nm size
ranges particularly during the morning commute (the first dif-
ference is the co-variation with the gasoline share—up and down
in tandem over time). Second, in the shorter sample—a period in
which meteorology varies mildly and “monotonically” as mid-
summer conditions evolve into those that characterize mid-fall—
ultrafine particle levels after correcting for confounders move in
lockstep with the gasoline share: nanoparticles and gasoline
jointly rise until the start of April, then jointly fall through the

–15 –10 –5 0 5 10 15

Estimated Δ[BC], Δ[PM2.5], and Δ[O3] (μg m–3)
and Δ[PM100-800 nm] and Δ[UFP] (cm–3 × 103)

Ozone

PM100-800 nm

Black carbon (BC)

PM2.5

Ultrafines (UFP)

Fig. 3 Sensitivity to diesel control for changes in pollutant concentrations.
For varying composition, size range, and time-of-day window, in the São
Paulo metropolitan area as the gasoline share in the flex-fuel fleet rises
from 30 to 80 percentage points. Submicron particles and BC correspond
to readings at 08:00, PM2.5 are 24-h means, and ozone are afternoon
means between 12:00 and 16:00. Sample periods are January to May 2011
for submicron particles, October 2010 to April 2011 and October to
November 2012 for BC, and November 2008 to May 2013 for PM2.5 and
ozone. 95% CI are shown. Source: Specifications reported in Table 2
additionally controlling for monthly diesel bus ridership in the metropolis’
public transportation system (Supplementary Fig. 6)
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end of May. The potential confounding factors that we control for
include a trend and meteorological and road traffic conditions
recorded concurrent to the day and hour. A third factor that
strengthens our findings is that they are consistent with con-
trolled emissions studies and laboratory experiments13–16, 18.
Fourth, our approach indicates an insignificant association
between the light-vehicle gasoline-ethanol mix and BC levels,
which are influenced mainly by diesel combustion in heavy
vehicles39, 43, 44. Fifth, controlling for monthly ridership of diesel
buses in the metropolis does not change our estimates, due to bus
ridership not varying over the sample period.

We provide the following possible rationalization of the asso-
ciations identified here. Changes in the <50 nm diameter nano-
particle concentrations in ambient air are consistent with flame
combustion experiments, which show emissions of nucleation
mode particles decrease with increasing ethanol fraction in
gasoline blends from E0, E20, and E50 to E8513. Insofar as these
laboratory studies are applicable to São Paulo’s urban air chem-
istry, it may be plausible to attribute the reported fluctuations in
<50 nm diameter particles during a seasonally similar period to
differences in the composition of direct emissions that occurred
in tandem. Replacing gasoline-rich fuel blends with ones rich in
ethanol may then result in significant reductions in ultrafine—
specifically <50 nm diameter nanoparticle—levels, as we indeed
estimated from the field-derived size distribution measurements.
The chemical analysis of the nanoparticles, which did not occur
during the period of fuel switching we studied, would be an
important next step towards understanding how gasoline-ethanol
mixes impact particle pollution in urban air.

In conclusion, we have combined aerosol, meteorological,
traffic, and consumer behavior data in an econometric approach
that identifies a statistically significant inverse association
between ethanol content in gasoline and ambient <50 nm dia-
meter nanoparticle concentrations. Specifically, we find decreases
of up to 25–30% during morning rush hours associated with an
in-sample 20 to 70% increase in ethanol penetration (equiva-
lently, 80 to 30% decrease in gasoline use) in the São Paulo flex-
fuel fleet. Whether subsequent atmospheric processing and/or
secondary material formation are materially influenced by shifts
in the fuel mix, and were not captured by our empirical model, is
unknown and motivates further studies. As with any empirical
observational study, confidence in its findings can only grow as
new samples, in space and time, become available, supported by
the results from different approaches and analysis techniques.
Nevertheless, our result that, after correcting for other influences
on particles, higher-followed-by-lower gasoline vs. ethanol use in
São Paulo coincided with higher-followed-by-lower <50 nm
diameter nanoparticle levels points towards the possibility that
the use of ethanol-rich gasoline blends as a transportation fuel
may decrease the atmospheric burden of health-relevant ultrafine
particles, specifically those that can reach deep into the pul-
monary system. This novel result, obtained in the field, is parti-
cularly timely as several countries now consider implementing
their intended nationally determined contributions to reduce
fossil fuel emissions, as agreed at the recent COP-21 in Paris, by
increasing biofuel use. Yet, we caution that this environmentally
desirable outcome is countered by the increases in local ozone
concentrations reported on earlier33, 49.
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associated with a 50-percentage-point rise in gasoline use in the flex-fuel fleet, from 30 to 80%. For clarity, for every hour of the day we plot the 95% CI
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Methods
Particle sampling methods and coverage. We combine data from different
sources. Among the particle pollution outcomes that we analyze, our most estab-
lished data set—in terms of both method and temporal coverage—consists of 24-h
filter measurements of PM2.5 mass concentration maintained by the environ-
mental authority of the state of São Paulo (CETESB)48. Three stationary sites, at
varying distance from roads, were sampled with a dichotomous sampler every six
days in the city of São Paulo (Supplementary Fig. 1 showing Cerqueira César,
Ibirapuera and Pinheiros sites). The sample period we study is November 1, 2008
to May 31, 2013.

This sample period includes two episodes of large variation in ethanol prices
and subdued movement in gasoline prices, over the spring to fall 2009–2010 and
again over the spring to fall 2010–2011. These large fluctuations in the price of
ethanol relative to gasoline, and the induced shift in consumer choice at the pump
between ethanol and gasoline, were driven by supply-side shocks, such as a poor
sugarcane harvest in India in late 2009. In particular, the pronounced variation in
relative ethanol prices was unrelated to the strength of consumer demand for
driving or commuting in the São Paulo metropolis, which might otherwise
confound our inference of the effect of the fuel mix on air quality. Shifting between
gasoline and ethanol, consumers were merely responding to—not causing—the
relative price movement at the pump. We return to these consumer shifts below.

A second sample on particles that we examine, also provided by the
environmental authority48, consists of hourly measurements of PM2.5 mass
concentration (beta continuous analyzer, model 5014i, Thermo Scientific, Franklin,
MA, USA). This higher-frequency (hourly) PM2.5 sampling started in January
2011 at the Congonhas site and continued through the end of our sample period in
May 2013. This sample period includes the second and more pronounced of the
two episodes of large variation in ethanol prices observed across the metropolis
between 2008 and 2013. The Congonhas site lies near an inner city airport,
Congonhas airport, and a busy multilane road. Subsequent to fall 2011, the
environmental authority began collecting hourly measurements of PM2.5 mass
concentration at the IPEN-USP site, starting in August 2011, and at the Pinheiros
site, starting in January 2012 (Supplementary Fig. 1). The IPEN-USP site lies inside
the Armando Salles de Oliveira campus of the University of São Paulo (USP), in
very close proximity to the sampling site for our third data set, described next.

A third data set consists of aerosol particle size distributions in the 7–800 nm
range using a Differential mobility particle sizer (DMPS)40, 41, and BC mass
concentrations measured using a Multi angle absorption photometer (MAAP,

model 5012, Thermo Scientific, Franklin, MA, USA). This third sample is not
routinely available from an official authority but was collected as part of a field
campaign. The campaign lasted from October 2010 to September 2011 (DMPS),
and October 2010 to April 2011 followed by August 2012 to November 2012
(MAAP). Importantly, sampling included a seasonally similar period of 4.5 months
—from January 20 to May 31, 2011—of marked increase followed by decrease in
ethanol prices. This subsample gives us heightened confidence in our submicron
particle results.

We validated the DMPS measurements against an independently operated
condensation particle counter (CPC, model 3022, TSI Inc., St. Paul, MN, USA),
operated concurrently to the DMPS and at a similar lower size cut. As a result of
the data validation, less than 2% of the original DMPS data were removed due to a
deviation of the integrated aerosol number concentration 50% or higher than the
aerosol number concentration measured independently by the CPC. A linear fit
between the DMPS integrated concentration and the CPC concentration yields an
R2 of 0.99, with a slope of 1.18 (Supplementary Fig. 2a). The diurnal variation
(median) and variance (interquartile range) of both measurements show very tight
correlation, without differential trends throughout the day (Supplementary
Fig. 2b).

Aerosol and sheath flow for the DMPS, CPC setup against an electrometer,
compensation for system diffusion losses, and all other calibrations, adjustments
and maintenance procedures follow previously published work50 exactly, and can
be found there. All aerosol size distribution measurements were performed with the
DMPS with a high time resolution of 10 min for a full measurement cycle. DMPS
aerosol particle size distributions were fitted for three lognormal modes47, allowing
the contribution of nucleation (10–50 nm), Aitken (30–120 nm) and accumulation
(70–280 nm) modes to be analyzed separately (Supplementary Table 5). Measured
parameters were averaged into 1-h data50.

The DMPS, CPC and MAAP instrumentation was deployed at the roof of a
four-storey building located inside the USP Armando Salles de Oliveira campus,
about 10 km from the city center in a highly populated area (Supplementary
Fig. 1)50. This site lies in relative proximity—on the opposite side of the Pinheiros
river—to the Pinheiros site, where the environmental authority collected the 24-h
PM2.5 samples over a common period. Below we examine the association between
BC and PM2.5 mass concentrations measured separately on the same dates in the
nearby sites.

The USP campus location for the DMPS/CPC instrumentation very likely
provides a lower ultrafine particle number concentration when compared to a

Table 3 Changes to 24-h mean particle concentrations associated with variation in the gasoline‐ethanol fuel mix

Column number: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Dependent variable: Nucleation Aitken Accumulation BC PM2.5
Unit: dN/dlogDp, cm−3 dN/dlogDp, cm−3 dN/dlogDp, cm−3 µg m−3 µg m−3

Mean over hour window: 24-h 24-h 24-h 24-h 24-h
Sample period: Oct/2010 to Oct/2010 to Oct/2010 to Oct/2010 to Nov/2008 to

May/2011 May/2011 May/2011 Apr/2011 and Oct
to Nov/2012

May/2013

Number of sampling sites: 1 1 1 1 3
Source: Own Own Own Own CETESB
Estimation: 2-step model 2SLS model 2-step model 2SLS model 2-step model 2SLS model 2-step model 2SLS model 2-step

model
2SLS model

Flex fuel share of Gasoline
E20/E25 rises
from 30 to 80%

2,794± 1,456 2,783± 1,433 332± 818 361± 818 565± 785 553± 806 1.1± 1.3 1.0± 1.2 0.2± 3.9 −0.2± 2.9

Equivalently, share of Ethanol
E100 falls from 70 to 20%

Control variables (to correct for the influence of other determinants of particles)
Site-specific linear trend Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Quarter-of-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes – –
Week-of-year fixed effects – – – – – – – – Yes Yes
Day-of-week fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Radiation (+100Wm−2) −234± 664 −235± 607 110± 386 111± 361 108± 259 108± 226 0.0± 0.3 0.0± 0.2 −0.4± 2.2 −0.3± 1.3
Temperature (+1 oC) −499± 234 −498± 211 −61± 119 −63± 105 32± 100 32± 91 0.1± 0.1 0.1± 0.1 1.2± 0.5 1.2± 0.4
Humidity (+10%) −1,454± 699 −1,453± 543 −715± 384 −718± 322 −97± 265 −96± 243 −0.4± 0.2 −0.4± 0.2 −1.0± 1.6 −1.0± 1.2
Wind speed (+1 m s−1) −569± 1,144 −567± 1,046 −1,910± 686 −1,913±

593
−485± 449 −484± 389 −1.6± 0.6 −1.6± 0.5 −6.5± 2.8 −6.5± 2

Other meteorolog. and road
traffic
conditions (see notes)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

R2 57.3% 57.3% 51.5% 51.5% 54.5% 54.5% 74.1% 74.1% 73.4% 73.4%
Number of observations 198 198 198 198 198 198 228 228 511 511
Number of regressors 30 30 30 30 30 30 29 29 74 74
Mean value of dependent
variable

8,755 8,755 3,320 3,320 1,494 1,494 3.3 3.3 13.8 13.8

Coefficients and 95% confidence intervals, i.e., point estimate± 2 standard errors. An observation is a date (columns 1–8) or a date-site pair (columns 9–10). Samples exclude the colder months of June to
September and include all days of the week. Radiation, temperature, humidity, and wind speed in the recorded unit. All columns additionally include several wind direction, precipitation, thermal inversion
and road traffic congestion indicators. Since the longer sample encompasses 2010, columns 9–10 include site-specific intercepts indicating the opening of the Greater São Paulo beltway’s southern section
on March 31, 2010. The effect of raising the gasoline share in the flex fleet is scaled for in-sample variation from 30 to 80%. The corresponding variation in the ethanol share is one minus variation in the
gasoline share. Ordinary Least Squares estimates in the odd-numbered columns, with standard errors calculated by bootstrapping (200 samples each): (i) the consumer-level fuel choice data, to account
for sampling variation in the predicted gasoline share in a first-step consumer demand model, and (ii) the pollutant-meterology-traffic data in the second-step particle regression, clustering by date. Two-
Stage Least Squares estimates in the even-numbered columns, with the median ethanol-to-gasoline price ratio across pumping stations instrumenting for the predicted gasoline share in the particle
regression equation
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roadside or on-road location, suggesting that the absolute changes in particle
number concentrations that coincide with the fuel shifts may be different if they
were to be measured near road traffic or at the vehicle exhaust51, 52. The site has
been described as “ideal for tracking ambient aerosols” and “representative of the
ambient pollution burden of the city,” due to the well-mixed air masses arriving at
the location and limited influence of local sources50. With 6 million passenger cars
and 0.3 million heavy-duty vehicles circulating and emitting across the metropolis,
it was critical to choose a site that is representative for the whole urban area. The
site is not influenced by one passing accelerating smoky vehicle or idiosyncratic
construction next door, nor is it a background site. Importantly, the site lies at a 1
km radius from a major road corridor (Marginal Pinheiros, running northwest to
south, spanning over 200 degrees, and 20 express/local lanes in two directions) and
is surrounded by busy roads (e.g., Corifeu de Azevedo Marques to the
west–southwest). Non-anthropogenic influences, particularly in the ultrafine range,
are limited. For example, vegetation on campus is limited compared to the dense
vehicular traffic flows that surround it.

In sum, we have access to 24-h PM2.5 mass concentrations measured at three
sites every six days between 2008 and 2013; 1-h PM2.5 mass concentrations
measured continuously at (essentially) a fourth site between 2011 and 2013; and

parameters in the submicron mode measured continuously at a fifth site for almost
one year to September 2011.

Spatial and temporal variation in PM2.5 and BC levels. We compared PM2.5
mass concentrations measured on common dates across the different sampling
locations and methods (Supplementary Fig. 3a–e). Measurements available at
hourly frequency were aggregated into a 24-h mean within each date of mea-
surement, from hour 0:00 to 23:00. Particle levels across sites and methods are
highly correlated over time. Similarly, we compared BC to PM2.5 mass con-
centrations measured in nearby locations on common dates (Supplementary
Fig. 3f,g).

There is large variation in particle concentrations between dates—due, for
example, to time-varying meteorological conditions, which affect all sites in the
same direction—and less variation across site locations. For example, low wind
speeds and the occurrence of thermal inversions in the metropolis’ atmosphere
drive up particle levels measured at all sites. This suggests that if the heavy PM2.5 is
well mixed in the atmosphere, then this may be the case for the much lighter
ultrafines, and the chosen monitoring site is indeed likely representative of a much

Table 4 Overview of the estimated regression model specifications

Estimates reported in Dependent variable(s)
(and data source)

Sample descriptiona Time aggregation Fuel mix variable Estimation procedure
(s)

Other sensitivity
analysis provided

Supplementary Table 1 PM2.5 mass
concentration, 24-h
filter (CETESB)

11/2008–5/2013,
3 sites every 6 days

24-h mean Gasoline share in the
flex fleet

OLS + bootstrap Across the columns,
more and alternative
controls are introduced,
e.g., trend and
meteorology

Supplementary Table 2
(column 1 in
Supplementary Fig. 10)

PM2.5 mass
concentration, 24-h
filter (CETESB)

11/2008–5/2013,
3 sites every 6 days

24-h mean Gasoline share in the
flex fleet, or aggregate
fleet

OLS + bootstrap; 2SLS;
OLS

Across the columns, the
gasoline share and the
estimation procedure
are varied. Models
include controls

→Tables 2 and 3 and Fig. 1 report the effect of raising the gasoline share on 24-h PM2.5 levels (model with wind direction controls). Figure 3 reports robustness to diesel control
Supplementary Table 3
(column 2 in
Supplementary Fig. 10)

PM2.5 mass
concentration, beta
continuous (CETESB)

1/2011–5/2013, 3 sites
by 2012

5-h mean, 07:00 to
11:00

Gasoline share in the
flex fleet, or aggregate
fleet

OLS + bootstrap; 2SLS;
OLS

Across the columns, the
gasoline share and the
estimation procedure
are varied. Models
include controls

Supplementary Table 4
(column 3 in
Supplementary Fig. 10)

Ozone mass
concentration (CETESB)

11/2008–5/2013,
12 sites

5-h mean, 12:00 to
16:00

Gasoline share in the
flex fleet, or aggregate
fleet

OLS + bootstrap; 2SLS;
OLS

Across the columns, the
gasoline share and the
estimation procedure
are varied. Models
include controls.
Figure 3 reports
robustness to diesel
control

→Table 2 and Fig. 1 report the effect of raising the gasoline share on ozone levels in the early afternoon (reproduced in column 1 of Supplementary Table 4)
Supplementary Table 5 Particle count,

nucleation, Aitken,
accumulation, BC mass
concentration (Own)

10/2010–5/2011 for
DMPS, 1 site (similar
periods for other
param.)

24-h mean Gasoline share in the
flex fleet

OLS + bootstrap; 2SLS Across the columns, the
dependent variable and
the estimation
procedure are varied.
Models include controls

→Table 3 reports the effect of raising the gasoline share on 24-h nucleation, Aitken, accumulation, BC levels (model with wind direction controls)
Supplementary Table 6
(Supplementary Fig. 13
shows panel D)

UFP 7‐100 nm (Own) 10/2010–5/2011, i.e.,
full period of field
campaign, 1 site

1-h meanb Gasoline share in the
flex fleet

OLS + bootstrap; 2SLS The panels show
variation in the sample
(all days of the week vs.
weekdays only), the
estimation procedure,
and the effect of wind
direction controls

Supplementary Table 7
(Supplementary Fig. 13
shows panel D)

PM 100‐800 nm (Own) 10/2010–5/2011, i.e.,
full period of field
campaign, 1 site

1-h meanb Gasoline share in the
flex fleet

OLS + bootstrap; 2SLS The panels show
variation in the sample
(all days of the week vs.
weekdays only), the
estimation procedure,
and the effect of wind
direction controls

Supplementary Table 8
(Supplementary Fig. 14
shows panels B,D)

UFP 7‐100 nm and PM
100‐800 nm (Own)

1/2011–5/2011, i.e.,
more seasonally
homogeneous sample

1-h meanb Gasoline share in the
flex fleet

OLS + bootstrap The panels show
variation to including a
linear trend vs. not
allowing a trend
(Specifications
otherwise follow panel
D, Supplementary
Tables 6 & 7.c)

→Table 2 and Figs. 1 & 2 report the effect of raising the gasoline share on UFP 7–100 nm and PM 100–800 nm levels at 08:00 (reproduced in panels B and D of Supplementary Table 8).
→Figure 3 reports robustness to diesel control. Figure 4 shows effects over the day and across the size range using the specification in panels B and D of Supplementary Table 8.
Supplementary Figs.
11 & 12

Particle count and BC
mass concentration
(Own)

11/2010–5/2011 for
CPC, 1 site (similar
period for BC)

1-h meanb Gasoline share in the
flex fleet

OLS + bootstrap

→Table 2 and Fig. 1 report the effect of raising the gasoline share on BC levels at 08:00. Figure 3 reports robustness to diesel control.
Supplementary Fig. 9 PM2.5 mass

concentration, beta
continuous (CETESB)

1/2011–5/2013, 3 sites
by 2012

1-h meanb Gasoline share in the
flex fleet

OLS + bootstrap

aAll estimated samples exclude the colder months of June to September
bHour-by-hour regressions
cSample restricted to non-holiday weekdays, wind direction controlled for
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wider area. Moreover, if large fluctuations in ultrafine particle levels were observed
at the site for idiosyncratic and unobservable reasons, other than due to
determinants such as meteorology and seasonality that we explicitly account for,
this would be reflected in large confidence intervals on our estimated effects, which
would prevent us from making statistical inference.

In panel a, 24-h filter measurements at both Ibirapuera and Cerqueira César
vary widely over time between 1 and 65 μg m−3, approximately, but the two time
series are highly correlated, with PM2.5 at Cerqueira César, a roadside site,
exceeding that at Ibirapuera, a park site (though in a central area), by on average 4
μg m−3. The US EPA 24-h PM2.5 standard of 35 μg m−3 is exceeded on several
occasions53.

Panels b (filter measurements) and c (beta continuous) show PM2.5 mass
concentrations in Ibirapuera, Pinheiros and the university campus again moving in
step, driven by seasonal and meteorological shifts. Particle levels in Pinheiros, a
roadside site, exceed those in Ibirapuera and the university campus. The IPEN-USP
site on the university campus has little road traffic in its immediate vicinity.

Panel d compares beta-continuous PM2.5 measurements in Congonhas, a
roadside site that is also near an inner city airport, against those in roadside
Pinheiros. Judged by this beta-continuous fine-particle data, Pinheiros’ air appears
rather more polluted than that in Congonhas.

Panel e indicates that, at the same Pinheiros monitoring site and on the same
dates, beta-continuous measurements of PM2.5 averaged over 24 h exceed 24-h
filter measurements of the same particle range. This is consistent with the pattern
in panel d suggesting that beta-continuous measures in Pinheiros appeared high
relative to those in Congonhas. (We are not in a position to examine the reason for
this divergence, but one possibility is calibration—the absorption coefficient—of
the beta-instrument at the Pinheiros site, compared to the more reliable 24-h filter
measurement.)

Finally, panels f and g show that BC mass concentrations measured during the
field campaign at the university campus are highly correlated with PM2.5 mass
concentrations measured by the environmental authority, both in the nearby
IPEN-USP site in the same university campus (panel f), as well as in the nearby
Pinheiros site across the Pinheiros river (panel g).

Such patterns reassure us as to the quality of the separate particle samples.
Further description of the environmental authority’s sampling sites, including
aerial pictures, is available elsewhere33, 48. The submicron particle sampling site is
located nearby to the environmental authority’s IPEN-USP monitoring station.

Gasoline versus ethanol mix in the active flex-fuel fleet. Throughout the
sample period, the composition of light-vehicle fuels that were ubiquitously dis-
pensed across the metropolis’ retailers, typically via a different nozzle at the same
pump, were: ethanol E100, pure but hydrated, i.e., containing up to 4% of water;
and gasoline E20 or E25, containing a 20 or 25% volumetric proportion of
anhydrous ethanol. We refer throughout to E100 and E20/E25 by their consumer
label, at retail, i.e., “ethanol” and “gasoline,” respectively.

The gasoline blend, mandated nationwide by the federal government, was
slightly modified on four occasions during our sample period. The blend shifted
from E25 to E20 for purchases by retailers beginning February 1, 2010; from E20
back to E25 beginning May 1, 2010; again from E25 to E20 beginning October 1,
2011; and again from E20 back to E25 beginning May 1, 2013. The gasoline blend
was consistently E20 during the DMPS sampling campaign that ran from October
2010 to September 2011, while it varied slightly during the PM2.5 sample period
between November 2008 and May 2013. There were no other reported changes to
the composition and quality of gasoline and ethanol fuels used by light-duty
vehicles and motorcycles.

The vehicle fleet that was actively circulating in São Paulo city in July 2011 has
been estimated at 5.9 million light vehicles (passenger vehicles including sport
utility vehicles, minivans and light pickup trucks), 0.9 million motorcycles and 0.3
million heavy vehicles (trucks and buses)33. Whereas older light vehicles, sold prior
to 2005, were predominantly equipped with single-fuel gasoline engines, the
overwhelming majority of light vehicles sold after 2005 were “flex-fuel”
gasoline–ethanol vehicles, transitioning between gasoline and ethanol combustion,
according to consumer preferences, as relative fuel prices varied. Flex-fuel vehicles
accounted for a likely but unknown share of total light-vehicle distance traveled
within the São Paulo metropolitan area of “over (if not well over) 50% by 2011”33.
Completing the fuel mix, motorcycles and heavy-duty vehicles were powered
predominantly by gasoline and diesel, respectively, during the sample period.
Variation in diesel prices and combustion over the sample period is discussed
separately below.

Our empirical method is not based on trends in fuel consumption or trends in
site-specific particle levels. We control for such potentially confounding trends in
our regression models. The predominant combustion of gasoline among single-fuel
light vehicles, and of diesel among heavy vehicles, are then interpreted as
background levels of emissions that were unlikely to vary with the ethanol price
fluctuations that occurred over the space of months.

We follow an earlier study33 and, as the first step in a two-step model, construct
the second step’s main explanatory variable of interest, the gasoline share in the
flex-fuel light-vehicle fleet from a consumer demand model, namely a multinomial
probit choice model30, 33. We predict this time-varying market share of flex-fuel
vehicles fueled with gasoline over ethanol based on gasoline and ethanol prices
observed at the pump in São Paulo city during the sample period. To this end, we

obtained a large weekly panel of fuel prices, detailed by fuel pumping station and
day the pumping station was surveyed, from the National Agency for Oil, Biofuels
and Natural Gas (ANP; http://www.anp.gov.br/wwwanp/). This first-step demand
model is estimated using actual consumer choices as a function of observed fuel
prices and consumer demographics30. It is important to realize that the reason why
we need a demand model to predict day-to-day fuel quantities from day-to-day fuel
prices is that high-frequency fuel quantity or usage data for the metropolitan area
of São Paulo are not available, only price data. Otherwise, we would skip the first-
step model and use the fuel quantity data directly.

To account for fuel stored in vehicles’ tanks, following consumer purchase but
prior to combustion, we use four-day lagged prices at the pump. Previous research
documents that the median consumer purchases fuel once a week30. Thus, the
gasoline share of combustion on day t is predicted from fuel prices at the pump
7/2 ≈ 4 days earlier. In a robustness test, we increase consumer stocks to 7 days.

The predicted gasoline share in the flex-fuel vehicle fleet, denoted by ŝgast , ranges
from a sample minimum of 0.14 in spring 2009, and similarly in spring 2010, to a
sample maximum of 0.76 in late summer/early fall 2011 (Supplementary Fig. 4a).
The hat in ŝgast indicates that the gasoline share is estimated from the first-step
model. Correspondingly, the ethanol share (one minus the gasoline share) among
flex-fuel vehicles fluctuated between 0.86 and 0.24 at these points in time.

Denoting the retail prices of 1 litre of ethanol and one litre of gasoline by pe and
pg, respectively, the evolution of the price ratio pe/pg mirrors that of the predicted
gasoline share, ŝgast , over the 2008 to 2013 sample period (Supplementary Fig. 4b).
The fact that the fuel mix ŝgast and the relative price pe/pg move together reflects the
previous finding that the relationship between the gasoline (or ethanol) choice
probability and the ethanol-to-gasoline price ratio is quite linear over a wide range
of price variation30. In particular, consumer preferences and behavior are such that
flex-fuel vehicle drivers, who are overwhelmingly household consumers, do not as a
whole transition abruptly between gasoline and ethanol at the relative price point at
which the effective prices of ethanol and gasoline, in $/km of distance traveled, are
equalized.

Instead, consumer switching is significantly more gradual—or demand is less
elastic—around this parity price ratio or threshold, that lies just under 0.70 for
most vehicle models. To further describe consumer substitution patterns, as the
price of ethanol rises slightly from a very competitive level (e.g., pe/pg= 0.58, or
0.70/1.2), some flex-fuel vehicle consumers already transition out of ethanol into
gasoline, despite ethanol still remaining very competitively priced. As the price of
ethanol rises further and further, reaching a very uncompetitive level relative to
gasoline (e.g., pe/pg= 0.84, or 0.70 × 1.2), some flex-fuel vehicle consumers still stay
with ethanol at the pump.

The variation in the consumer price of ethanol relative to gasoline was observed
throughout São Paulo. The resulting variation in the fuel mix that our work takes
advantage of, with drivers induced to switch to gasoline and back to ethanol, was
not isolated to specific neighborhoods. Any changes to particle emissions and
secondary particle formation54 that were a result of transitions between gasoline
and ethanol combustion were happening at the citywide level (more precisely, at
the state level), including the air surrounding each of the particle sampling sites.
Moreover, ethanol price movements were the result of developments in world food
and energy markets, rather than concerns over air pollution in São Paulo, which
would otherwise make the main regressor of interest, the gasoline-ethanol mix, an
endogenous variable (i.e., responding to the system we model, rather than
exogenous to it).

Also following earlier work33, our regression analysis drops the colder months
of June to September. Seasonal variation in pollution tends to be pronounced56, 57

and, importantly, the two episodes of marked ethanol price variation occurred
outside these months (Supplementary Fig. 4b). Intuitively, we wish to keep the
“high ethanol price, high gasoline share” days as otherwise comparable as possible
to the “low ethanol price, low gasoline share” days. Including the colder months of
June to September might introduce unobserved heterogeneity to this comparison.

As an alternative to the predicted gasoline share of consumer purchases at the
pump, which is a series that varies daily based on daily prices for the city of São
Paulo, we also compute a lower-frequency, more-regional gasoline share from
aggregate quantity data, available from ANP (Supplementary Fig. 4c). Denote this
gasoline share by sgas;aggrt , where the absence of a hat indicates that the share is
calculated, not predicted, from data. This alternative measure of the fuel mix is
computed from monthly, and possibly incomplete, fuel shipments reported by
wholesalers for the state (not city) of São Paulo. Wholesale quantities of blended
gasoline (E20/E25) and hydrated ethanol (E100) are reported separately, in cubic
meters/month. Prior to computing aggregate shares, we adjust for differences in
energy content by converting the separate fuel quantities in cubic meters to
light-vehicle distance traveled, given assumptions on the fleet’s fuel economy.

The alternative aggregate wholesaler gasoline share, sgas;aggrt , varies less than the
baseline gasoline share, ŝgast , since the latter relates to choices in the subpopulation
of flex-fuel vehicles whereas the former includes gasoline and, to a lesser extent,
ethanol consumption by single-fuel light vehicles and motorcycles. Importantly,
sgas;aggrt moves in step with ŝgast . For example, sgas;aggrt also reaches a sample
minimum in spring 2009 and a sample maximum in late summer/early fall 2011.
That ŝgast (a high-frequency series predicted from high-frequency price data) and
sgas;aggrt (a low-frequency series based on data for the state)—move in tandem
heightens our confidence in using the high-frequency ŝgast as the preferred
specification for our main explanatory variable of interest.
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Earlier work33 described the “large-scale switching out of ethanol and into
gasoline as ethanol prices soared, and back to ethanol when prices dropped,” as
indicated by the ANP reports between 2009 and 2011: “wholesaler reports suggest
that the unblended (pure) gasoline component shifted between 42 and 68% of total
gasoline-plus-ethanol light-vehicle distance travelled”. This represented a 60%
increase in the pure gasoline share (68/42-1), equivalent to a 45% reduction in the
pure ethanol share (1–32/58). The additional evidence agrees that the change in the
fuel mix was massive. To summarize, the alternative measure sgas;aggrt , based on
aggregate monthly wholesale reported quantities for the entire state’s fleet, serves as
a robustness check on the gasoline share in the flex-fuel vehicle fleet ŝgast that is
predicted from the high-frequency price series.

Diesel combustion in the heavy vehicle fleet. We argue that diesel combustion
in heavy vehicles, while an important contributor to particle emissions and sec-
ondary particle formation, is unlikely to confound our inference of the effect on
particles of gasoline vs. ethanol use in light vehicles during the periods we examine.
We begin by considering variation in the retail price of diesel oil in the São Paulo
metropolitan area between November 2008 and May 2013, available from the
Brazilian Institute for Geography and Statistics (IBGE, Supplementary Fig. 5).

After a downward 5% price adjustment in mid 2009, diesel prices stayed
constant in nominal (inflation-unadjusted) terms, and gradually declined in real
(inflation-adjusted) terms, until mid 2012, when the federal government began to
partially adjust diesel prices for cumulative inflation observed in the preceding
years. In real terms, diesel prices in May 2013 were still below their October 2008
level, as was the case for gasoline prices. In particular, diesel prices hardly changed
in nominal terms (and hardly changed beyond a gradual downward trend in real
terms) during the DMPS sampling campaign that ran from October 2010 to
September 2011.

In contrast to pronounced fluctuations in the price of ethanol, the subdued
variation in the price of diesel—including the absence of fluctuations—suggests
that diesel use is unlikely to be a confounder in our regression analysis. If anything,
diesel prices in real terms followed a gradual downward trend over several years,
and our particle regression models include a time trend, which absorbs the effect of
any omitted determinant of particle concentrations that exhibits a trend.
Controlling for diesel prices in the particle regression, as we do in robustness tests,
indeed does not change our results.

We provide three additional pieces of evidence to underscore the point that
omitted variable bias due to variation in diesel combustion is unlikely to be present.
First, buses in the public transport system are a key source of diesel emissions in
the São Paulo metropolitan area. From São Paulo’s public transportation
authorities (SPTrans), we obtained monthly ridership on buses in the public
transport system across the metropolis from November 2008 to May 2013
(Supplementary Fig. 6). Ridership was quite stable over the period, tending to fall
in the month of January due to the yearend school vacation period, and similarly in
the winter month of July in which schools also break (these days are either
controlled for using separate type-of-day fixed effects, or excluded from our
regression samples). There is no indication that commuting on (use of) diesel buses
responded to the gradual decline in real diesel prices (Supplementary Fig. 5),
consistent with the provision of public transport being insensitive to diesel prices
(which hardly varied in the first place). Moreover, there is no indication that flex-
fuel vehicle motorists might have taken to public transport as ethanol prices rose,
which could otherwise confound our inference. Controlling for diesel bus ridership
in the particle regression, as we do in robustness tests, does not change our results
(Fig. 3 compared to Fig. 1).

Second, from SPTrans we further obtained the actual frequency of public transit
diesel buses passing through the university campus where the submicron particle
sampling site was located, during the sample period between October 2010 and
May 2011 that we use to estimate our submicron particle regression models. The
data come from billing records and are for realized trips in both directions. The
number of diesel buses passing within a horizontal distance of 400 m from the site
on a weekday morning (09:00 to 09:59) was stable at about 25 h−1 from October
2010 to March 2011 (Supplementary Fig. 7). This is about one diesel bus every 2
min, underscoring the limited influence of local sources on the fourth-storey site.
Moreover, bus line 8012–10 was added on March 29, 2011, increasing the number
of diesel buses in April and May 2011. Our finding that ultrafine particle levels fell
during these months of expanded bus service on campus further underscores the
limited influence of local sources on the submicron particle site (and both series are
uncorrelated during most of the sample period).

Indeed, in sensitivity analysis we include the (always low) observed diesel bus
frequencies on campus as an additional control and show that the estimated effect
of gasoline penetration on ultrafine particle levels is robust, and even strengthened
(Supplementary Figs. 15 and 16). The intuition is that, contrary to diesel bus
frequency, gasoline use varies along with ultrafine particle levels. Beyond the
October 2010–May 2011 diesel bus frequencies observed from SPTrans, we
obtained student enrollment at the USP Armando Salles de Oliveira campus
between 2009 and 2013. This should inform on any variation in the demand for
diesel bus services on the university campus. Enrollment over 2009–2013 has been
very stable, for example, undergraduate enrollment varied by no more than
50 students around a mean enrollment of 7,451 students. Regular circulation of
campus buses, or diesel vehicles anywhere, contribute to background levels of
emissions that were unlikely to vary with the ethanol price fluctuations.

Third, we obtained monthly diesel fuel shipments reported by wholesalers for
the state of São Paulo—the same ANP data source as the wholesale gasoline and
ethanol fuel shipments described above58. Unfortunately, these diesel shipments
include the large and seasonal statewide highway market; diesel volumes specific to
the São Paulo metropolitan market are not publicly available. State-level diesel
shipments over the course of the first semester of 2011 broadly followed their
typical upward seasonal trend (Supplementary Fig. 8). Importantly, there is no
evidence of confounding correlation with the pronounced fluctuation in the price
of ethanol relative to gasoline and in the gasoline share—namely up until the
beginning of April 2011, and down thereafter—that we exploit in our empirical
analysis (noting, again, that our regression models control for trends).

In view of a recent literature that studies the effect on particle emissions of
introducing biodiesel as a substitute for diesel59–62, we note for completeness that
the biodiesel fraction is low and changed only slightly in July 2009, from 3 to 4%,
and in January 2010, from 4 to 5%. In particular, the diesel-biodiesel mix did not
change during the submicron particle sampling period and is unlikely to confound
our estimates. Moreover, the slight changes in diesel composition that happened
earlier were mandated nationwide by the federal government, and were not policy
responses to fluctuations in particle pollution in São Paulo.

In sum, the evidence indicates that potentially confounding effects on the
particle size distribution from variation in heavy vehicle traffic around the time of
each ethanol price hike are unlikely.

Meteorological and atmospheric conditions. Beyond the gasoline-ethanol fuel
mix that is our focus, meteorology, including the occurrence of thermal inversions,
is a key determinant of particle pollution. To control for possible confounders and
increase estimation precision, we obtained hourly meteorological data recorded at
weather stations run by the environmental authority (CETESB)48 and by the
Institute for Meteorology (INMET; http://www.inmet.gov.br), located in different
parts of the metropolis. This follows earlier work on gaseous pollutants,33 which
describes the hourly meteorological data, provides an overview of meteorology in
São Paulo including spatial correlation across the metropolis, and examines how
meteorology is strongly associated with O3, NO, CO, and PM10 concentrations. In
addition to the weather controls used in earlier work, we control for the occurrence
and height of thermal inversions in the lower atmosphere. These are recorded every
12 h, at 09:00 and 21:00 local time, by the Brazilian Air Force (FAB)48.

Local vehicle traffic conditions. To control for vehicle traffic in the area sur-
rounding a particle sampling site as well as across the city’s road grid, we use
hourly traffic congestion records from the city’s traffic authority (CET; http://
cetsp1.cetsp.com.br/monitransmapa/agora/). These are available at the road seg-
ment level (approximate length 100 m) for an 840-km grid of monitored roads and
corridors across São Paulo city. As previous work points out, “(a) concern that
might arise in a real-world—as opposed to lab or synthetic—setting such as ours is
the possibility that consumers may have cut back on vehicle usage when faced with
rising ethanol prices”33. Previous research finds that vehicle usage, as measured by
road traffic congestion and speeds, did not fluctuate with the ethanol-to-gasoline
price ratio that drives the fuel mix. Nevertheless, all the particle regression models
we estimate control for possibly confounding variation in road congestion.

Specifically, the evidence suggests that commuters did not change their travel
behavior as ethanol prices rose, such as drive less or switch from light vehicles to
public transport. A previous study concluded that “(r)ising ethanol prices,
beginning in mid 2009 and again in mid 2010, did not ease traffic congestion, raise
traffic speeds, or increase ridership in the public transportation system. Similarly,
when ethanol prices began falling in March 2010 and again in April 2011, motorists
did not take to their vehicles more often”33. One can interpret this empirical
finding on the basis of the poor availability of short-run substitutes to a commuter’s
adopted mode and distance of travel, the relatively stable price of gasoline fuel (a
substitute for most consumers of ethanol fuel), and the state of “repressed demand”
for road space in the face of widespread gridlock across the São Paulo metropolis.

This earlier study also described patterns in the road traffic data, including the
daily and weekly commuting cycles, the annual calendar of public holidays, and the
yearend school vacation fortnight that typically starts on December 24 and during
which traffic might flow a bit more freely. To illustrate, aggregated across a citywide
840-km grid of monitored roads and corridors, records show that the total extent
of congested road segments peaks at 09:00 during the workday morning commute
(at 82 km of traffic extension), and again at 19:00 during the workday evening
commute (121 km). Beyond workdays, congestion is relatively high (though at
lower levels) at 14:00 on a non-holiday Saturday (16 km), at 19:00 on a public
holiday (14 km) and at 20:00 on a non-holiday Sunday (4 km). These statistics are
means across dates in the sample period 2008 to 2013.

We can also use the detailed traffic congestion data to rank the particle
sampling sites in terms of their proximity to vehicular traffic. Averaged across all
non-holiday weekdays in the 2008 to 2013 sample, road traffic congestion recorded
at 09:00 within a 2 km radius of each site is, in increasing order: USP (0.5 km of
traffic extension); Cerqueira César (1.8 km); Pinheiros (4.4 km); Ibirapuera
(6.6 km); Congonhas (7.6 km). We note that while the Ibirapuera site is located in a
park, busy (traffic-monitored) roads surround the park itself.

In addition to road traffic, we obtained the number of aircraft take-offs and
landings hour by hour at Congonhas airport, obtained from the National Agency for
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Civil Aviation (ANAC). In principle, controlling for such variation may be most
relevant to explaining particle levels in the neighboring Congonhas air monitoring site.

First-step inference in a two-step regression model. We examine particle
measurements through the lens of our two-step multivariate regression model33.
In a first step, the gasoline share—the proportion of flex-fuel vehicles fueled with
gasoline E20/E25 rather than ethanol E100—is constructed using daily gasoline and
ethanol prices and a demand model that was estimated using actual consumer
choices30. Intuitively, we used observational data on how consumers actually
substituted gasoline for ethanol and back when prices fluctuated in 2010, to predict
how they substituted gasoline for ethanol and back when prices fluctuated during
the submicron particle sampling period in 2011 (Supplementary Fig. 4). Since the
gasoline share is a prediction from this first-step model, the confidence intervals in
our second-step particle regression estimates need to account for this sampling
variation40: widening the confidence intervals on the estimated effects of shifting
the gasoline vs. ethanol mix on ambient particle levels is in effect what the
bootstrap procedure63 described below achieves. As stated, the reason we need a
demand model to predict day-to-day fuel quantities from day-to-day fuel prices
is that the former are not available for the São Paulo metropolis; otherwise,
we would use the fuel quantity data directly in the second step and skip the
first-step model.

Second-step particle regression model specifications. In a second step, we
investigate how mass concentrations of PM2.5 and of BC as well as PM number
concentrations in the 7–800 nm size range change as the proportion of gasoline in
the fuel mix varies, holding other factors constant. We fit empirical models of the
form (Table 4):

particleslt ¼ fuel mix′tλþWlt
′ΔW þ Alt

′ΔA þ Tlt
′ΔT þ υt þ μl þ εlt ð1Þ

An observation is a measurement location l by time period t pair, or simply a
time period t for regressions estimated for a single location. The dependent variable
particles is the field measurement—namely particle mass concentration or particle
count according to our different data sets—that we seek to explain on the basis of
temporal variation in the gasoline-ethanol fuel mix, fuel_mix, and other temporal
and spatial determinants of particle pollution, namely meteorological, atmospheric,
and road traffic conditions, respectively denoted by vectors W, A and T. Intuitively,
we seek to uncover the co-variation between (say) ultrafine particle levels in
ambient air and the gasoline share, after correcting for differences in other
determinants of particle levels, such as meteorological, atmospheric, and road
traffic conditions, and fixing season, day of the week and time of the day. In
addition to road traffic, we include controls for aircraft traffic in T when examining
PM2.5 measured near Congonhas airport (Supplementary Table 3).

Fixed effects μl and variables υt, respectively, capture omitted location-varying
and time-varying drivers of particles. These include indicator variables to account
for cyclical effects at the annual level (seasonality, by week or quarter of year) and
weekly level (within-week commuting and trade patterns, by type of day), as well as
site-specific time trends or year fixed effects, to account for secular changes in
economic activity or in road and fleet composition. For example, specifying a
separate binary variable (intercept) for each day of the week, included in vector υt,
allows mean particle levels at a given time on Sundays, as explained by the model,
to differ from mean particle levels on Mondays.

Of potential relevance to some locations and the longer samples, we include
site-specific binary variables to indicate dates after the opening of the southern
section of the Greater São Paulo beltway, on March 31, 2010. The beltway
inauguration may have shifted the composition of road users, with less diesel-
burning heavy vehicles circulating in the inner city after March 2010, as they could
now use the beltway. Estimates for PM2.5 and ozone since 2008 in Tables 2 and 3
correct for this potential omitted variable. In sensitivity analysis, to vector T we add
diesel bus ridership or the real price of diesel in the São Paulo metropolis, or public
transit bus frequency on the USP campus, and show that our estimates hardly
change (Supplementary Figs. 8, 15 and 16). In effect, these proxies for diesel
combustion did not vary around a trend or in step with the gasoline-ethanol mix.

Regression model (1) is estimated by ordinary least squares (OLS). λ, ΔW, ΔA

and ΔT are coefficients to be estimated, and εlt is an econometric residual. The
identifying assumption is that, conditional on controls Xlt :¼ Wlt ;Alt ;Tlt ; υt ; μlð Þ,
the residual is uncorrelated with the fuel mix, in particular:

E fuel mixtεlt Xltj½ � ¼ 0; whereXlt :¼ Wlt ;Alt ;Tlt ; υt ; μlð Þ ð2Þ

For our main variable of interest, fuel_mix, we consider the gasoline share ŝgast
predicted by a consumer demand model (Supplementary Fig. 4a)30. To account for
sampling variation in generating a prediction for sgast —an estimated rather than
observed variable—we bootstrap the original sample of consumers observed
making choices at the pump30, 33. For every one of 200 bootstrap samples of

consumers, b= 1,…,200, we obtain a different gasoline choice probability sgas;bt , for
each different combination of ethanol and gasoline prices (i.e., a different day) in
the particle sample. We then use these 200 first-step bootstrap consumer samples
to make inference from our second-step particle regressions. What this means in

practice is that we obtain a slightly different set of estimated coefficients

ðλ̂b; bΔW;b
; bΔ

A;b
; bΔ

T;bÞ for each bootstrap sample b (the hat denotes an estimated,
rather than known, parameter); the bootstrap standard error is then the standard
deviation of the coefficients estimated over the 200 bootstrap samples. It is because
we estimate rather than observe this measure of the fuel mix that we need to correct
for sampling error in ŝgast when reporting standard errors on the estimated
coefficients of model (1)40.

To illustrate how identification of the causal effect of the fuel mix (gasoline
share) on particle pollution works, via condition (2), we describe a hypothetical
example where it would fail. Consider the January to May 2011 submicron particle
size distribution sample (Fig. 2). We find that ultrafine particle levels and the
gasoline share rose in tandem from January 20 to late March, and similarly the two
variables jointly declined over April and May. This is seen once we correct for other
potential influences on ultrafine particles such as random variation in wind speed
(Fig. 2d). Now suppose that, hypothetically, ultrafine particle levels are unrelated to
the gasoline share and, instead, there exists a time-varying driver of ultrafine
particle levels that the researcher is unaware of, which similarly moves in one
direction from January to March (say up), and then moves in the opposite
direction from April to May (say down). In this case, the researcher would
mistakenly interpret the tight co-movement between the gasoline share and
ultrafine particles as a causal relationship, whereas all that is being estimated is a
correlation between the unknown time-varying omitted variable (the true driver in
the hypothetical example), the gasoline share (the interpreted driver in the
hypothetical example), and ultrafine particle levels. Formally, the confounding
omitted variable in the example, whose influence is not corrected for, would remain
in the econometric residual, εlt. Since this omitted variable, even after conditioning
on controls, is (positively) correlated with the gasoline share, which is included as a
regressor in the estimating equation, the identifying assumption would fail: in this
hypothetical example, E[fuel_mixtεlt|Xlt] > 0.

As a first alternative to correcting for standard errors on estimates of particle
regression model (1) by way of a bootstrap procedure, we can estimate the model
by 2SLS. Taking advantage of the finding that over the relevant range fuel shares
are highly correlated (and approximately linear in) the ethanol-to-gasoline price
ratio (Supplementary Fig. 4b)30, we use this price ratio as an IV for the estimated
regressor ŝgast . The identifying assumption for this variant is then:

E pe=pg
� �

tεlt jXlt

h i

¼ 0; where pe=pg is the ethanol � to� gasoline price ratio ð3Þ

Importantly, ethanol prices were responding to developments in the world
sugar market; in particular, price shocks can credibly be taken as exogenous to air
pollution in the São Paulo metropolis—thus (pe/pg)t is likely to be uncorrelated
with unobserved determinants of particle levels εlt, and is a valid instrument for the
imputed (estimated) gasoline share regressor ŝgast . This specification (robustness)
test based on an IV estimator may alleviate any concern with regard to the possible
presence of measurement error in the gasoline share, or potential confounding
from unobserved determinants of particle pollution, captured in the residual, that
may correlate with the gasoline share but not with its instrument (the observed
price ratio).

As a second alternative to using the gasoline share imputed for the São Paulo
metropolis from an estimated consumer demand model, we use the gasoline share
calculated from available aggregate monthly fuel quantity data reported by
wholesalers for the entire state’s fleet, sgas;aggrt (Supplementary Fig. 4c). We estimate
particle regression model (1) by OLS, with the identifying assumption:

E sgas;aggrt εlt Xltj� � ¼ 0 ð4Þ

Again, alternative measure sgas;aggrt serves as a robustness check on the flex-fleet
gasoline share ŝgast that is predicted from the high-frequency price series, and both
variables move in step.

Table 1 summarizes the alternative outcome variables, particles, that we
examine, and the key regressor of interest ŝgast (the second row in the section labeled
“Fuel mix variables”), along with the alternative share sgas;aggrt (two rows below).
The table also describes the different control variables—determinants of particles
levels other than the gasoline–ethanol fuel mix—that the multivariate regression
corrects for. Table 4 provides an overview of all the estimated regression model
specifications, reported both in the main text and in the Supplementary
Information. We list: the dependent variable of the regression equation (e.g., UFP
7–100 nm); the sample period and temporal aggregation of the data as employed in
the regression (e.g., 1-h or 24-h mean); the main regressor of interest (e.g., ŝgast or
sgas;aggrt ); the estimation procedure (e.g., OLS + bootstrap or 2SLS) and other
sensitivity analysis provided.

Data availability. The data archive can be accessed at https://goo.gl/9tNzvj.
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