

Transition Metals in Atmospheric Liquid Phases: Sources, Reactivity, and Sensitive Parameters

Laurent Deguillaume, Maud Leriche, Karine V. Desboeufs, Gilles Mailhot,

Christian Cgo George, Nadine Chaumerliac

▶ To cite this version:

Laurent Deguillaume, Maud Leriche, Karine V. Desboeufs, Gilles Mailhot, Christian Cgo George, et al.. Transition Metals in Atmospheric Liquid Phases: Sources, Reactivity, and Sensitive Parameters. Chemical Reviews, 2005, 105 (9), pp.3388 - 3431. 10.1021/cr040649c . hal-01819392

HAL Id: hal-01819392 https://uca.hal.science/hal-01819392v1

Submitted on 19 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Transition Metals in Atmospheric Liquid Phases: Sources, Reactivity, and Sensitive Parameters

Laurent Deguillaume,^{*,†} Maud Leriche,[†] Karine Desboeufs,[§] Gilles Mailhot,[‡] Christian George,[#] and Nadine Chaumerliac[†]

Laboratoire de Météorologie Physique, Centre National de la Recherche Scientifique, Université Blaise Pascal, 24 avenue des Landais, 63177 Aubière Cedex, France; Laboratoire Inter-universitaires des Systèmes Atmosphériques, Centre National de la Recherche Scientifique, Université Paris 7 et Université Paris 12, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France; Laboratoire de Photochimie Moléculaire et Macromoléculaire, Centre National de la Recherche Scientifique, Université Blaise Pascal, 24 avenue des Landais, 63177 Aubière Cedex, France; and Laboratoire d'Application de la Chimie à l'Environnement, Centre National de la Recherche Scientifique, Université Claude Bernard, 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France

Received February 1, 2005

Contents

1. Introdu	ction	3388
2. TMI: F Aqueou	rom Aerosol Particles to Atmospheric us Phase	3391
2.1. Cha Pai	aracteristics of Transition Metals in rticulate Phase	3391
2.2. Dis	solution Processes	3392
2.2.1.	Effect of Particle Source	3392
2.2.2.	Influence of pH on Dissolution Processes	3394
2.2.3.	Photochemical Aging and Transition Metal Solubility	3395
2.2.4.	Kinetics of Dissolution	3395
3. Transit	ion Metals in Atmospheric Liquid Phases	3396
3.1. Oxi Tra	dation States and Chemical Forms of Insition Metal Ions	3396
3.1.1.	Iron	3396
3.1.2.	Copper and Manganese	3398
3.2. Co	ncentrations of Transition Metals	3398
3.2.1.	Iron	3398
3.2.2.	Copper and Manganese	3402
3.3. Re Atn	dox Speciation of Transition Metals in nospheric Liquid Phases	3402
3.3.1.	Definition	3402
3.3.2.	Iron Speciation: Field Measurements	3402
3.3.3.	Iron Speciation: A Whole Combination of Processes	3407
3.3.4.	Copper and Manganese Speciation	3408
4. Reactiv	vity	3411
4.1. Iror Pha	n Reactivity in the Atmospheric Liquid ase	3411
4.1.1.	Reactivity with HO_x Radicals	3411
4.1.2.	Reactivity with S Compounds	3416
4.1.3.	Reactivity with Soluble Organic Compounds	3417
4.2. Co Atn	pper and Manganese Reactivity in the nospheric Liquid Phase	3419

[#] Université Claude Bernard.

2	1.3.	Propos	sed	Chemical	Mechanism	for	in	Cloud	3422
		Chemi	stry	Model					
5.	Su	mmary	and	Concludi	ng Remarks				3425

- 6. Acknowledgments 3427
- 7. References 3427

1. Introduction

The atmosphere is a complex medium in which several phases coexist: gas, aerosol particles, condensed water, liquid, and ice particles. All of the interactions that may occur between these various phases are included in the term "multiphase or heterogeneous chemistry". This chemistry involves studying each phase independently, examining the heterogeneous processes at the phase interfaces, and determining their consequences on the chemistry within each phase.

Clouds favor the development of atmospheric multiphase chemistry, as they are composed of all three atmospheric phases (i.e., gas, liquid, and solid phases that "catalyze" a full set of reactions). Consequently, studies of the processes occurring within cloud droplets or raindrops or at the surface of ice crystals are required to evaluate the role of multiphase chemistry on the atmosphere.

The evaluation of multiphase chemistry versus the overall tropospheric chemistry and its role in the earth's radiative budget is challenging because the physical nature and reactivity of condensed phases are still poorly known. However, it has been shown that multiphase chemistry within clouds has two major effects: an indirect effect by modifying cloud radiative properties and a direct effect on atmospheric chemistry.^{1,2}

On the one hand, clouds can diffuse short-wavelength radiation from the sun and increase the albedo of the Earth/atmosphere system, whereas, on the other hand, they can absorb or diffuse infrared radiation emitted by the terrestrial surface, thus taking part in the greenhouse effect.³ The relative importance of these two effects is connected with optical cloud properties, themselves dependent on microphysical properties (granulometry, geometry)

^{*} Author to whom correspondence should be addressed [telephone (+33)4 73 40 73 92; fax (+33)4 73 40 51 36; e-mail L.Deguillaume@ opgc.univ-bpclermont.fr].

[†] Laboratoire de Météorologie Physique, Université Blaise Pascal. [§] Université Paris 7 et Université Paris 12.

[‡] Laboratoire de Photochimie Moléculaire et Macromoléculaire, Université Blaise Pascal.

Laurent Deguillaume was born in Le Puy en Velay, France, in 1977. He received his B.Sc. in physics and chemistry in 1998 and his M.Sc. in atmospheric physics in 2000 from Blaise Pascal University (Clermont-Ferrand, France). He obtained his Ph.D. in atmospheric physics from Blaise Pascal University in 2003, working under the direction of Dr. Nadine Chaumerliac at the Laboratoire de Météorologie Physique. He is presently temporary assistant professor at Blaise Pascal University. His research focuses on multiphase chemistry inside clouds by a modeling approach. He participates in the Exchange program within the European Science Foundation activity entitled "Interdisciplinary Tropospheric Research: from the laboratory to global change". From July 2005, he will carry out postdoctoral research on mesoscale chemistry modeling at the Laboratorie Inter-Universitaire des Systèmes Atmosphérique in Paris.

Maud Leriche was born in Le Havre, France, in 1974. She received her B.Sc. in physics from Pierre et Marie Curie University (Paris, France) in 1995 and, then, her M.Sc. in atmospheric physics from the Blaise Pascal University (Clermont-Ferrand, France) in 1997. She obtained her Ph.D. in atmospheric physics and chemistry from Blaise Pascal University in 2000 with Dr. Nadine Chaumerliac, studying multiphase chemistry inside clouds. After a temporary position as assistant professor at Blaise Pascal University and a visiting fellowship from NATO at Harvard University with Professor Daniel Jacob, she joined the Centre National de la Recherche Scientifique in 2002, where she is presently a researcher at the Laboratoire de Météorologie Physique at Clermont-Ferrand. Her research interests are mainly in the areas of atmospheric cloud chemistry including the cloud processing of aerosols and the coupling between microphysical and chemical processes in clouds. She is involved in the international AMMA program looking at the redistribution of soluble chemical species by convective clouds.

and cloud phase (liquid, mixed, iced). In the atmosphere, clouds are formed on aerosol particles called cloud condensation nuclei (CCN) or ice nuclei (IN). The ability of an aerosol to serve as a CCN or as an IN depends on its size, its water-soluble fraction, and the local supersaturation of water vapor relative to liquid water.⁴ When clouds are forming, the CCN or IN soluble fraction will be modified by the uptake of soluble gases into the droplets, by the redistribution

Karine V. Desboeufs received her M.Sc. in atmospheric chemistry in 1997 and her Ph.D. in 2001 from the Paris 7 University with Professor Jean-Louis Colin. Her graduate research focused on the dissolution processes of aerosol particles in cloud droplets and, more particularly, on the release of dissolved trace metals from dust particles. After her Ph.D., she worked as a CNES postdoctoral researcher at the Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), where she performed atmospheric dust transport modeling to study interactions of dust particles with clouds. Currently, she is an assistant professor in chemistry at the Paris 7 University, and she develops her research in the LISA (Laboratoire Interuniversitaire des Systèmes Atmosphériques). Her research interests are iron biogeochemistry and its atmospheric cycling.

Gilles Mailhot obtained his Ph.D. in physical chemistry in 1991 from the University Blaise Pascal at Clermont-Ferrand. He studied polymerization photoindiced by charge transfer in a coordination complex. After a postdoctoral fellowship under the supervision of Pr. Gabor Somorjai at the University of California in Berkeley, in 1995 he joined the Centre National de Recherche Scientifique, where he is presently a researcher at the Laboratoire de Photochimie Moléculaire et Macromoléculaire (Clermont-Ferrand, France). His research interests are principally in the areas of photochemistry. He especially focuses on pollutant decomposition in aquatic environments (continental waters, atmospheric liquid phases) photoinduced by complexes and metallic oxides.

of chemical species through microphysical processes taking place within the dimensional spectrum of hydrometeors, and finally by the chemical reactivity.⁵ As a consequence, multiphase chemistry has an indirect effect on cloud radiative properties via its impact on the physicochemical properties of aerosol particles at the origin of the cloud droplets.⁶ Generally, aerosols resulting from various condensation/ evaporation cycles are more likely to favor the formation of a new cloud.⁵ This indirect effect of multiphase chemistry on cloud optical properties should be considered when looking at the first and second indirect effects of aerosol particles on the earth's radiative budget as defined by Twomey⁷ and Albrecht.⁸

Christian George obtained his Ph.D. in physical chemistry in 1993 from the University Louis Pasteur at Strasbourg, working under the direction of Professor Ph. Mirabel. After a postdoctoral fellowship with Dr. C. Zetzsch at the Fraunhofer Institute in Hanover, in 1995 he joined the Centre National de Recherche Scientifique, where he is presently a researcher at the Laboratoire d'Application de la Chimie à l'Environnement. His research interests are principally in the areas of multiphase and/or heterogeneous atmospheric chemistry.

Nadine Chaumerliac was born in France in 1955. She studied mathematics and physics at the University of Clermont-Ferrand (France) and obtained her Ph.D. in meteorology in 1983. In 1986, she entered CNRS, and her main research interest is in atmospheric chemistry modeling with a special focus on clouds. She has been an invited researcher at NCAR in 1992 in the Atmospheric Chemistry Division in the group of Sasha Madronich and Guy Brasseur. She has long-standing experience in cloud and mesoscale modeling, which has been applied to atmospheric chemistry problems such as wet deposition, biomass burning, and ozone photooxidation. She organized an Advanced Study Course in Tropospheric Chemistry and Space Observation (EUR17780EN). She was a coordinator in various projects such as the modeling part of EXPRESSO/IGAC, the EUMAC project of EUROTRAC, and she participated in several EC projects and is part of the ACCENT Network of Excellence. She is Directeur de Recherche in CNRS and since 2000, she has been the leader of the LaMP, CNRS laboratory in Clermont-Ferrand (France).

Concerning the cloud effect on atmospheric chemistry, it is recognized that clouds play an important role in the chemical cycles of many atmospheric compounds. The first studies on the atmospheric chemical processes in homogeneous or heterogeneous aqueous phase (on the surface of the ice crystals or water droplets, for instance) were primarily carried out to cope with emergencies such as acid rain⁹ or the ozone hole in the stratosphere.¹⁰ They showed that the radiative, dynamic, and chemical processes occurring within clouds affect, for example, the concentrations of various chemical species such as ozone and nitrogen oxides. Three original aspects of the chemical reactivity within the cloud can be emphasized. First, the homogeneous chemical reactions within clouds are usually faster than the equivalent reactions in gas phase, and reactions that do not take place in the gas phase, such as those involving ionic species, can be of primary importance. Second, the photochemical processes inside the cloud droplets are much stronger than in interstitial air.¹¹ Finally, the interactions between the aqueous and solid phases give rise to reactions that cannot occur in the homogeneous aqueous phase, for instance, the heterogeneous reactions at the surface of droplets constituting hydrometeors.¹²

Describing the impact of clouds on atmospheric chemistry is a central issue of atmospheric science. Because the interactions between the ice phase and cloud chemistry (low temperature, surface properties, ...) are poorly known, this work will be restricted to warm liquid clouds. However, describing such complex processes requires combing through several approaches that combine laboratory, field, and modeling capabilities.

The reactivity of atmospheric chemical compounds in homogeneous and/or heterogeneous phases, as well as the mass transfer processes between gas and condensed phases (described by such parameters as Henry's law constants, the accommodation coefficient, and the uptake coefficient), can be studied in the laboratory. The difficulty is to reproduce atmospheric processes in which exchanges between the different phases and chemical reactions are far from their equilibrium state (in terms of condensation/ evaporation cycles, potential deviation from Henry's law, and dependence on variable droplet size). Moreover, laboratory studies endeavor to determine reactivity constants and reaction pathways for a single specific chemical species, whereas the chemical system of the reaction is characterized by a great number of chemical compounds. Thus, global studies of the complex chemical processes in the atmosphere cannot be carried out in the laboratory to provide a scientifically sound base for modeling.

A second approach is in situ (or field) experimentation, which aims at understanding the chemical processes within the cloud through chemical, microphysical, and meteorological measurements. Here, the main difficulty is to coordinate these three types of measurements in time and space. Certain campaigns have attempted such an investigation: the CHEM-DROP campaign on fogs in the Po Valley in Italy¹³ or the CIME experiment on orographical clouds at the top of the Puy de Dôme mountain.^{14,15} These measurements brought out strong size-linked variations in the chemical composition of droplets. For these reasons, new instruments, such as the Counter Virtual Impactor (CVI)¹⁶ and cascade impactors,^{17,18} were developed to sample cloud droplets according to their size. However, these measuring devices provide time-integrated measurements that mask the physicochemical processes, the characteristic times of which are shorter than the time step in sampling.

The final means for studying cloud impact on atmospheric chemistry is by modeling the physicochemical processes in the atmosphere. Although these models remain theoretical, they make it possible to simulate various reaction pathways for given chemical species within clouds, complex interactions between microphysical, chemical, radiative, and dynamic processes, and the influence of environmental parameters on multiphase chemistry. The structure of the numerical models allows sensitivity analyses to be carried out, for example, on dubious parameters. This tool integrates laboratory measurements and aids better understanding of in situ measurements by linking them with the laboratory studies.

These three approaches demonstrate that there exist many chemical reactions in cloudwater with potentially major environmental effects. Several studies have highlighted the particular role of transition metals and their complexes on the chemistry of the atmospheric aqueous phase.^{19–23} Many in situ measurements underscore significant concentrations of transition metals in the various atmospheric aqueous phases (wet aerosols, cloud, fog, rain, or snow).²⁴⁻³⁰ The source of these metals is the dissolution of the soluble fraction of aerosols in the aqueous phase. Moreover, laboratory studies have shown that transition metal ions (TMI) are highly reactive in solution.^{27,31-33} Their reactivity, dependent on many factors such as pH, their oxidation state, and their concentrations, is still prone to much uncertainty. The difficulty is to find a way to evaluate the impact of this chemistry on a medium as complex as the multiphase system of the atmosphere.

The aim of this paper is to provide an overview of the transition metal ion chemistry in the atmosphere and to point out the main uncertainties that still exist as to the physical and chemical processes involved. First, section 2 deals with the source of TMI in atmospheric liquid phases and describes the way they are transferred. This source is found in aerosol particles, which contain transition metals in various chemical forms. Second, in section 3, the available measurements of TMI concentrations and speciation in atmospheric liquid phases are presented. Speciation discriminates the main oxidation states of a chemical species and is a sensitive parameter for the chemistry of TMI in liquid atmospheric phases. Third, section 4, the reactivity of TMI in atmospheric liquid phases is described. This makes it possible to propose a reaction mechanism for cloud chemistry modeling. Finally, the concluding remarks will underscore future needs in this field.

2. TMI: From Aerosol Particles to Atmospheric Aqueous Phase

After oxygen and silicon, metals are the most abundant elements on the earth's surface.³⁴ Among these metals 30 chemical elements, with atomic numbers ranging from 21 to 30, from 39 to 48, and from 71 to 80, are commonly called transition metals. This name arises from their positions in the periodic table of the chemical elements. Transition metals are chemically defined as "elements that form at least one ion with a partially filled 'd' sublevel orbital". These elements therefore have several oxidation states that allow them to catalyze chemical reactions and form complexes. Transition metals are ubiquitous in atmospheric liquid phases (damp aerosol, cloud, fog, rain). Analysis of rain and cloud samples shows that transition metals do not contribute markedly to the overall concentration of impurities (or pollutants) in water³⁵ and are hence present as traces. Among the TMI commonly found in atmospheric waters, it has been emphasized that iron (Fe), copper (Cu), and manganese (Mn) are the major metals involved in the chemical processes occurring within these systems, as will be seen in sections 3 and 4.

2.1. Characteristics of Transition Metals in Particulate Phase

The only source of metals in the atmospheric aqueous phase is the dissolution of aerosol particles incorporated in water droplets. The common particles containing trace metals are soil dust, fly ash from power plants, and exhaust from combustion engines and industrial operations.^{36–38} The concentrations and speciations of metals in atmospheric aerosols depend on their sources as shown in Table 1, in which

Table 1. Weight Percent of Transition Metals in the Studied Particulate Samples: Analogue of Saharan Dust, Urban Particles, Coal Fly Ash, and Oil Fly Ash⁵⁹

			,	
species	analogues of Saharan dust	urban particles	coal fly ash	oil fly ash
particle size range (µm)	[2,20]	[0.03,10]	<100	<100
aluminum	8.4	3.42	15.83	1.4
silicium	22.8	12.53	21.65	3.7
cadmium	0.005	0.0097	0.00025	0.003
cobalt	0.000085	0.0018	0.0015	0.023
chromium	0.03	0.0032	0.021	0.03
copper	0.005	0.061	0.007	0.021
iron	7.7	3.91	8.8	3.50
manganese	0.13	0.086	0.22	0.04
nickel	0.01	0.0082	0.0043	1.28
vanadium	0.05	0.0127	0.013	4.66
zinc	0.01	0.476	0.021	0.12

analogues of Saharan dust are loess of Cap Verde, which are aeolian dust from Niger, deposited during the Holocene;^{39,40} urban particles are a mixture of anthropogenic pollution and natural material (sludges, fly ash, and dust); coal fly ash is emitted by coal combustion, whereas oil fly ash is produced from fuel.

The elemental composition of dust is related to the composition of its soil source. Thus, iron, which is very abundant in crustal material, is the major transition metal found in dust.⁴¹ We note that this iron abundance in dust leads to a global iron cycle between dust, ocean biogeochemistry, and climate.⁴² Atmospheric photochemistry, which alters dust properties, may influence atmospheric iron cycling.

The iron in atmospheric particles occurs as structural iron trapped in the crystal lattice of aluminosilicate minerals [either in iron(II) or iron(III) oxidation states] and as iron oxides or hydroxides [in iron(III) oxidation state].^{43–49} The iron oxides found in aerosols are mostly hematite (Fe₂O₃) and goethite (α -FeOOH).⁵⁰ In dust the total iron content is between 2 and 8%, of which 30 and 70% are, respectively, made up of iron oxides rather than aluminosilicate phases, depending on the mineralogy of the source material.⁵⁰ Manganese and copper are mainly

Tuble 2. Solubility here of Different Transmon metals from Freduits from the substation and Daboratory Experiment	Table 2. Solubilit	y Review of Differe	nt Transition Metals	from Field Measurements	and Laboratory	Experiments
---	---------------------------	---------------------	----------------------	-------------------------	----------------	--------------------

	field mea	surements	laboratory experiments			
element	solubility range (%)	ref	solubility range (%)	ref		
cadmium	$6-100 \\ 9-100 \\ 66-95 \\ 75-92$	Morselli et al. ³⁰² Millet et al. ⁸⁹ Gatz et al. ³⁰³ Guieu et al. ³⁰⁴	10.1 - 96.6 48 - 91 58	Desboeufs et al. ⁵⁹ Lindberg and Harris ⁷⁵ Nimmo et al. ⁷⁰		
copper	$2 \\ 9 \\ 9 \\ 12 \\ 19 \\ 20 \\ 30 \\ 49$	Jickells et al. 69 Lim et al. 83 Chester et al. 82 Morselli et al. 302 Sedlak et al. 28 Chester et al. 305 Gatz et al. 303 Guieu et al. 304	$20 \\ 27.5 - 98.3 \\ 57$	Hoffmann et al. ⁶³ Desboeufs et al. ⁵⁹ Nimmo et al. ¹³⁵		
iron	$\begin{array}{c} 0.018 \\ 0.02 \\ 1 \\ 1.3 \\ 1.6 \\ 3 \\ 3.6 \\ 6.1 \\ 11 \\ 22 \end{array}$	Özsoy and Saydam ¹¹⁰ Freydier et al. ⁷¹ Chester et al. ³⁰⁵ Sedlak et al. ²⁸ Colin et al. ⁶⁵ Millet et al. ⁸⁹ Deutsch et al. ¹⁴⁶ Zhu et al. ³⁰⁷ Guieu et al. ³⁰⁴ Kieber et al. ⁷⁸	$\begin{array}{c} 0.02{-}0.98\\ 0.04{-}35.7\\ 0.05{-}1.25\\ 0.3{-}12\\ 2\\ 3.45{-}12.08\\ 12{-}23 \end{array}$	Seames et al. ³⁰⁶ Desboeufs et al. ⁵⁹ Williams et al. ⁶⁸ Spokes et al. ⁷² Hoffmann et al. ⁶³ Zhu et al. ¹⁰² Zhuang et al. ⁶⁰		
manganese	$15-100 \\ 20-52 \\ 20 \\ 50-100 \\ 60-67 \\ 90.7-100$	Jickells et al. ⁶⁹ Chester et al. ³⁰⁵ Hoffmann et al. ⁶³ Freydier et al. ⁷¹ Guieu et al. ³⁰⁴ Deutsch et al. ¹⁰³	$\begin{array}{c} 0.3-23.8\\ 1.2-97.1\\ 1.5-54\\ 25\\ 70-92 \end{array}$	Williams et al. ⁶⁸ Desboeufs et al. ⁵⁹ Spokes et al. ⁷² Statham and Chester ⁷⁹ Lindberg and Harris ⁷⁵		
zinc	$\begin{array}{c} 15-99\\ 10-100\\ 20-100\\ 22-100\\ 27-97\\ 50-89\\ 69-76\\ 87-95.5\\ 92-98\\ 96-97\end{array}$	Losno et al. ⁸⁰ Freydier et al. ⁷¹ Morselli et al. ³⁰² Millet et al. ⁸⁹ Jickells et al. ⁶⁹ Chester et al. ³⁰⁵ Guieu et al. ³⁰⁴ Colin et al. ⁶⁵ Lim et al. ⁸³ Gatz et al. ³⁰³	$11-100 \\ 73 \\ 74-95$	Desboeufs et al. ⁵⁹ Hoffmann et al. ⁶³ Lindberg and Harris ⁷⁵		

present in dust in trace quantities, either as oxides or as substitutes in a mineral network.⁴¹ Metals can also be adsorbed on minerals.⁵¹

For anthropogenic particles, high-temperature processes result in the release of volatile vapor-phase metals, which then undergo condensation or gas-toparticle conversion. The elemental composition is a function of the initial combustible composition. For instance, coal is typically rich in aluminum silicates and iron, whereas oil will be mainly organic with a high content in nickel, zinc, etc. Thus, metals of anthropogenic origin are predominantly associated with oxide phases. $^{52-54}$ However, a significant fractional statement of the phase of the pha tion is also present as adsorbed metallic iron/ manganese⁵⁵ or covalent organic complexes.⁵⁶ Speciation of the metals in urban and diesel particles has shown that most of the metallic elements in diesel particulate matter appear to occur as sulfates, whereas in urban aerosols the occurrences are more varied, containing oxide and perhaps aluminosilicate in addition to sulfate.⁵⁷ The iron fraction in urban aerosols is usually between 6 and 8%, whereas in rural areas it is halved.³⁷

To sum up, iron comes essentially from mineral sources (soil dust or mineral fly ash); cadmium, copper, nickel, vanadium, and zinc originate mainly in combustion and industrial processes; the origin of manganese is mixed, derived both from aluminum silicates and from combustion particles.^{58,59} While being transported away from their sources, however, metal content and speciation are modified by atmospheric processes of cloud evapocondensation cycles, photochemistry, and possibly organic complexation.^{60–62}

The TMI concentrations found in atmospheric waters depend on the dissolution of trace metals from these matrices. In work on aerosol dissolution, the solubility concept is usually brought to bear. Solubility is generally calculated as the ratio of dissolved concentration to dissolved plus particulate concentration. Table 2 reviews the solubilities found in the literature.

Metal solubilities are seen to vary by up to 2 orders of magnitude. Because their solubility may be very low, the main components in the aerosol are not necessarily the most important ones for the aqueous phase.⁶³ It is therefore of prime importance to quantify the factors that govern aerosol dissolution in the aqueous phase in order to forecast the metal composition in the droplets.

2.2. Dissolution Processes

2.2.1. Effect of Particle Source

Generally, Wilkinson et al.⁶⁴ showed that large variations in cloud water composition are due to

variations in the marine and terrestrial/anthropogenic sources of particles, general weather patterns, atmospheric circulation, and seasonal effects. At any rate, all trace metal concentrations are associated with anthropogenic pollutant-laden air. By backtrajectory analyses, Colin et al.⁶⁵ showed that the soluble fraction of metals is higher in air masses of anthropogenic and marine origin. Conversely, insoluble fractions are higher in events in which crustal emission is the dominant source. Because scavenged aerosols are often a mix of anthropogenic and natural particles, evaluation of the crustal enrichment factor (EF_{crust}) has been widely used to compare the anthropogenic contribution to samples with their natural origin, that is, average crustal rocks. The elemental EF_{crust} for the metals in the end-member aerosol was calculated from the formula

$$EF_{crust} = \frac{([X]/[Al])_{atmo}}{([X]/[Al])_{crust}}$$
(E1)

where [X] is the aerosol's elemental concentration in X, [Al] is the aerosol aluminum concentration, and ([X]/[Al])_{crust} is the elemental crustal ratio.⁶⁶ A calculated EF_{crust} of >10 would indicate enrichment due to a noncrustal aerosol source; EF_{crust} values of ≤ 10 would, on the other hand, describe a crustal source for aerosol elemental composition. Luck and Ben Othman⁶⁷ used a leaching experiment to show that the soluble fraction is correlated with the EF_{crust} values: the stronger the EF_{crust} pattern of metals, the more soluble they are. In the same type of experiments, Williams et al.⁶⁸ emphasized that iron with an enrichment factor of <1 has a solubility under 1%, whereas manganese, which has a pronounced enrichment factor, is more soluble (Table 2). Similarly, Jickells et al.⁶⁹ and Nimmo et al.⁷⁰ suggested that particles with a strong anthropogenic chemical signature (very high EF_{crust}) have high trace metal solubilities. On the contrary, Saharan dust with low EF_{crust} is associated with low solubilities. This was confirmed by Freydier et al.,⁷¹ who showed that the ratio of the dissolved metal concentration to the total metal concentration in rainwater decreases as the quantity of crustal dust increases. Elements with mixed sources show intermediate solubilities.⁶⁹ These conclusions have been confirmed in laboratory leaching experiments. Results of leaching Saharan and urban aerosols under imposed pH indicate that solubility is directly related to the aerosol source, with iron solubility always 6% for Saharan aerosol but reaching 12% for urban particles.⁷² A study by Desboeufs et al.⁶² compared the solubility of a Saharan aerosol-like material with that of petroleum fly ash and found, respectively, 0.04 and 38% for iron and 2 and 97% for manganese.

Chester et al.⁷³ used a sequential leaching method to separate trace metals according to their binding associations: (1) an exchangeable association (environmentally mobile), (2) a carbonate and oxide association, and (3) organic matter and silicate associations (environmentally immobile fractions). In this way they showed that solubility is associated with metal solid-state speciation rather than aerosol source. Thus, metals speciated in carbonate and metal oxide fractions, organic matter, and silicate fractions are poorly soluble, whereas significantly exchangeable metals (adsorbed metals, salts, ...) are the most soluble of all.^{52,53,56,73,74} Another study by Desboeufs et al.⁵⁹ stated that the nature of the solid matrix, rather than the anthropogenic pattern, is the most important factor governing solubility. High solubility values (35%) are obtained for carbonaceous particles (where the metals are generally adsorbed), whereas solubility values from aluminum silicate aerosol matrices (e.g., silicated fly ash from coal combustion or terrestrial aerosols) are generally under 10%. Some metals tend to be associated with submicrometer particles as a result of their abundance in hightemperature processes, whereas metals from crustal weathering and sea-salt generation, because of the processes that generate them, tend to be associated with large particles (1 μ m). Thus, Hlavay et al.⁵² showed that the loosely bound and hence highly soluble fraction of metals corresponds to the fine fraction of size distribution. The range of solubility found by Lindberg and Harris⁷⁵ is limited to solubility values of >50% for aerosol samples from local coal combustion emission (coal-fired power plant). In this case, their observations show a general increase in metal solubility as particle size decreases. This trend can be explained by a combination of factors: (1) a basic difference in the chemistry of source material contributing to each size fraction, (2) the greater surface area-to-volume ratio of smaller particles, and (3) high overall concentrations of metals in small particles. For crustal matter, solubility is also associated with the crystalline structure of the mineral network. Crystalline hydroxides such as hematite (α - Fe_2O_3), goethite (α -FeOOH), maghemite (γ -Fe₂O₃), or magnetite (Fe_3O_4) are much less soluble than amorphous iron hydroxides such as ferrihydrite [Fe(OH)₃] and clay minerals. For example, Zhu et al.⁷⁶ found that the solubility of iron derived from ferric hydroxide can be 10^5 higher than when coming from hematite in the same conditions.

Finally, these studies emphasize that particles from anthropogenic sources contribute significantly to metal distribution in atmospheric droplets due to their high metal content and solubility. However, even if anthropogenic iron sources are globally significant, it appears that the crustal source can be important as well. For example, Takeda et al.58 observed an increase in dissolved iron concentrations when wet deposition is simultaneous with a dust event. Similarly, the crustal origin of iron clearly appears in the works of Al-Momani,77 where an intense incursion of Saharan dust at the rural sampling site caused a basic precipitation pH and high iron concentration. Calculations of air mass trajectories indicated that the rain events with low iron concentrations originated in the ocean, whereas the higher iron concentrations were observed in rain events that had traversed Australian regions where dust plumes are usual.⁷⁸ Thus, anthropogenic aerosols constitute the major source of metals when the atmosphere is influenced anthropogenically, whereas dust is a more important source in areas where man has little impact.

2.2.2. Influence of pH on Dissolution Processes

From both rainwater sampling and laboratory experiments, various studies have shown that dissolved-particulate speciation of trace metals in rainwater is pH-dependent. Typically, the environmental or experimental results show that solubility values increase as the pH of mineral dust decreases. For example, Williams et al.,68 who have worked on different fly ashes, showed that the fraction of metals leached (iron, manganese, copper, and zinc) increases with decreasing pH over the range of pH 2.5–5. This behavior is also observed for atmospheric dustderived iron, where $\sim 55\%$ of the iron dissolves in artificial rainwater at a pH of 3.8 and $\sim 25-30\%$ dissolves at a pH of 4.8.⁶⁰ Statham and Chester⁷⁹ also found that the fraction of manganese released from Saharan dust on contact with rainwater, on a time scale of a few minutes, increased with decreasing pH from 20% at pH 5.1 to 59% at pH 2. Nevertheless, this pH effect is more or less marked according to the nature of the particles. Spokes et al.⁷² obtained results showing that iron solubility for "Saharan dusts" increases by a factor of 5 when the pH goes from 6 to 2, whereas it remains unchanged for "urban material" when the pH drops from 5 to 2. In the same pH ranges manganese solubility is 3 times greater for Saharan dust and twice as high for urban particles. Thus, the effect of pH on solubility for a given matrix is different according to the element under consideration.

Spokes et al.⁷² showed that responses to imposed pH changes are relatively rapid (~ 1 min). Yet, for metals in excess of their crustal abundance, the most striking feature of the percent solubility/pH plots, is the presence of a classic pH adsorption edge that separates a low pH-high percent solubility region from a high pH-low percent solubility region.⁸⁰⁻⁸⁴ This pH-edge may be initiated at pH values as low as 3.5 and extended up to a pH of \sim 5.8.85 This typical feature has also been observed for zinc, with a pHedge value of \sim 6,80,83 for lead (pH 5.6 for Lim et al.83 and pH 5.3 for Chester et al.⁸²) and for copper (pH 5.6 for Lim et al.⁸³ and Chester et al.⁸²) (Figure 1a). This pH-edge is not observable for crustal elements for which the solubility is normally related to the dissolution kinetics.⁸⁶ Typically, pH-dependent dissolution for minerals is explained in the geochemical literature by a protonation/deprotonation mechanism⁸⁷: Adsorption of protons onto the surface loosens the Al- or Si-O bonds of the crystal matrix or the critical bonds between the oxide and metal ions. Thus, the dissolution rates correspond to the detachment of metal ions or Si/Al from the surface. Dissolution rates are much less pH-dependent in nearly neutral conditions, whereas below pH 4 and above pH 10 the dissolution rate exhibits strong pH dependence⁸⁸ (Figure 1b). Such pH dependence has direct implications on the assessment of solubility. Whereas such elements as magnesium, lead, and calcium are usually found in the soluble phase, and others, such as aluminum, are prevalent in the insoluble fraction, the presence of trace metals (cadmium, copper, manganese, and iron) in the soluble or insoluble phase depends largely on water pH.⁸⁹ We can con-

Figure 1. pH-solubility relationships for (a) copper in excess of its crustal abundance in rainwaters (the line represents the estimated pH absorption edge) and for (b) iron derived from dust dissolution during leaching experiments.

clude that it is extremely important to take the pH range and variation into account when studying the relationship between trace metal concentrations and droplet pH.

Several authors have shown that during experimental leaching the pH in droplets may be influenced by the dissolution of aerosol particles. Thus, Statham and Chester⁷⁹ and Desboeufs et al.⁹⁰ found a significant neutralizing effect of Saharan aerosol particles on water. On the contrary, an acidifying effect was observed in a petroleum fly ash leaching experiment.^{91,90} The neutralizing effect of crustal aerosols is typically associated with their high carbonate content.⁹² The acidic pH is attributed to the release of sulfur or nitrogen oxides adsorbed on highly reactive carbonaceous particles or to the dissolution of sulfate and nitrate aerosol particles, producing H₂- SO_4 or HNO_3 in solution. Thus, during a droplet's lifetime, dissolution of aerosol can have an effect on its pH and hence on the dissolution of trace metals.^{79,90,93} For example, we have seen that trace metal concentrations are higher in urban areas. Table 1, however, reveals low concentrations of trace metals in the measurements of Alabdula'aly and Khan.94 They demonstrated that these low concentrations are directly related to the high alkalinity of the samples (pH 7) due to the presence of a cement factory close to the sampling site. Along the same lines, Chester et al.,⁸² studying a sequential collection of a single rain event, observed a pH "dip" followed by a return to the initial pH as the pH-influencing components became exhausted as a result of the scavenging of urban-rich material. In previous studies Chester et al.⁹⁵ inferred that the very low pH regime induced

at the surface of a particle acting as a condensation nucleus by dissolution of sulfate or nitrate salts may enhance the release of metals from the solid phase.

Moreover, Lefebvre-Drouet and Rouseau⁹⁶ pointed out that during dissolution taking place in the presence of organic acids, the acidity level governs the dissolution of crystallized iron oxides, whereas complexation is the main factor in the dissolution of amorphous compound. Laboratory experiments have shown that the solubility of trace metals can be strongly affected by the concentration of organic ligands in an aqueous/silicate system.⁹⁷ Galloway et al.⁹⁸ reported that organic (formic and acetic) acids can contribute as much as 65% of the free acidity in precipitation sampled from remote marine regions. According to Benjamin and Leckie,⁹⁹ the presence of organic ligands in precipitation may alter the partitioning of metals in rainwater through the following processes: (1) solubilization of particulate metal according to the complexing power of ligands, (2) reduction of metal adsorption by the formation of ligand-like complexes, and (3) enhancement of metal adsorption by formation of metallic complexes. All metals released in rainwater from dust or urban particles are organically complexed to some degree.⁷⁰

2.2.3. Photochemical Aging and Transition Metal Solubility

During laboratory experiments, transition metals from Saharan dust have been observed to dissolve more readily in daylight than in the dark.^{79,100} The work of Hoffmann et al.⁶³ emphasized that dissolved iron(III) concentrations were not affected by sunlight, whereas dissolved iron(II) concentrations increased under the same conditions to values ~ 40 times higher for urban particles. Studying iron speciation in rainwater, Kieber et al.⁷⁸ observed a diurnal iron variability: concentrations of iron(II) were highest from noon to 6:00 p.m., the period of greatest light intensity. From 6:00 p.m., the maximum iron(II) concentration declined through the evening to an early morning minimum. They explained these variations as reflecting photochemically initiated dissolution of particulate iron, and this was confirmed by Sofikitis,¹⁰¹ who measured a more rapid dissolution rate for iron(II) than for iron(III) in the mineral particles. This effect of light was also observed directly on particulate iron by Zhu et al.,¹⁰² who found a clear day/night pattern in the concentration of soluble iron(II) from wind-transported mineral dust, with day values about twice those at night. Moreover, Lefebvre-Drouet and Rousseau⁹⁶ showed that the solubility of iron is enhanced by adding a reducing agent to the aqueous phase. Deutsch et al.¹⁰³ also found that manganese in rainwater and snow exists entirely as soluble manganese(II), its reduced form. Hofmann et al.³⁵ calculated that this manganese(II) is in molecular form and positively charged.

The aerosol particles can have a residence time in the atmosphere of \sim 1week and hence can be transported over thousands of kilometers. Lindberg and Harris⁷⁵ observed that solubility increases as a combustion plume ages. Solubility values for plume aerosols collected, respectively, 250 m and 7 km downwind from a power plant were as follows:

cadmium, 55 and 90%; manganese, 55 and 90%; zinc, 50 and 80%. Aerosols are typically exposed to ~ 10 condensation/evaporation cloud cycles before removal in rain. From laboratory cloud process simulation. Desboeufs et al.⁶² showed that the condensation/ evaporation cycle increases the solubility of aerosol particles and notably the release of trace metals. They also showed that solubility depends only on the last cloud cycle, and in particular, on the factor controlling the pH during this process. Spokes et al.⁷² demonstrated through alternations of low and high pH that this solubilization is not reversible for iron in urban aerosols or for manganese in Saharan and urban aerosols, whereas the solubility of concentrations of dissolved iron from Saharan dust can be controlled by pH. The increase in the solubility of processed aerosols could be explained by the change in specific surface area and morphology observed on the aerosol particles after water leaching.⁹¹ Notably, an amorphous phase, more soluble than crystallized mineral,⁹⁶ appears.⁶² Zhuang et al.⁶⁰ also observed that at a given pH the solubility of iron in the dust collected in remote marine zones was 5-17 times greater that that of iron from the soil or Chinese loess. They postulated that (1) the mixing of mineral dust with acid aerosol as a result of coalescence processes within clouds might be a mechanism to increase the solubility of atmospheric iron in cloud water and (2) photochemical reduction of iron(III) to iron(II) during the long-range transport of particles may be an important mechanism increasing the solubility of iron. Thus, the mobilization of metals might be strongly dependent on the past history of the aerosol particles in the atmosphere.⁷⁶ Moreover, several works have shown that aerosols sampled far from their source consist of a mixture of different aerosol types, in particular, crustal core coated with soluble compounds.^{104–108} This mixing could have an indirect effect on dissolution, as it implies a modification of aqueous conditions. For example, the mixing of terrestrial particles has been emphasized by the reaction between SO₂ or sulfate with water-soluble inorganic components, which are carbonate/bicarbonate contained in mineral dust,¹⁰⁹ and subsequent acidification of the droplet will make possible the dissolution of crustal particles.

2.2.4. Kinetics of Dissolution

Özsoy and Saydam¹¹⁰ showed that iron solubility in acid rain moving over Europe and the Mediterranean Sea is $\sim 56.7\%$ (average pH 4.4), whereas it reaches only 3.32% in red rain (average pH 6.6) originating, according to back-trajectories, in North African mineral dust source zones. Both observed solubilities are governed by the pH dependence and nature of the particles, which act on pH and on the solid-state speciation of iron. Similarly, Colin et al.⁶⁵ observed a relationship between elemental solubility and the back-trajectories of air masses: Higher solubilities are observed for air masses affected by industrial sites. However, it appears that rainwater pH goes down as industrial impact goes up. This makes it difficult to know whether discrepancies in solubility are due to the particle source or a direct pH effect.⁶⁵ It is therefore necessary to get an accurate quantification of the processes governing metal dissolution as a function of the different factors bearing on it in order to estimate metal concentrations and speciation in the atmospheric aqueous phase. Consequently, it is helpful to parametrize the metals' behavior in the droplets under realistic conditions. It has been emphasized that for all pH values there is a very rapid initial dissolution, over 50 of the equilibrium concentrations being attained in the first 10 min, followed by a slower rate of dissolution for wind-transported dust,^{79,86} fly ash,⁶⁸ rural aero-sol,¹¹¹ and urban particles.⁷⁰ This latter dissolution rate is reduced as the pH decreases.⁹⁰ We have seen that analyses of particulate phase show that certain elements are concentrated on the particle surfaces. The surface enrichment would explain why there is a rapid initial dissolution of metals followed by a slower dissolution rate, which would correspond to initial leaching of surface deposits followed by a slow leaching from the inner part of the material. The first step of the dissolution process thus gives a continuously increasing metal concentration in the aqueous phase throughout the cloud droplet's lifetime.⁵⁹ On the contrary, the concentrations dissolved in the second, slow, step are very small and irrelevant in cloud chemistry.59

In terms of chemical kinetics, Hoffmann et al.⁶³ considered that these two steps of the dissolution process correspond to a double-first-order reaction kinetic, depending, for urban particles, only on the surface area of the solid phase. They calculated rate constants (s^{-1}) , which turned out to be dependent on the ratio of the amount of solid by weight to the volume of the aqueous phase. The rate constants for the dissolution of the various species vary over 3 orders of magnitude. More generally, the results of Desboeufs et al.,¹¹² who worked with dust, fly ash, and urban particles, also emphasize that at constant pH a dissolution in two kinetic steps of first-order reactions is observed. However, this kinetic does not depend on surface area, but on the labile fraction of element in the particles and, hence, on the nature of particles. They demonstrate that dissolution rate constants for metals are a function of the source of the metals. Moreover, their work on kinetics demonstrated the pH dependence of the dissolution rate to be linear and V-shaped, which is typical of the pH_{pzc} influence.^{68,86} From these quantitative measurements, a parametrization has been formulated that makes it possible to estimate the rate of dissolution and the dissolved concentrations under fixed conditions.

3. Transition Metals in Atmospheric Liquid Phases

3.1. Oxidation States and Chemical Forms of Transition Metal Ions

3.1.1. Iron

In aqueous solution iron is mainly found under two oxidation states, +II and +III, and iron(II) is much more soluble than iron(III). To a minor extent iron is also present in aqueous solution under the oxida-

Figure 2. Distribution of iron(II) species as a function of pH (T = 25 °C, I = 0 M).

Figure 3. Octahedral structure of the complex $[{\rm Fe-}({\rm H_2O})_6]^{3+}.$

tion state +IV. In this review, by convention, iron-(II) and iron(III) will represent the dissolved iron. In the atmospheric liquid phase, iron under its +II oxidation state is mainly present as Fe^{2+} , as is indicated in Figure 2, which gives the ratios of Fe^{2+} and $Fe(OH)^+$ concentrations over total iron(II) concentration according to the pH of the solution.

A recent study based on irradiation of rainwater samples¹¹³ points out the possible complexation of iron(II) by organic ligands restricting the oxidation of iron(II) under dark conditions.

The simplest form of iron(III) is the monomer [Fe- $(H_2O)_6$]³⁺, corresponding to the Fe³⁺ cation surrounded by six water molecules, more commonly called Fe³⁺ (Figure 3). Hereafter, for the sake of simplification, the water molecules will no longer be mentioned in the chemical formulas.

In the absence of soluble organic compounds, iron-(III) is mainly found in aqueous solution as low molecular weight species complexed with the hydroxide anion, such as

• the monomer $[Fe(H_2O)_5(OH)]^{2+}$ or $Fe(OH)^{2+}$, in which a water molecule is substituted by a hydroxide group;

• the monomer $[Fe(H_2O)_4(OH)_2]^+$ or $Fe(OH)_2^+,$ in which two water molecules are substituted by two hydroxide groups; and

• the dimer $[(Fe)_2(H_2O)_8(OH)_2]^{4+}$ or $(Fe)_2(OH)_2^{4+}$, the structure of which is described in Figure 4.

Iron(III) can also be present as water-soluble polymers $[Fe_n(OH)_m(H_2O)_x]^{(3n-m)+}$ such as^{114,115}

Figure 4. Structure of the dimer $[(Fe)_2(OH)_2]^{4+}$.

Figure 5. Structures of the trimer complexes $[Fe_3(OH)_4]^{5+}$ and $[Fe_3(OH)_3]^{6+}.$

• trimer complexes, which seem to exist in two possible dihydroxy forms shown in Figure 5, $[Fe_3-(OH)_3(H_2O)_{12}]^{6+}$ or $[Fe_3(OH)_3]^{6+}$ and $[Fe_3(OH)_4-(H_2O)_{14}]^{5+}$ or $[Fe_3(OH)_4]^{5+}$; and

• oligomers, polymers, and soluble iron(III) aggregates.

Iron(III) can precipitate and form oxides such as α - and γ -FeO(OH) (goethite and lepidocrocite), α - and γ -Fe₂O₃ (hematite and maghemite), or Fe(OH)₃ (ferrihydrite). In atmospheric aqueous solution, dissolved iron is unlikely to be found in oxide form.

Iron(III) species have different chemical and photochemical reactivities. The partitioning between these iron(III) species depends on three factors: pH, initial iron(III) concentration, and ionic strength. For a fixed initial iron(III) concentration, partitioning between different chemical forms is governed by equilibria 1 and 2:

$$\begin{aligned} \mathrm{Fe}^{3+} + \mathrm{H}_{2}\mathrm{O} &\Leftrightarrow \mathrm{Fe}(\mathrm{OH})^{2+} + \mathrm{H}^{+}, K = \\ & 6.0 \times 10^{-3} \,(\mathrm{Brandt} \text{ and } \mathrm{van} \, \mathrm{Eldik}^{27}) \ (1) \end{aligned}$$

$$Fe(OH)^{2+} + H_2O \leftrightarrow Fe(OH)_2^+ + H^+, K = 7.6 \times 10^{-4} (Brandt and van Eldik^{27}) (2)$$

For pH lower than 6 (typical cloud droplet pH), the three ferric ions Fe^{3+} , $Fe(OH)^{2+}$, and $Fe(OH)_2^+$ coexist in aqueous solution. The partitioning of these three iron(III) monomeric complexes according to the pH of the solution is represented in Figure 6. This figure was established for an ionic strength equal to zero.

Faust and Hoigné¹¹⁶ performed similar calculations at an ionic strength of 0.03 M and got a different partitioning of these monomeric iron(III) species, because the ionic strength modifies the equilibrium constant values.²⁷ For example, at pH 4 with an ionic strength of 0.03 M, the monomeric complex Fe(OH)²⁺ represents 92% of the iron(III) monomeric species in solution.¹¹⁶ At typical atmospheric pH (between 3 and 5) the most abundant iron species depends on the ionic strength: Fe(OH)₂⁺ is the predominant species for ionic strength near zero, whereas the Fe(OH)²⁺

Figure 6. Distribution of iron(III) species as a function of pH (T = 25 °C, I = 0 M).

Figure 7. Predominant fields of iron(III) species as a function of pH and of iron(III) initial concentrations. Reprinted with permission from ref 114. Copyright 1984 American Chemical Society.

fraction rises and becomes paramount as the ionic strength increases.

Figure 7 represents the predominant fields of these complexes according to the pH and the initial iron-(III) concentrations.¹¹⁴ The dimeric complex is present only for very acid solutions with high iron concentration (>10⁻² M). This dimeric complex is therefore irrelevant for describing processes occurring in the atmospheric liquid phase. Moreover, the trimeric complex needs higher iron concentrations and lower acidity to exist in solution than dimeric complex¹¹⁷ and, then, is also irrelevant in this context.

Iron(III) in aqueous systems may exist in several forms.¹¹⁸ Inorganic ligands other than water or hydroxide anions (e.g., NH_4^+ , SO_4^{2-} , NO_3^- , and Cl^-) and organic ligands (organic acids such as oxalate, acetate, formate, and citrate) can replace some of the water molecules to form a mixed complex of iron(III). In the atmospheric liquid phases, the significance of

this mixed complex depends on the concentrations of the potential ligands and on the value of the associated stability constant. So far there have been no measurements to determine the chemical forms of iron in so complex a medium as the atmospheric liquid phase. A few studies, however, have used thermodynamic data to try to work out the partitioning of the different chemical iron complexes. Weschler et al.¹¹⁹ first tried to determine which complexes might be most expected in atmospheric droplets, as a function of the concentrations of potential ligands in rainwater, the pH values, and the stability constants of the complexes. They concluded that for rainwater the most probable iron(III) complexes are formed with sulfite and sulfate ions. Hofmann et al.,³⁵ using similar calculation, showed that 90-95% of iron(III) is in the form of dihydroxo complex and that very little iron is associated with SO_4^{2-} ions. In their review on transition metal-catalyzed oxidation of sulfur(IV), Brandt and van Eldik²⁷ showed that there exist various forms of metal-sulfito complexes (see references therein), but the atmospheric stability and the possible influence of metal-sulfito complexes on atmospheric processes are still unknown. However, all of these theoretical studies neglect the potential complexing capacity of organic compounds with iron. Siefert et al.²⁹ calculated the speciation of iron(III) complexes for the concentrations found in seven fog water samples taken in the United States. They show that the predominant iron(III) species are iron(III)oxalate and iron(III)-hydroxy species. For certain samples characterized by high pH and low oxalate concentrations, calculated iron(III)-oxalate complexes are insignificant. However, their results depend on the stability constant values they are using and on potentially complexing agents considered in their calculation. Willey et al.¹²⁰ showed that iron-(III) occurs predominantly complexed with oxalate in continental summer rain, whereas in continental winter rain iron-oxalato and Fe(OH)₂⁺ are almost equal in concentration. For marine rain, they show that Fe(OH)₂⁺ predominates due to low potential organic ligands. Weschler et al.¹¹⁹ noted that a portion of iron can be strongly complexed with chelate ligands (a ligand bound to the metal ion by more than one of its atoms is called a chelate ligand), such as humic substances. These substances are emitted into the atmosphere from the decay of leaves, wood, algae, etc. that can be extracted into aqueous solution. These compounds are excellent chelate ligands. Weschler et al.,¹¹⁹ Willey et al.,¹²⁰ and Kieber et al.¹²¹ postulated that a fraction of iron may be linked with humic substances in rainwater. Macromolecular substances in aerosols and cloud and fog waters have been characterized in different studies¹²²⁻¹²⁵ as humic-like substances (HULIS). In conclusion, these studies show that the most important iron(III) complexes in atmospheric liquid water are iron(III)hydroxy species and iron(III)-organic complexes. However, because of the lack of knowledge on the organic compounds speciation in atmospheric liquid phase, it is difficult to draw conclusions on the nature of iron(III)-organic complexes, even if oxalate complexes seem to be usually observed. Finally, further investigations of the chemical speciation of these

organic compounds including macromolecular substances are needed.

3.1.2. Copper and Manganese

In aqueous solution, manganese is mainly found in the oxidation state +II, which is more soluble than manganese(III). Manganese in its oxidation state of +III is a very strong oxidizing agent. In the laboratory manganese(III) is not easily usable because it decomposes quickly and forms manganese of two other oxidation states: +IV and +II. Davies¹²⁶ emphasized that solutions of manganese(III) can be stabilized by increasing the acidity of the medium, by increasing the manganese(II) concentrations, or by the formation of complexes. Manganese can thus be found in its oxidation state of +III in atmospheric aqueous phase phases where the pH is rather acid and where potential ligands are available.

In aqueous solution, copper is mainly present in the oxidation state of +II, which is the more soluble one. Copper(II) can be reduced to copper(I) in the atmospheric liquid phase, which is a strong reducing agent, but just as for manganese, it is quickly reoxidized to copper(II) by dissolved oxygen.

Although several studies have pointed out that copper and manganese can form many complexes with organic and inorganic ligands in aqueous medium, $^{127-129}$ the chemistry of manganese and copper complexes in the atmospheric liquid phases is poorly documented. In the atmosphere, manganese-(III) is present as sulfito complexes, 27 which can initiate the autoxidation of sulfite to sulfate 130,131 (cf. section 4.1.2). Several studies have shown that copper is probably complexed by organic ligands $^{132-136}$ and by sulfur, $^{27,137-139}$ but no information is given about their partitioning.

3.2. Concentrations of Transition Metals

The comparison of quantitative evaluation of transition metals in the atmospheric liquid phase at various locations and atmospheric conditions would require the use of mixing ratios. However, all available field studies present their results in terms of concentrations and, most of the time, do not provide combined chemical and microphysical data. Moreover, the scope of this review concerns the reactivity of these chemical compounds, for which the use of concentration values is more adequate. For these two reasons, in the following parts, the review on measurements of transition metals in atmospheric liquid phase presents concentration data. The reader should keep in mind this point in the following discussion.

3.2.1. Iron

From an atmospheric point of view, iron is probably the most significant transition metal because of its concentration, which is in general much higher than that of the other metals. Its concentration is $\sim 10^{-6}$ mol $L^{-1},^{140}$ but many field experiments indicate that iron concentration can vary from 10^{-9} to 10^{-6} mol L^{-1} in raindrops and from 10^{-6} to 10^{-3} mol L^{-1} in cloud droplets. 141

Table 3 summarizes the various and recently available measurements of concentrations for both

Table 3. Total and Dissolved Iron Concentrations in Rainwater and Fog, Snow, and Cloud Waters (Minimum–Maximum and/or Averaged Value)

					dissolved		
1 (*	type of		total	dissolved	iron/total	aqueous	C
location	environment	pH	$1ron (\mu M)$	$1ron (\mu M)$	1ron (%)	phase	ref
United Kingdom	rural		0.89-1.79			rain	Cawse et al ³⁰⁸
e inica iniguoni	rural		3.58			rain	Pairson et al ³⁰⁹
Germany	urban		1 19			rain	Botz ³¹⁰
northern Nigeria	rural		23 30			rain	Beavington and Cawco ³¹¹
Cormony	uran		20.00			rain	Crowenhorst et al 312
Delastag and Minnagata	urban menal (amia anaa)	4 90 5 59	0.00			rain	Thermater and Eigenneich 313
Laws a DE	rural (agric area)	4.89-5.55	0.08-2.89			rain	Chaugh at al 314
Lewes, DE	coastal		0.27			rain	Unurch et al.
Pasadena, CA	urban	4.4	4			rain	waldman et al. ⁵¹⁵
Mt. Wilson, U.S.	rural	5.0	0.5				C1 1 010
Ontario, Canada	rural		0.76			rain	Chan et al. ³¹⁶
Leeds, U.K.	urban		0.36 - 1.18			rain	Radojevic and Clarke ³¹⁷
American Samoa	coastal/remote		0.016			rain	Arimoto et al. ³¹⁸
near the North Sea, U.K.	coastal	4.52	9-670			rain	Balls ³¹⁹
North Atlantic Ocean	coastal		0.35			rain	Church et al. ³²⁰
Aspvreten, Sweden	coastal		0.2 - 3			rain	Ross ³²¹
Bredkälen, Sweden	rural		0.03 - 1.81				
Tasman Sea, New Zealand	coastal/remote		0.047			rain	Arimoto et al. ¹⁵³
Rawawa Beach, New Zealand	coastal/remote		0.021				
north side, Bantry Bay, Ireland	coastal	3.8 - 5.1	0.14 ± 0.14			rain	Lim et al. ³²²
Darmstadt, Germany	urban	4.43	0.63	0.22^{a}	35	rain	Hofmann et al. ³⁵
Gross-Rohrheim, Germany	rural	4.81	0.43	0.25^{a}	58		
Dortmund Germany	semirural	5 29	0.39	0.20	00	rain	Brandt et al ³²³
Witten Germany	urhan	5.18	0.64			rum	Dranat et al.
Krakau Poland	urban	6.63	0.04			rain	Brandt et al ³²³
Plynlimon Wolog	mirol	3 40 - 6 0	0.40	0 0000-6 68		roin	Willzinson of al 64
Tour du Valat France	rurar	5.45 0.5	96	$0.0005 \ 0.00$	11 ± 16	rain	Cuion et al 304
Lour du Valat, France	coastal	4 5 6 4	2.0	0.29 ± 0.0	11 ± 10	rain	Funding at al 71
Lamto, Ivory Coast	rural	4.0-0.4		<0.02-0.19		rain	Freydier et al."
Kollo, Niger	rural	4.9 - 7.3		< 0.02-3.18			
Lannemezan, France	rural			0.03 - 0.19			35 1 201
Jaipur, India	urban	7.57		5.30		rain	Manoj et al. ³²⁴
Kota, India	urban	7.47		4.1 ^o			
Wilmington, NC	coastal/	4.6	0.3 year	0.07^{b}	2	rain	Willey et al. ¹²⁰
	continental		0.6 spring				
		4.0	0.3 summer				
			0.12 fall				
		4.7	0.13 winter				
Riyadh, Saudi Arabia	urban	7.41		0.007 - 0.40		rain	Alabdula'aly and Khan ⁹⁴
Paradize, New Zealand	remote	4.91		0.037^{e}		rain	Halstead et al. ¹⁵⁴
Erdemli, Turkey ^g	coastal	3.5 - 7.6	0.12 - 534.1	$0.04 - 26.1^{b}$	0.018 - 99.3	rain	Özsov and Savdam ¹¹⁰
, ,			3.98^{e}	0.36^{b}	9.6		0 0
			24.31 ^f	1.47^{b}	25.3		
			17 33	1.02^{b}	6 18		
Bainur India	urban	5.8	11.00	0.8 - 1 - 3	0.10	rain	Patel et al 155
haipui, illula	rural	0.0		19		ram	i alei et al.
New Zeeland	rurar		0 179	0.065	90	noin	Kieber et al 78
Wilmingston NC	coastal/remote		0.172 0.957 (all data)	0.005	00 96	rain	Kieber et al. ¹⁴⁷
winnington, NC			0.257 (all data)	0.08	20	rain	Kleber et al.
	1		0.300 (annual) ^e	0.75	25		
	continental		0.281	0.99	35		
	coastal		0.213	0.55	26		
Ajlune, Jordan	rural	6.35		1.64 ± 1.86		rain	Al-Momani'
Bermuda Atlantic Time	coastal/remote	4.4	0.314 (Aug)	0.235	75	rain	Kieber et al. ¹²¹
Series Station		4.9	0.213 (March)	0.106	50		
Goslar, Germany	semirural	6.2	0.38			melted snow	Brandt et al. ³²³
Dortmund, Germany	semirural	4.6 - 5.73	0.28 - 1.95				
Witten, Germany	urban	6.43	0.82				
Hajnowka, Poland	rural	7.06	0.25			melted snow	Brandt et al. ³²³
Katowic, Poland	urban	7.15	6.27				
Spatind. Norway	rural	6.30	3.64			melted snow	Brandt et al. ³²³
Los Angeles and Bakers-	urban	2.2 - 4.0	26			fog	Waldman et al. ³²⁵
field CA						3 sites	
Pasadena CA	Urhan	225 - 525	16 - 376			for	Munger et al ¹⁶⁷
Loppov CA	urbon	2.20 0.20	0.58-4.90			fog	muliger et al.
Delrangfield CA	urban	2.52 5.10	0.00 4.00			fog	Leash at al 326
Dakersheid, CA	urban	2.0-0	0.02-0.2			log	Jacob et al. 227
California coast	coastal	2.66-6.17	0.0004 - 0.02			tog	Jacob et al. ³²⁷
	,		0 5 0			8 sites	D1 10: %
suburb of Zurich, Switzerland	urban	3.21-5.70	0.5 - 2			fog	Behra and Sigg ²⁵
Zindelen, Zürich, Switzerland	continental +	2.9 - 7.1	0.3 - 91.4			fog	Joss and Baltensperger ²⁴¹
	anthropogenic	4.8^{e}					
D 11 11 1 1	influence					0	-
Po Valley, Italy	urban		0.5 - 41.9			tog	Fuzzi et al. ¹⁴⁸
San Pedro Hill, CA	coastal/urban	2.2 - 4.2	1 - 11.3	$0.5 - 11.3^{a}$		fog	Erel et al. ¹⁴³
Henninger Flats, CA	rural	2.5 - 3.1	2.2 - 27	$2.3 - 11.6^{a}$			
Dübendorf, Switzerland	urban	4.23 - 4.56	22.3 - 231	$7 - 134.3^{b}$		fog	Kotronarou and Sigg ²⁶
		4.37	11.9 - 35.5	$10 - 29.4^{b}$		4 events	
		6.00	11.1 - 21.1	$3.2 - 6.2^{b}$			
		6.15	9.8 - 11.5	$2.7 - 3.9^{b}$			

Table 3. (Continued)

	type of		total	dissolved	dissolved iron/total	aqueous	
location	environment	pH	iron (µM)	iron (µM)	iron (%)	phase	ref
Whiteface Mountain, U.S. Strasbourg, France	rural urban	3.1 - 4.4 2.27 - 6.16	0.32 - 0.95 30 - 1138 306.4	13.3 - 647.2	26	fog fog	Khwaja et al. ³²⁸ Millet et al. ⁸⁹
San Pietro, Po Valley, Italy San Joaquin Valley, CA Bakersfield, CA	urban urban urban	2.58-5.78 6.57-7.09 5.39-6.87	0.480-0.640	$1-4.6^b$ $5.4-9.8^c$ 0.2-0.4	45-65	fog fog fog/stratus	Schwanz et al. ¹⁴² Rao and Collett ¹⁴⁵ Siefert et al. ²⁹
San Pedro Hill, CA	coastal/urban	3.2 - 4.2	0.560 0.580-4.900 1.930	0.2 - 1.3	10 - 47	cloud	
Whiteface Mountain, NY	rural	2.92 - 5.37	<0.020-7.000 1.360	0.02 - 0.7	1-9		
Henninger Flats, U.S. Japan	rural rural with anthro- pogenic influence	2.86-2.96	8.15 - 18.9 86.4			cloud cloud	Waldman et al. ³¹⁵ Hosono et al. ³²⁹
Kleiner Feldberg, Frank- furt, Germany	rural		0.5 - 3.4			cloud	Wobrock et al. ³³⁰
near Munich, Germany Great Dun Fell, U.K. Whiteface Mountain, U.S.	urban rural rural	3.84-6.77 3.1-4.4	0.09 - 8.3 1.8 0.32 - 0.95	0.09-2.15 ^c		cloud cloud cloud	Sinner et al. ¹⁴⁴ Bizjak et al. ³³¹ Khwaja et al. ³²⁸
Great Dup Fell UK	rural	2.92 - 0.9 3.1 - 5.8	0 7-94	0.0009-41.0 0.73 $0.06-1.6^{b}$	1-40	cloud	Sodlak of al 28
Great Duil Feil, O.K.	Turai	0.1 0.0	3.9	0.00 1.0	1 40	ciouu	Seulak et al.
Whiteface Mountain, U.S. Kleiner Feldberg, Frankfurt, Germany	rural rural	2.9 - 4.0 4.13 - 4.89	0.2 - 13.3 0.3 - 4.9	$\begin{array}{c} 0.08{-}1.57^d \ 0.05{-}1.1^c \ 0.09{-}0.54^c \end{array}$	3.6 - 40.4 8.2 - 47.2	cloud cloud 2 campaigns	Arakaki et al. ¹⁵¹ Deutsch et al. ¹⁴⁶
Puy de Dome, France				$0.1 - 9.1^b$ 1.8^b		cloud	Parazols et al. ¹⁵⁰
	marine rural anthropogenic Saharian	5.9 5.0 3.7 7.3		$egin{array}{l} 0.9\pm 0.7^b\ 1.6\pm 0.4^b\ 5.3\pm 3.2^b\ 5.5^b \end{array}$			
Whiteface Mountain, NY	rural	2.85 - 3.76 2.73 - 3.77	$\begin{array}{c} 0.6{-}20.7^{j} \\ 0.3{-}8.3^{k} \\ 0.5{-}7.8^{l} \\ 3.0^{m} \end{array}$			cloud	Moore et al. ³⁰
Davis, CA	agric field	5.66-6.94 5.47-6.64	$egin{array}{cccc} 0.8{-}7.6^{j} \ 1.6{-}14.7^{k} \ 0.21{-}3.28^{l} \ 0.87^{m} \end{array}$				

^{*a*} Dissolved iron. ^{*b*} Filtered iron = dissolved iron + colloidal iron. ^{*c*} Dissolved iron = iron(II) + iron(III). ^{*d*} Dissolved iron(II). ^{*e*} Geometrical average. ^{*f*} Arithmetical average. ^{*g*} Volume weighted mean value. ^{*i*} From March 1998 to March 1999: without hurricanes or El Niño. ^{*j*} Large drop \approx 30 μ m in diameter. ^{*k*} Small drop \approx 10 μ m in diameter. ^{*l*} Large/small drop ratio. ^{*m*} Mean of large/small drop ratio.

total iron (particulate iron + dissolved iron) and dissolved iron in the atmospheric aqueous phases (rain, snow, fog, and cloud) (see also Galloway et al.²⁴ and references therein for earlier studies).

These measurements show that the concentrations found can vary by 1 order of magnitude, even for the same type of sampling site. However, the dissolved concentrations of trace metals have background levels and maxima that are higher in urban site samples than in those from rural or coastal zones. Moreover, these measurements give an indication of the dissolved iron reaction. There are still many uncertainties in this way of measuring dissolved iron in natural water. In the literature, the dissolved fraction of a trace compound is generally defined as the part passing through a porous membrane with a pore diameter between 0.4 and 0.5 μ m. For iron, this definition is doubtful, because it does not take into account colloidal iron, which passes through the pores of the membrane in considerable quantities. Moreover, reducing the effective diameter of the pores of the membrane during filtration just leads to a loss of soluble iron. Colloidal compounds are defined as particles having diameters varying between 1 and

1000 nm. Consequently, the traditional definition of dissolved iron includes iron in colloidal form. Using conventional analytical methods for measuring dissolved chemical concentrations, it is impossible to distinguish the fraction of colloidal iron from the actually dissolved iron. Studies that use filters with membrane pores between 0.4 and 0.5 μ m in diameter measure the dissolved plus the colloidal iron.^{26,28,78,110,120,} 142 These measurements correspond to "filtered iron", defined as $iron_{filt} = dissolved$ iron + colloidal iron. The studies using "ultrafiltration"³⁵ in addition to a membrane pore diameter of $\sim 0.025 \ \mu m^{143}$ are assumed to measure dissolved iron only. Sinner et al.,¹⁴⁴ Rao and Collett,¹⁴⁵ and Deutsch et al.¹⁴⁶ simultaneously determined dissolved iron(II) and iron(III) concentrations. In all of these studies, the total dissolved iron is determined as the sum of dissolved iron(II) and iron(III). Table 3 indicates which kind of dissolved iron has been actually measured. Hofmann et al.³⁵ examined two ultrafiltered rain samples collected in Germany and reported the fraction of colloidal iron as 0% in one sample and 13% in the other. Kieber et al.¹⁴⁷ assessed the importance of colloidal iron during 22 rain events collected at Wilmington, NC,. Because colloids range in size from 10^{-6} to 10^{-9} m, colloidal iron concentrations were defined as the difference between 0.4 and 0.1 μ m filtered iron. Taking all of the data into account, they showed that colloidal iron represents 24% of the total dissolved iron or 13% of total iron. In studying Hurricane Bonnie as a particular marine-dominant rain event, the contribution of colloidal iron to dissolved iron (18%) was found to be lower than in the other rain events. These last two studies indicated that colloidal material makes up a small but variable component of the total iron in rain.

Field measurements of total iron in fogs and clouds exhibit high variability: between 9.8 and 231 μ M in Dübendorf, Switzerland (a suburb of Zurich),²⁶ and from 0.5 to 41.9 μ M in the Po Valley in Italy.¹⁴⁸ All of these studies were performed in the atmospheric boundary layer and near such sources of heavy pollution as big cities or industrial areas. Measurements taken in areas such as the Palos Verdes peninsula, California,143 or Great Dun Fell in England,²⁸ far from direct sources of pollution, exhibit lower total iron concentrations: between 1.0 and 11.3 μ M for the American site and between 0.7 and 24 μ M for the British one. At Great Dun Fell dissolved iron concentrations were also measured and varied between 0.06 and 1.6 μ M, which represents between 1 and 40% of total iron. Rao and Collett¹⁴⁵ measured dissolved iron concentrations in cloud water sampled using a two-stage impactor with diameters for small droplets between 4 and 23 μ m. Their samples were collected from coastal stratus and stratocumulus clouds, orographic clouds, and radiation fogs in different areas of the United States. Samples taken in orographic clouds and in coastal clouds showed higher iron concentrations in large drops, whereas iron concentrations were higher in the small drops of fogs. The larger iron concentration observed in large drops in rural areas is explained by the crustal origin of the coarse particle mode. In fogs, iron is mainly in the accumulation particle mode, which originates from local industrial sources. Similar measurements were performed by Moore et al.³⁰ with the Colorado State University 5-Stage Cloud Water Collector during field campaigns on orographic clouds (Whiteface Mountain, NY) and on radiation fogs (Davis, CA). On the one hand, this study showed higher iron concentrations in larger drops for the orographic cloud sampled in a rural area, whereas higher concentrations of iron were observed in small drops of the radiation fogs sampled in a polluted area. The latter result, which applies only to fogs, is linked to a small amount of crustal/large aerosol precursor. Measurements were taken at the top of the Puy de Dôme mountain (elevation, 1465 m; central France): ^{149,150} 147 cloud water samples during 34 cloud events were collected over a period of 4 years. The total dissolved iron concentrations ranged from 0.1 to 9.1 μ M, and the most frequently encountered concentrations were for the tropospheric background, ranging from 0.2 to 1.6 μ M. For a liquid water content (LWC) of 0.3 g m⁻³ (average value at the Puy de Dôme for marine events), the iron concentration corresponded to 3-30 ng m⁻³ of air during the marine events.

However, in different meteorological conditions (under continental flux), a subsequent continental or anthropogenic component can be superimposed and iron concentrations could reach several hundreds of ng m⁻³. The concentration measured at this location was generally quite low in comparison with measurements at other free tropospheric and marine sites^{28,143} and were in the same range as experiments performed in southern Germany¹⁴⁴ and in samples from Whiteface Mountain.¹⁵¹ The concentration of dissolved iron is linked to the air mass origin: during polluted events, concentrations of dissolved iron could reach nearly 10 μ M, whereas under marine conditions, the mean value of dissolved iron was $\sim 1 \ \mu M$. This correlation between the air mass origin and the iron concentration has been confirmed by the good correlation between conductivity and total dissolved iron concentration. For particular Saharan dust events, the relatively low concentration of dissolved iron (5.5 μ M) as compared to the iron content of Saharan aerosol at the same site¹⁵² reflects the fact that a small fraction of iron in desert dust can be dissolved in water.59

Iron concentrations in rainwater also show strong variability. In general, due to the more dilute solution, iron concentrations in rainwater are lower than those measured in cloud and fog waters. Willey et al.¹²⁰ showed a seasonal and diurnal variability for iron concentrations measured in precipitation sampled in Wilmington, NC. Total iron concentrations and particulate iron concentrations are higher during spring and summer than in fall and winter. Because average wind intensity is stronger during winter when the concentrations of total iron are lowest, the team concluded that resuspension of soil particles by wind is not a dominant factor in seasonal iron variation. The diurnal variation in this study shows that particulate iron concentrations are on average 3 times higher during the afternoon than the rest of the day. This pattern probably reflects the importance of convection, prevalent during the afternoon. Kieber et al.⁷⁸ showed that the volume-weighted total iron concentration measured in rainwater in southern New Zealand during summer is half of the value for summer rain in Wilmington, NC,^{120,147} a result that reflects the continental influence in Wilmington. Moreover, they showed that total iron concentrations in southern New Zealand are higher than in previous studies done in the north.¹⁵³ This result is explained by the influence of summer dust plumes coming from Australia and affecting southern New Zealand to a greater extent than the north. In addition, Halstead et al.¹⁵⁴ performed measurements of total iron concentrations in New Zealand in fall and winter and got lower values than those of Kieber et al.⁷⁸ This demonstrates seasonal variability. Kieber et al.¹⁴⁷ sought to evaluate the influence of a storm origin on iron concentrations measured in Wilmington (United States) rains by subdividing rain events according to their coastal or continental origin. They showed that continental storms have greater total iron concentrations than coastal storms, suggesting significant terrestrial inputs of iron into the troposphere. They also measured total iron concentration during El

Niño rains during the winter of 1997–1998; these samples contained significantly less total iron concentration than all of the other rain events, including coastal storms. The authors suggest that these lower concentrations result from smaller terrestrial and anthropogenic inputs in the marine-dominant El Niño rains. Patel et al.¹⁵⁵ measured dissolved iron concentrations in rainwater for two types of air mass and found that the concentration level decreased by 16-63% between the urban and rural sites studied. Kieber et al.¹²¹ investigated the seasonal variation in total iron concentration in rainwater sampled at the Bermuda Atlantic Time Series Station (BATS). They observed a higher total iron concentration in August than in March. Analysis of the back-trajectory for the sampled events indicates that the air mass in August came from the westerlies off Africa and hence contained high concentrations of Saharan dust, whereas most of the March air masses came from North America. The signature of a North American origin for air masses in the March rainwater at BATS is confirmed by the similarity in total iron concentrations observed at BATS and at North American coastal sampling sites.^{120,147} These observations on the total iron concentrations measured at BATS suggest that there is a higher content of iron in African dust particles than in continental particles.

Generally, the most polluted clouds, fogs, and precipitations present the highest total iron concentrations. The amount of iron in the atmospheric liquid phase is the result of the interaction between many factors, such as synoptic weather conditions, type of air mass, emissions, etc. Measurements of the dissolved iron fraction exhibit great variability and depend on additional factors such as solution pH, aerosol particle type, and cloud lifetime.

3.2.2. Copper and Manganese

Manganese and copper are the two other important transition metals in atmospheric aqueous chemistry. Copper partly governs HO_x concentration in the liquid phase, and manganese can have a significant influence on sulfate production. Available measurements of their total (dissolved + particulate) and dissolved concentrations in different atmospheric liquid phases (raindrops, clouds, and fogs) are listed in Table 4 for copper and in Table 5 for manganese.

These studies show that total copper and manganese concentrations are generally lower than iron concentrations (between 10 and 100 times lower). Some studies, however, have yielded higher concentrations for copper than for iron. Moore et al.³⁰ observed total copper concentrations as high as 1.2 μ M in radiation fogs at Davis, CA; measurements previously done in San Joaquin Valley fogs had shown copper concentrations of up to $1.3 \ \mu M.^{156-158}$ For these series of measurements, iron concentrations were in the same range as copper, and the high copper concentrations were attributed to agricultural pest control. Globally, polluted clouds, fogs, and rains exhibit the highest concentrations of copper and manganese. Due to the dilution effect and because impaction scavenging of aerosol particles is less efficient than nucleation scavenging,159 concentra-

tions in rainwater are typically lower than those observed in fog and cloud water samples. The study by Moore et al.³⁰ is the only one to focus on the connection between copper and manganese concentrations and the drop in radius size. They showed that under rural conditions (orographic clouds at Whiteface Mountain, NY), manganese concentrations are higher in the larger drops. This is explained by the crustal origin of the coarse particle mode, which leads to the formation of large drops. Under polluted conditions (radiation fogs at Davis, CA), small drops exhibit higher manganese concentrations, because manganese, like iron, is mainly in the accumulation particle mode, which originates from local industrial sources. For copper, relatively elevated concentrations were observed in both large and small drops in radiation fogs at Davis, and size dependence varied both between and within the events. The authors indicate that further investigations of copper concentrations are needed in polluted areas such as Davis, CA.

The recent study of Kieber et al.¹³⁶ has shown that the majority of copper in rainwater sampled in North Carolina in the United States is dissolved. The opposite is true for iron, almost 75% of which is in the particulate phase. An earlier study also found the majority of copper in rainwater in the dissolved form (76%).⁸² A similar conclusion was obtained by Sedlak et al.,²⁸ who found that 65% of the copper was in dissolved form in cloud water at Great Dun Fell, U.K. These series of studies show that copper in atmospheric liquid phases is preferentially dissolved rather than in particulate phase.

A large fraction of copper seems to be present as organic and inorganic complexes in the atmospheric liquid phases^{132,134–136} as well as in surface water.^{160–163} Laboratory experiments have shown that organically and inorganically complexed copper can be a significant sink of HO_2/O_2^- in seawater^{161,162} and in aqueous solutions representative of atmospheric water¹⁶⁴ but to a minor extent compared to free copper ions.

Just as for iron, these measurements exhibit a high variability due to interactions between several factors, such as meteorological conditions, type of air mass, and emissions. The measured dissolved fractions also cover a wide range, depending on pH, aerosol particle type, and cloud lifetime.

3.3. Redox Speciation of Transition Metals in Atmospheric Liquid Phases

3.3.1. Definition

In this section the term speciation will refer to the distinction among various oxidation states of a chemical element. The term f(Fe(II)) represents the ratio between the concentration of iron in its oxidation state (+II) and the concentration of dissolved iron:

$$f(\text{Fe(II)}) = \frac{[\text{iron(II)}]}{([\text{iron(II)}] + [\text{iron(III)}])}$$
(E2)

3.3.2. Iron Speciation: Field Measurements

The reactivity of dissolved iron depends on its oxidation state and on the presence of complexes. In

Table 4. Total and Dissolved Copper Concentrations in Rainwater and Fog, Snow, and Cloud Waters (Minimum–Maximum and/or Averge Value)

					dissolved		
location	type of	лU	total	dissolved	copper/total	aqueous	rof
location	environment	рп	copper (µM)	copper (µm)	copper (%)	pnase	rei
North Dakota and Minnesota	rural (agric area)	4.89-5.53	0.03-0.06			rain	Thornton and Eisenreich ³¹³
Mountains, U.S.	rural		0.0006-0.0038			rain	Lindberg and Turner ³³²
Lewes, DE Ontario, Canada	coastal		0.01			rain	Church et al. ³¹⁴
south center north	rural		0.025 0.022 0.025			rain	Chan et al. ³¹⁶
area near the North Sea, U.K. Aspvreten, Sweden	coastal coastal	4.52	0.3-13 0.0095-0.27			rain rain	Balls ³¹⁹ Ross ³²¹
Bredkälen, Sweden Darmstadt, Germany	rural urban	4.43	0.0063-0.09	0.03		rain	Hofmann et al. ³⁵
Gross-Rohrheim, Germany north side, Bantry Bay, Ireland	rural coastal	$4.81 \\ 3.8 - 5.1$	0.013 ± 0.013	0.03		rain	Lim et al. ³²²
Dortmund, Germany Witten, Germany	semirural urban	5.29 5.18	0.44 0.37			rain	Brandt et al. ³²³
Krakau, Poland Capo Cavello, Corsica, France	urban coastal	$6.63 \\ 4-6.3$	0.31 <0.007-0.12	0.004-0.096	48	rain rain	Brandt et al. ³²³ Lim et al. ⁸³
Tudor Hill, Bermuda Hungary	coastal rural		<0.001-0.026	< 0.0007 - 0.021 0.057 - 0.17	84	rain	Horvath et al. ³³³
Normich IIV	h.o.m		0.0005 0.02			3 sites	Smalrog at al 134
Norwich, U.K.	urban		0.0095-0.05	0.019		rain	Londia and Koolor ³³⁴
Dexter, MI	semirural		0.04	0.013	00	rain	Landis and Keeler ⁵⁵⁴
Preston, U.K.	urban		0.04	0.01	26	rain	Nimmo and Fones ¹³⁵
Cap Ferrat peninsula, France	coastal		0.033 0.009-0.21 0.067	0.095 0.003-0.21 0.051	32 33–96 76	rain	Chester et al. ⁸²
Plynlimon, Wales	rural	3.49-6.9	0.001	0.0013-6.7244 0.026	10	rain	Wilkinson et al. ⁶⁴
Cap Ferrat, Tour du Valat, France	coastal		0.059 0.026	0.036 - 0.05 0.02	$\begin{array}{c} 82 \\ 71 \pm 21 \end{array}$	rain	Guieu et al. ³⁰⁴
Paris, France	urban			0.02 - 0.05		rain	Garnaud et al. ³³⁵
Arcachon, France	coastal			0.033		rain	Maneux et al. ³³⁶
Porspoder, France	coastal			0.007		rain	Cabon ³³⁷
Jaipur, India	urban	7.47		0.32		rain	Manoj et al. ³²⁴
Kota, India Higashi-Hiroshima Japan	urban urban	7.57 4.55		0.12 0.001 -0.164		rain	Takeda et al ⁵⁸
mgasin miosinina, sapan	urball	1.00		0.001 0.104		Talli	Takeua et al.
North Sea coast	coastal	4.4		0.27		rain	Jambers et al. ³³⁸
Paradize, New Zealand	remote	4.91		0.0002		rain	Halstead et al. ¹⁵⁴
Chesapeake Bay, U.S.	coastal			0.017		rain	Kim et al. ³³⁹
Raipur, India	urban	5.8		1.07-9.38		rain	Patel et al. ¹⁵⁵
	rural	100 001		1.10			D 1.N/ 1940
Massif, central France	rural	4.29-6.31		0.007-0.394		rain	Roy and Negrel ³⁴⁰
Montpellier, France	coastal	0.05		0.008-0.046		rain	Luck and Ben Othman ⁶
Ajlune, Jordan	rural	6.35		0.05 ± 0.02		rain	Al-Momani''
Cap Gris-Nez, Eastern Channel, France	coastal			0.001		rain	Deboudt et al. ³⁴¹
Goslar, Germany	semirural	6.2	0.24			melted snow	Brandt et al. ³²³
Dortmund, Germany	semirural	4.6 - 5.73	0.13 - 0.24				
Witten, Germany	urban	6.43	0.12				
Hajnowka, Poland	rural	7.06	0.32			melted snow	Brandt et al. ³²³
Katowic, Poland	urban	7.15	0.15				-
Spatind, Norway	rural	6.30	0.91			melted snow	Brandt et al. ³²³
Pasadena, CA	urban	2.25-5.25	0.02 - 2.2			fog	Munger et al. ¹⁶⁷
Lennox, CA Dübendorf, Zürich, Switzerland	urban urban	2.52 - 5.78 2 - 6	0.14-22 0.3-10.6			fog	Johnson et al. ³⁴²
Zindelen, Zürich, Switzerland	urban	2.9-7.1	$1.9 \\ 0-7$			fog	Joss and Baltensperger ²⁴¹
Dübendorf, Switzerland	urban	4.0	0.127 - 13.5 1 34	$0.021 - 4.88^a$ 0.69 ^a	4-97	fog	Xue et al. ¹³³
Dübendorf, Switzerland	urban	4.23-4.56 4.37 6.00 6.15	0.8-8.7 0.7-1.2 0.6-0.9 0.2-1.1	0.8-6.8 0.3-1.2 0.3-0.9 0.2-0.6	02	fog	Kotronarou and Sigg ²⁶
Whiteface Mountain, U.S.	rural	3.1 - 4.4	0.03 - 0.121 0.071	0.2 0.0		fog	Khwaja et al. ³²⁸
Bakersfield. CA	urban	5.39 - 6.87	0.011 - 0.024	0.005 - 0.015	50 - 80	fog/stratus	Siefert et al. ²⁹
San Pedro Hill, CA	coastal/urban	3.2 - 4.2	0.051 - 0.21	0.05 - 0.15	45 - 100	cloud	
Whiteface Mountain, NY	rural	2.92 - 5.37	0.072 - 0.371	0.025 - 0.17	10 - 100		
San Pietro, Po Valley, Italy	urban	2.58 - 5.78	0.6 - 3.3			fog	Schwanz et al. ¹⁴²
near Munich, Germany	urban	3.84 - 6.77	0.06 - 0.58			cloud	Sinner et al. ¹⁴⁴

Table 4. (Continued)

location	type of environment	pH	${{ m total}\atop{ m copper}\left({\mu {f M}} ight)}}$	dissolved copper (μM)	dissolved copper/total copper (%)	aqueous phase	ref
Great Dun Fell, U.K.	rural		0.004 - 0.11 0.026	0.0042 - 0.031	20-100	cloud	Sedlak et al. ²⁸
Plynlimon, Wales	rural	2.92 - 6.9		0.0013 - 6.7244 0.08		cloud	Wilkinson et al. ⁶⁴
Kleiner Feldberg, Frank- furt, Germany	rural	4.13 - 4.89	0.063 - 0.3			cloud	Deutsch et al. ¹⁴⁶
Davis, CA	agric field	5.66-6.94 5.47-6.64	$\begin{array}{c} 0.01{-}1.2^b \ 0.008{-}0.75^c \ 0.35{-}22.7^d \ 3.29^e \end{array}$			cloud	Moore et al. ³⁰

 a Copper(I) concentration. b Large drop \approx 30 μm in diameter. c Small drop \approx 10 μm in diameter. d Large/small drop ratio. e Mean of large/small drop ratio. f Average.

Table 5. Total and Dissolved Manganese Concentrations in Rainwater and Fog, Snow, and Cloud Waters (Minimum–Maximum and/or Average Value)

losstion	type of	~ ^U	total manganese	dissolved manganese	dissolved manganese/ total	aqueous	rof
location	environment	рп	(µ111)	(µ111)	manganese (%)	pnase	rei
U.K.	rural		0.15			rain	Peirson et al. ³⁰⁹
U.S.	urban		0.22			rain	Betz ³¹⁰
Nigeria	rural		0.51			rain	Beavington and Cawse ³¹¹
U.S.	urban		0.26			rain	Gravenhorst et al. ³¹²
North Dakota and Minnesota	rural (agric field)	4.89 - 5.53	0.05 - 0.4			rain	Thornton and Eisenreich ³¹³
southeast of the Appalachian Mountains, U.S.	rural		0.02-0.06			rain	Lindberg and Turner ³³²
Lewes, DE Ontario, Canada	coastal		0.025			rain	Church et al. ³¹⁴
south	rural		0.085			rain	Chan et al. ³¹⁶
center			0.05				
north			0.055				
area near the North Sea UK	coastal	4 52	1.09 - 21			rain	Balls ³¹⁹
Aspyreten Sweden	coastal	1.02	0.036 - 0.11			rain	Ross ³²¹
Bredkälen Sweden	rural		0.02-0.11			Tulli	10055
Darmstadt Germnay	urban	4 43	0.02 0.11	0.053	99	rain	Hofmann et al ³⁵
Gross Pohrheim Cormony	mirol	4.40	0.034	0.035	80	Talli	Hoimaini et al.
Dortmund Cormony	rurar	5.20	0.045	0.045	09	roin	Brandt at al 323
Witton Cormony	urbon	5.19	0.1			Talli	brandt et al.
Krokou Polond	urban	6.62	0.50			roin	Brandt at al 323
Krakau, Folaliu	urban	0.05	0.5	0.07 0.17		rain	Howyoth at al 333
nungary	rural			0.07-0.17		rain 2 aitea	norvath et al.
D. (MI				0.10		5 sites	T 1 1 TZ . 1 334
Dexter, MI	semirurai	4 19 4 90		0.12		rain	Landis and Keeler
Darmstadt, Germany	urban	4.13-4.89		0.007-0.2		rain	Deutsch et al. ¹⁶⁰
Plynlimon, wales	rural	3.49-6.9		0.0009-1.06 0.014		rain	wiikinson et al. ⁵⁺
Cap Ferrat, Tour du	coastal		0.13	0.09	60	rain	Guieu et al. ³⁰⁴
Valat, France			0.2	0.15	63 ± 28		
Lamro, Ivory Coast	rural	4.9 - 7.3		0.0009 - 0.322		rain	Freydier et al. ⁷¹
Kollo, Niger	rural	4.5 - 6.4		0.008 - 0.484			
Paradize, New Zealand	remote	4.91		0.0013^{f}		rain	Halstead et al. ¹⁵⁴
North Sea Coast. U.K.	coastal	4.4		0.35		rain	Jambers et al. ³³⁸
Higashi-Hiroshima, Japan	urban	4.55		0.003 - 0.53 0.03		rain	Takeda et al. ⁵⁸
Jaipur, India	urban	7.57		0.15		rain	Manoj et al. ³²⁴
Kota, India	urban	7.47		0.31			-
Raipur, India	urban	5.8		0.16 - 4.27		rain	Patel et al. ¹⁵⁵
1 /	rural			1.13			
Montpellier, France	coastal			0.015 - 0.2		rain	Luck and Ben Othman ⁶⁷
Ajlune, Jodran	rural	6.35		0.038 ± 0.028		rain	Al-Momani ⁷⁷
Goslar, Germany	semirural	6.2	0.24			melted snow	Brandt et al. ³²³
Dortmund, Germany	semirural	4.6 - 5.73	0.6				
Witten, Germany	urban	6.43	0.61				
Hainowka, Poland	rural	7.06	0.06			melted snow	Brandt et al. ³²³
Katowic, Poland	urban	7.15	0.69				
Spatind Norway	rural	6.30	0.09			melted snow	Brandt et al ³²³
Pasadena CA	urhan	225-525	0.33-2.91			fog	Munger et al ¹⁶⁷
Lennox CA	urban	2.52 - 5.78	0.35 - 14.7			fog	hanger et ul.
Bakersfield CA	urban	2.5-6	0.00055-0.0095			for	Jacob et al ³²⁶
California coast	coastal	2.66-6.17	0.00055 - 0.024			fog	Jacob et al ³²⁷
Cumorma coast	ooabtai	2.00 0.11	0.00000 0.024			8 sites	Succes of al.
Zindelen Zürich Switzerland	urban	29-7148° 0	-7.6			fog	Joss and Baltensperger ²⁴¹
Po Valley Italy	urban		1.1–11			fog	Fuzzi et al ¹⁴⁸
Dübendorf Switzerland	urban	423 - 456	13-29			for	Kotronarou and Sigg ²⁶
Pubelluori, Switzeriallu	urball	4.37	0.3-0.9			4 events	ison offair on alle bigg
		6.00	1.6				
		6.15	2.1 - 3.1				

Table 5. (Continued)

location	type of environment	pH	${{\rm total}\atop{{\rm manganese}\atop(\mu{ m M})}}$	dissolved manganese (μM)	dissolved manganese/ total manganese (%)	aqueous phase	ref
Japan	rural		42.26			fog	Hosono et al. ³²⁹
Strasbourg, France	urban	2.2 - 6.16	3.46 - 80	2.5 - 40		fog	Millet et al. ⁸⁹
			19.8	12.7	65	-	
Whiteface Mountain, U.S.	rural	3.1 - 4.4	0.1 - 0.53 0.24			fog	Khwaja et al. ³²⁸
San Pietro, Po Valley, Italy	urban	2.58 - 5.78	0.16 - 1.5			fog	Schwanz et al. ¹⁴²
Bakersfield, CA	urban	5.39 - 6.87	0.001 - 0.034			fog/stratus	Siefert et al. ²⁹
			0.022			cloud	
San Pedro Hill, CA	coastal/urban	3.2 - 4.2	0.054 - 0.240				
			0.105				
Whiteface Mountain, NY	rural	2.92 - 5.37	0.003 - 0.544				
			0.104				
Kleiner Feldberg, Frank- furt, Germany	rural		0.04 - 1.15			cloud	Wobrock et al. ³³⁰
near Munich, Germany	urban	3.84 - 6.77	>1.42			cloud	Sinner et al. ¹⁴⁴
Great Dun Fell, U.K.	rural		0.64			cloud	Bizjak et al. ³³¹
Plynlimon, Wales	rural	2.92 - 6.9		0.0009 - 20.5		cloud	Wilkinson et al. ⁶⁴
				0.183			
FELDEX'97 Kleiner Feldberg, Frank- furt, Germany	rural	4.13-4.89	0.033-0.94			cloud	Deutsch et al. ¹⁴⁶
Whiteface Mountain, NY	rural	2.85 - 3.76	$0.03 - 3.1^{a}$			cloud	Moore et al. ³⁰
,		2.73 - 3.77	$0.02 - 0.5^{b}$				
			$0.7 - 10.1^{c}$				
			3.7^d				
Davis, CA	agric field	5.66 - 6.94	$0.04 - 0.5^{a}$				
		5.47 - 6.64	$0.08 - 0.7^{b}$				
			$0.16 - 1.4^{\circ}$				
			0.62^{d}				
				_			

^{*a*} Large drop \approx 30 μ m in diameter. ^{*b*} Small drop \approx 10 μ m in diameter. ^{*c*} Large/small drop ratio. ^{*d*} Mean of large/small drop ratio. ^{*c*} Average. ^{*f*} Acidified rainwater.

the aqueous phase, the ratio between the concentrations of iron(II) and iron(III) is a good indicator of the oxidoreduction potential in hydrometeors, and, by determining the reactivity of iron, it thus influences tropospheric oxidant capacity. Several studies have looked into the evaluation of iron speciation in cloud and fog droplets as well as in rain and snow.^{25,28,142,143,146,165} Table 6 summarizes the measurements of the fraction of iron present as iron(II) in atmospheric liquid phases, which is a good indicator of the iron speciation.

Most of these studies show that a significant fraction (between 10 and 90%) of the dissolved iron is present in its oxidation state of +II in fog and cloud droplets and in raindrops. Overall, this review of available measurements of iron speciation has turned up no correlation with the air mass type.

Willey et al.¹²⁰ determined the seasonal variation of iron speciation, with the highest concentrations of iron(III) showing up during spring and summer. However, iron(II) concentration exhibits no significant seasonal variation, which seems surprising because iron(II) is efficiently produced through photochemical processes. Willey et al.¹²⁰ assumed that the higher iron(III) concentrations during spring and summer originate from the dissolution of particulate iron rather than from iron(II) oxidation. Kieber et al.121 investigated the seasonal variation of iron speciation in rainwater sampled at the Bermuda Atlantic Time Series Station over the open ocean. They observed a higher abundance of iron(II) in August than in March, most likely resulting from increased solar radiation during the summer months at BATS.

Some of these studies examined the diurnal variation of iron speciation. Available measurements taken continuously over 24 h exhibit an iron(II) concentration higher during the day than during the night.^{25,29,143,146} The study of Siefert et al.²⁹ exhibited higher daytime ratios of iron(II)/total iron than at night. Although these results are consistent with the photochemical reactions that reduce iron(III) into iron(II), iron(II) rarely accounted for >50% of total iron even during the day. This result indicates that part of the iron is unavailable for photochemical reactions. The authors indicate that this iron fraction can either be in the aqueous phase as a complex of iron(III) with a ligand that does not undergo a charge tranfer redox reaction, or in the solid phase as an unreactive iron-oxyhydroxide, or bound in the matrix of an alumino-silicate mineral. The study of Willey et al.¹²⁰ yielded a fraction of iron(II) during the afternoon, probably due to efficient photochemical conversion of iron(III) into iron(II). Kieber et al.¹⁴⁷ found average iron(II) concentrations of \sim 40 nM in rainwater sampled during the austral summer in New Zealand, whereas iron(III) concentrations were not detectable (i.e., under the detection limit of 10 nM). These weak iron(III) concentrations are due to the efficient production of iron(II) via photolysis of the iron(III) complexes. This process becomes dominant here because of the strong UV irradiation measured during these summertime measurement series. Kieber et al.¹²¹ observed a photochemically induced diurnal variation of iron(II) and iron(III) in rainwater sampled at BATS over the Atlantic ocean similar to the results of these previous studies.^{78,120,147} Özsoy and Saydam¹¹⁰ found similar results in rain-

Table 6. Measured Iron(II)/[Iron(II) + Iron(III)] [f(Fe(II))] Ratios in the Atmospheric Liquid Phases (Minimum–Maximum and/or Average Value)

location	air mass type	aqueous phase	date	day/ night	$f(\operatorname{Fe(II)})$ (%)	ref
suburb of Zürich, Switzerland	anthropogenic	cloud	Oct 1989	day night	90^{a} 20-60 ^a	Behra and Sigg ²⁵
San Pedro Hill, Palos Verdes, CA	marine with anthro- pogenic influence	cloud	July 1991	day	70-80	Pehkonen et al. ¹⁶⁵
Dubendorf, Switzerland	anthropogenic	fog	Nov 1991 Feb 1992 Nov 1992		70-79 93 0-38	Kotronarou et al. ²⁶
plain of Henninger, Mount Wilson, U.S.	continental	cloud	June 27, 1991 May 30, 1991	day night	$\begin{array}{c} 76 \\ 26-55 \end{array}$	Erel et al. ¹⁴³
near Munich, Germany Great Dun Fell, U.K.	anthropogenic continental	cloud cloud	May-July 1992 May 1993	day day night	$1-60 \\ 40-80^b \\ 0-40^b$	Sinner et al. ¹⁴⁴ Sedlak et al. ²⁸
San Pietro, Po Valley, Italy	anthropogenic	cloud	Nov 1994	night	45-60	Schwanz et al. ¹⁴²
San Joaquin Valley CA Whiteface Mountain, NY	anthropogenic continental	fog fog/stratus clouds	Feb 1996	night day	$7-12 \\ 28 (2-100)^a \\ 50-100^d$	Rao and Collett ¹⁴⁵ Siefert et al. ²⁹
San Pedro Hill, CA	marine with anthro-			night night	$<\!\!3-<\!\!24^a$ $<\!\!3-<\!\!11^a$	
Bakersfield, CA	anthropogenic			night	$<9-<13^{a}$ $<17-<23^{d}$	
Wilmington, NC	marine with anthro- pogenic influence	rain	July 1997–June 1999	day night	av: 56 ± 10 58 40	Willey et al. ¹²⁰
Kleiner Feldberg, Frankfurt, Germany	continental with anthropogenic influence	cloud	Oct-Nov 1995	day night	62 50	Deutsch et al. ¹⁴⁶
Erdemli, Turkey	marine with anthro- pogenic influence	rain	Feb 1996–June 1997	day night	av: 78.2 76 ^e 67 ^f	Özsoy and Saydam ¹¹⁰
New Zealand Wilmington, NC	marine marine with anthro- pogenic influence	rain rain	Jan-March 1999 July 1997–June 1999	C	av: 24a ^c all data: 60 annual: 56 continenal: 54 coastal: 65	Kieber et al. ⁷⁸ Kieber et al. ¹⁴⁷
Puy de Dome Mountain, France	continental	fog snow	Dec 2003	day day	76 84	Sofikitis ¹⁰¹
Bermuda Atlantic Time Series Station (BATS)	marine	rain	Aug 1999 March 2000	U	48 16	Kieber et al. ¹²¹
Puy de Dome Mountain, France	marine rural anthropogenic Saharian	cloud	Feb 2001–Jan 2005		$\begin{array}{l} 75 \pm 24^b \\ 77 \pm 19^b \\ 74 \pm 16^b \\ 80 \pm 12^b \\ 7^b \end{array}$	Parazols ¹⁵⁰

^{*a*} Iron(II)/(total iron) ratio. ^{*b*} Iron(II)/iron_{filt} ratio. ^{*c*} [Iron(III)] below detection limit. ^{*d*} Two samples. ^{*e*} Forty-four collected samples. ^{*f*} Twenty-nine collected samples.

water collected at Erdemli, Turkey, with iron(II) concentrations 1.7 times higher during the day than during the night and iron(III) concentrations in the same general range during the day and during the night. All of these studies on diurnal variation of iron speciation underscore the possible role of photolysis processes. On the contrary, the study of Parazols et al.¹⁵⁰ investigating the iron chemistry in clouds showed that the iron speciation seemed to be an independent factor: light intensity does not influence the iron(II)/total dissolved iron ratio, which is constant at $\sim 0.75 \pm 0.24$. They proposed that a part of the iron present in cloud droplets is under colloidal form, stabilizing iron in its reduced oxidation state and preventing its further reoxidation. Below, we will show that iron speciation is the result of a series of complex processes as emphasized by in situ measurements.

Several studies have also focused on the dissolution of aerosol particles and the evaluation of dissolved iron(II) concentrations and total iron (insoluble and soluble) in the resulting solution. These studies provide an estimate of the iron speciation in atmospheric liquid water resulting from the dissolution of particulate matter, rather than from chemical reactivity. These results are summarized in Table 7.

These studies showed that iron dissolved from aerosol particles can be in its +II oxidation state. Their conclusions are in agreement with measurements showing the presence of iron(II) in the atmospheric liquid phase, despite the fact that iron(II) in diluted solution is unstable and mostly oxidized to iron(III). In particular, Dedik et al.¹⁶⁶ showed that iron(II) in solution is produced not only by photoreduction of iron(III) into iron(II) but also by the dissolution of iron(II) present in the particulate matter. Zhuang et al.⁶⁰ suggested that the large iron(II) fraction in solution is related to the reduced dissolution of iron(III) species via heterogeneous photochemical pathways at the surface of solid particles. However, none of these studies

Table 7. Soluble Iron(II)/Total Iron (Percent) Resulting from Dissolution of Different Aerosol Samples in Aqueous Solutions

location	min-max	av	sample	aqueous solution pH	ref
North Pacific	11-100	56	marine aerosols	acidified deionized water, 2-5.6	Zhuang et al. ⁶⁰
		8.4	urban aerosols	acidified deionized water, 2.2	Spokes and Jickells ³⁴³
Germany		6.0	urban aerosols	acidified deionized water, 2.5	Dedik et al. ¹⁶⁶
Xian, central China	4 - 11	5.0	urban aerosols	acidified deionized water, 2-5.6	Zhuang et al. ⁶⁰
Barbade		1.0	crustal aerosols that have stayed in a maritime area	acidic solution 1^a	Zhu et al. ³⁰⁷
Barbade	0.2 - 0.65	1.6	crustal aerosols that have stayed in a maritime area	acidic solution 1^a	Zhu et al. 102
North Africa		0.9	Saharan aerosols	acidified deionized water, 2.2	Spokes and Jickells ³⁴³
Luochuan, China		0.4	Chinese loess	acidified deionized water, $2-5.6$	Zhuang et al. ⁶⁰
a The colution area	d in the less	hin a	ormonimenta in this moult mas cale	at a d to minute the law aTI and high	ionic strongth of these

^a The solution used in the leaching experiments in this work was selected to mimic the low pH and high ionic strength of these aerosols.

gave any information concerning iron speciation in the particulate phase, which remains poorly investigated.

To summarize, measurements performed in cloud water, fogs, or precipitations exhibit a great variability in iron speciation. This variability is the result of the equilibrium between iron(II) and iron(III), which depends on several factors such as the presence of light, 25,29,78,120,121,143,147 the presence of oxidizing compounds,^{78,120} and the presence of ligands.^{143,167} In other natural environments (lakes, rivers, etc.), iron is mainly in the form of iron(III) rather than iron(II). Moreover, iron(II) should not exist, theoretically, in a medium such as a cloud droplet saturated with dissolved oxygen. However, as demonstrated by atmospheric measurements, iron can be in its reduced form in tropospheric liquid water. The presence of iron in its +II oxidation state is due to iron(III) reduction, which can be obtained via photochemical or thermal pathways and also via the direct dissolution of iron(II) from solid aerosol particles in the liquid phase. Moreover, iron(II) oxidation is generally slower than the reduction of iron(III). In conclusion, field measurements allow highlighting the potential role of certain meteorological and physicochemical parameters (e.g., radiation, air mass type, and pH) that control the speciation of iron in the atmospheric liquid phase. Despite the existing correlations, it remains difficult to draw conclusions solely from measurements of the two main oxidation state of iron, that is, iron(II) and iron(III), due to the large uncertainties associated with these measurements and the fact that iron speciation is interactively influenced by different factors (pH, reactivity, radiation, etc.). Iron speciation is governed by a set of complex processes for which it is difficult to do any hierarchy. This is why it is essential to investigate the interaction between reactivity and radiation both in the laboratory and with the help of model simulations. The following subsection will synthesize our knowledge on iron speciation deduced from laboratory and modeling studies.

3.3.3. Iron Speciation: A Whole Combination of Processes

The main daytime source of iron(II) in atmospheric water, ocean water, and groundwater is the photoreduction of iron(III) species.¹⁶⁸ The HO_2 radical simultaneously plays the role of a reducing agent and an oxidant (depending on pH) for iron, which could explain the stationary state of iron(II) concentrations.^{140,169} The ratio of the concentrations of iron(II) over iron(III) can be evaluated by a rough calculation limited to reactions of iron with $\rm HO_2/O_2^-$ radicals. The reactions of iron with $\rm HO_2/O_2^-$ radicals are represented by the following oxidoreduction reactions:

HO₂ + Fe²⁺(+H₂O) → Fe(OH)²⁺ + H₂O₂,
$$k_1 =$$

1.2 × 10⁶ M⁻¹ s⁻¹(Jayson et al.¹⁷⁰) (3)

$${\rm O_2}^- + {\rm Fe}^{2+}(+{\rm H_2O},{\rm H^+}) \rightarrow {\rm Fe}({\rm OH})^{2+} + {\rm H_2O_2}, k_2 =$$

1.0 × 10⁷ M⁻¹ s⁻¹(Rush and Bielski³¹) (4)

$$O_2^- + Fe(III) \rightarrow Fe^{2+} + O_2 + OH^-, k_3 =$$

1.5 × 10⁸ M⁻¹ s⁻¹(Rush and Bielski³¹) (5)

Because the kinetic constant of reactions of iron with HO₂ is slower than those with O₂ ⁻, these reactions are ignored in making a first approximation with a typical tropospheric pH value of ~5, which is close to the pK_a of the acid/base pair HO₂/O₂⁻. Postulating iron in stationary state, we obtained the following value for the ratio of iron(II) over iron(III) concentrations:

$$\frac{[\text{iron(II)}]}{[\text{iron(III)}]} = \frac{k_5}{k_4} = 15$$
(E3)

Limiting ourselves to reactions of iron with O_2^- radicals, we obtained an excess of iron(II).

The iron(II) reaction kinetics provides characteristic formation times ranging from a few seconds to 1 day, which are sufficiently short to allow iron(II) formation in clouds.¹⁶⁸ Likewise, characteristic times of iron(II) oxidation in the liquid phase are on the order of a few minutes (Table 8).

Consequently, we can assume that iron probably undergoes repeated cycles of reduction and oxidation on a time scale of a few minutes. The very rapid iron-(III) photoreduction associated with slower iron(II) oxidation suggests that the reduction and oxidation dynamics between the two iron oxidation states is probably dominated by a succession of equilibrium states quickly reached by photolytic pathways. Several studies have shown that photolysis plays a predominant role in iron speciation in the various

 Table 8. Iron(II) Sinks in the Atmospheric Liquid Phase during the Day (Faust¹⁶⁸)

oxidant	typical [oxidant] (M) in cloud droplets	$k_{\rm ox},{ m Fe}^{2+}({ m M}^{-1}\!/{ m s}^{-1})$	$k_{\rm ox}$, Fe ²⁺ [oxidant] (s ⁻¹)	characteristic time
$\begin{array}{c} O_2^- \\ HO_2/RO_2 \\ H_2O_2 \\ O_3 \\ OH \\ O_2^1 \Delta_g \\ O_2 \end{array}$	$\begin{array}{c} 10^{-10} {-2.0 \times 10^{-9}} \\ 10^{-9} {-2.0 \times 10^{-8}} \\ 10^{-6} {-10^{-4}} \\ 10^{-9} \\ 10^{-14} {-10^{-12}} \\ 10^{-14} {-10^{-12}} \\ 2.7 \times 10^{-4} \end{array}$	$\begin{array}{c} 1.0 \times 10^{7} \\ (1.2{-}1.7) \times 10^{6} \\ 5.1 \times 10^{1} \\ 8.2 \times 10^{5} \\ 4.0 \times 10^{8} \\ \text{unknown} \\ \text{unknown} \end{array}$	$\begin{array}{c} (1{-}20)\times10^{-3}\\ (1{-}30)\times10^{-3}\\ (0.05{-}5)\times10^{-3}\\ 0.8\times10^{-3}\\ (0.004{-}0.4)\times10^{-3}\\ (0.004{-}0.4)\times10^{-3}\\ (0.000003)\times10^{-3} \end{array}$	50 s-16.6 min 33.3 s-16.6 min 3.3 min-5.55 h 20.8 min 41.6 min-2.9 days $41.6 \text{ min}-2.9 \text{ days}^a$ 3858 days^b

^{*a*} Rate constant is unknown; therefore, a value indentical to that for OH was used. ^{*b*} Asymptotic value of apparent first-order rate constant from Figure 7.15 of ref 118 for pH <5.

Table 9. Initial Dissolution Rate, Fraction of Iron Present as Iron(II), and Solubility Obtained after 1 h of Dissolution¹⁰¹

	loess	goethite (FeOOH)	hematite (Fe ₂ O ₃)	$\begin{array}{c} vermiculite \ [clay: \\ (MgFeAl)_3(AlSi)_4O_{10}(OH)_2 {\scriptstyle \bullet} 4H_2O] \end{array}$
oxidation state	(+II) (+III)	(+III)	(+III)	(+II)
dissolution rate at pH 2 (mol L ⁻¹ s ⁻¹)	$1.09 imes10^{-9}$	$1.27 imes10^{-9}$	$3.64 imes10^{-10}$	$2.06 imes10^{-8}$
dissolution rate at $pH 4.7 \pmod{L^{-1} s^{-1}}$	$1.69 imes10^{-10}$	$6.23 imes10^{-11}$	$3.34 \ 10^{-10}$	$4.98 imes10^{-10}$
iron(II)/total dissolved iron at pH 2 (%)	77.6	65.8	61.9	100
iron(II)/total dissolved iron at pH 4.7 (%)	39.2	NA	NA	NA
max solubility at pH 2 (%)	0.340	0.029	0.022	4.01
max solubility at pH 4.7 (%)	0.080	0.003	0.006	0.170

atmospheric aqueous phases. Measurements of the fraction of iron(II) (Table 6) show the importance of the photolytic pathway in the daytime production of that oxidation state.

As shown before, the only iron source in the various atmospheric aqueous phases is from the dissolution of the particulate phase. Iron is present in the solid phase under its two oxidation states of +II and +III. For example, the crystalline species present in the particulate phase, such as goethite or hematite, correspond to iron under its +III oxidation state, whereas vermiculite (an argillaceous mineral) is composed of iron(II). These various mineralogical iron forms can coexist within a single aerosol particle and thus trigger iron speciation in the particulate phase. Iron speciation in the particulate phase is at this time very poorly documented.^{37,46,47,49,171}

The problem is to find whether the speciation that takes place in the particulate phase is preserved in the solution obtained after the dissolution process. Most of the dissolution experiments were carried out on complex natural aerosol samples with unknown iron speciation. In this kind of experiment the evolution of speciation from the particulate phase to the liquid phase cannot be followed. Before the analysis of iron(II) concentrations in solution, it would be worthwhile to dissolve mineral samples with known iron speciation. Sofikitis¹⁰¹ performed such dissolution experiments in acidified Milli-Q water for various types of minerals with known iron speciation: goethite, hematite, and vermiculite, as well as loess, which is a mixture of various crystalline species. Table 9 summarizes these results at various pH values, showing the initial dissolution rates, the ratio of iron(II) over dissolved iron obtained 1 h after dissolution, and the maximal solubility.

On the one hand, almost all of the iron in vermiculite is dissolved under its +II oxidation state; the iron oxidation state in the particulate phase is preserved in the solution obtained. On the other hand, the iron in solution coming from goethite and hematite is in its +II oxidation state, whereas these aerosol particles are composed of iron(III). Thus, speciation in solution depends on the mineralogical composition of the particulate phase. In addition, the more acidic the solution is, the higher are the iron dissolution rates, as explained previously (cf. section 2.2). Afterward, in the atmospheric aqueous phase iron speciation will be modified due to its chemical reactivity.

Modeling studies have sought to predict the predominant iron oxidation state for different photolytic and chemical conditions. Siefert et al.,29 using a simple chemical kinetic model, showed that iron(II) would be the predominant chemical form of iron during daylight conditions and iron(III) during nighttime conditions. These results are in agreement with iron speciation measurements they performed in the atmospheric liquid phase at different locations in the United States. Ervens et al.,¹⁷² using an explicit multiphase chemical box model, found the highest iron(III) concentration during the night for the urban scenario, which testifies to a photochemical iron oxidation cycle. This has been confirmed by the study of Deguillaume et al.,²³ which indicates that the iron-(II)/iron(III) ratio is strongly dependent on photolysis for the three simulated chemical scenarios. Modeling seems to simulate the global tendency of iron speciation in atmospheric liquid phase, but this speciation depends on so many factors that it looks rather difficult to model with precision. The iron cycle suggested by Behra and Sigg²⁵ for atmospheric water (Figure 8) highlights the complexity of physicochemical processes involved in the iron speciation: photolysis, chemical, and dissolution processes.

Therefore, further laboratory investigations and in situ measurements are needed to characterize iron speciation accurately.

3.3.4. Copper and Manganese Speciation

Little information is available on copper and manganese speciation in atmospheric liquid phases.

Figure 8. Reaction scheme for iron(II)/iron(III) in the dark and/or in the presence of light for atmospheric water. Reprinted with permission from *Nature* (http://www.nature.com), ref 25. Copyright 1990 Nature Publishing Group.

 Table 10. Measured Copper(I)/[Copper(I) + Copper(II)] Ratio in the Atmospheric Liquid Phases

 (Minimum-Maximum and/or Average Value)

location	air mass type	aqueous phase	date	$\begin{array}{c} Cu(I)/[Cu(I)+\\ Cu(II)]\ (\%) \end{array}$	ref
Wilmington NC	all data coastal continental other	rain	Aug 25, 2002–Sept 24, 2002	30 32 22 40	Kieber et al. ¹³⁶
Dübendorf, Switzerland	urban	fog	Oct 89–Jan 90	$\begin{array}{c} 4-90\\ 63 \end{array}$	Xue et al. ¹³³
San Pedro Hill, CA	marine with anthro- pogenic influence	fog/stratus cloud		$<\!25 - <\!59$	Siefert et al. ²⁹
Whiteface Mountain NY	continental			$<\!25 - <\!100$	

Copper interacts mainly with HO_x chemistry in atmospheric liquid phases via the following redox reactions with HO_2/O_2^- radicals:

$$HO_2 + Cu^{2+} \rightarrow Cu^+ + O_2 + H^+, k_1 = 1.0 \times 10^8 \text{ M}^{-1} \text{ s}^{-1} (\text{Rabani et al.}^{173})$$
 (6)

$$O_2^- + Cu^+ + 2H^+ \rightarrow Cu^{2+} + H_2O_2, k_2 = 9.4 \times 10^9 \text{ M}^{-1} \text{ s}^{-1} \text{(von Piechowski et al.}^{164})$$
 (7)

A rough calculation using only these two reactions makes it possible to evaluate the [copper(I)]/[copper(II)] ratio at a stationary state after reactions 6 and 7 in the same way as for iron

$$\frac{[\text{copper(I)}]}{[\text{copper(II)}]} = \frac{k_6}{k_7} 10^{pK_a - pH}$$
(E4)

where $pK_a = 4.8$ for the acid/base pair HO_2/O_2^- (Bielski et al.¹⁷⁴).

For typical pH values of atmospheric liquid phases, this ratio varies from 0.7 at a pH of 3 to 0.007 at a pH of 5 at 25 °C. This simple calculation shows that in acidic atmospheric liquid phases, it should be possible to find copper in both oxidation states, whereas in less acidic phases, copper should mainly be present in its +II oxidation state.

Copper chemistry in atmospheric liquid water is more complex. Indeed, due to the presence of oxygen and other oxidants, copper(I) is not thermodynamically stable in atmospheric water. Table 10 summarizes available measurements of the fraction of copper present as copper(I) in atmospheric liquid phases.

The study by Xue et al.¹³³ reported high copper(I) concentrations in fog water samples. A qualitative explanation of these observations was put forward on the basis of the then limited knowledge of copper reactivity in atmospheric water: Copper(I) may be formed via reduction by sulfite at high pH, via reduction by organic compounds, or via various radical and photochemical reactions in the presence of light. The copper(I) that is formed can be complexed by excess sulfite to prevent its rapid reoxidation to copper(II). This was the hypothesis proposed by Xue et al.¹³³ to explain the copper(I) accumulation

that they had observed in fog water samples. The study of Siefert et al.²⁹ also turned up significant concentrations of copper(I) in fog and cloud waters. Spokes et al.¹³⁴ deduced from measurements of free copper ions and organic matter in rainwater that >99% of total dissolved copper is complexed by organic matter, yielding a low free copper ion concentration of ~10⁻¹¹-10⁻¹² M for Cu²⁺.

More recently, the study of Kieber et al.¹³⁶ has determined the temporal and seasonal variability of total copper, dissolved copper, copper(II), and copper-(I) concentrations in rainwater, including the identification of free and complexed forms. This study shows a relatively large abundance of reduced copper with respect to dissolved copper in rainwater, as was observed for iron. Two hypotheses can explain these high copper(I) concentrations: the H_2O_2/O_2 pair controls the redox potential in rainwater, with H_2O_2 acting as a reductant rather than as an oxidant;¹⁴⁷ and the O_2/H_2O pair controls the redox potential in rainwater, leading to oxidant accumulation, but an appreciable amount of reduced metal remains because of the photoreduction of organically complexed forms. 121,175 The observed concentrations of dissolved organic carbon, as well as the identification of free copper, show that a significant portion, but not all, of the dissolved copper(I) in rainwater is strongly complexed. This suggests that the second hypothesis is the more probable. The study by Kieber et al.¹³⁶ is the only one that endeavors to evaluate the diurnal and seasonal variation of copper speciation in atmospheric liquid phases. The copper(I) concentration in all rainwater samples is almost always constant under any photolysis conditions (day versus night), which is consistent with the earlier discussion of copper(I) complexation. Moreover, samples show an increase in both copper(II) and iron(II) concentrations, coupled with a decrease in iron(III), from morning to afternoon hours. This is followed in the early to late evening hours by a decrease in copper-(II) concentrations and a simultaneous increase in iron(III). To explain this apparent inverse behavior of copper(II) and iron(III), Kieber et al.136 proposed a mechanism of photodissolution under ambient sunlight conditions of particulate iron oxohydroxides containing adsorbed copper(II):^{25,168}

$$FeOOH_{(s)}/Cu(II)_{(ad)} + h\nu + DOC \rightarrow Fe(II)_{(aq)} + Cu(II)_{(aq)}$$
(8)

The concomitant increase of copper(II) and iron-(II) concentrations during the morning shows copper-(II) and iron(II) cycling to be coupled in a way consistent with the proposed mechanism (eq 8). The constant behavior of copper(I), including the presence of complexing organic agents, is also consistent with this mechanism. Kieber et al.¹³⁶ stated that the subsequent decrease of copper(II) in the late afternoon and evening hours, associated with an increase in iron(III), is explained by the formation of iron(III) oxyhydroxide species followed by the adsorption of copper(II), implying that mechanism 8 should be reversible. However, the reversible behavior of this mechanism is probably unlikely because it implies that copper and iron speciations are driven only by dissolution and precipitation processes. Moreover, it is well-known that the chemical reactivity plays a key role in iron and copper speciations in the atmospheric liquid phase (see section 4).

The observed seasonal variation of copper by Kieber et al.¹³⁶ shows the highest copper(II) concentration associated with the highest copper(II)/copper(I) ratio in the summer, suggesting that copper(I) photooxidation processes are probably the driving mechanism of copper chemistry. In conclusion, the study of Kieber et al.¹³⁶ showed that observed copper(II) and iron(III) behavior may be the result of mechanism 8 and that the observed copper(I) stationary concentrations are linked to photo-oxidation processes associated with the presence of organic complexing agents. All of these studies reveal the high complexity of evaluating copper speciation and our lack of knowledge.

Simultaneously with field campaigns for the experimental investigation of copper speciation, several modeling studies have sought to assess copper speciation in atmospheric liquid phases. Siefert et al.,²⁹ using a chemical kinetic model developed for fog and stratus clouds, predicted that copper(II) is always greater than copper(I) under both day- and nighttime conditions. Under daytime conditions, copper(I) reaches a pseudo-steady-state concentration up to 100 times the copper(II) concentration. Under nighttime conditions, copper(I) concentration decreases quickly due to the rapid oxidation of copper(I) by both H_2O_2 and O_2 . Jans and Hoigné¹⁷⁶ suggested that the kinetic redox equilibrium for copper speciation is mainly driven by the O_2^- radical, because reactions with O_2^- interconvert copper(I) and copper(II), which leads to steady-state copper speciation. Ervens et al.¹⁷² and Deguillaume et al.,²³ using explicit and extended aqueous chemistry mechanisms, found no diurnal variation in copper speciation. Additionally, these two studies showed that nearly 100% of the simulated copper is present as copper(II) due to the reaction of Cu⁺ with dissolved oxygen and iron(III). This discrepancy between numerical modeling and measurements of copper speciation is probably due to the lack of the model to represent the organic complexing agents chemistry of copper because field campaigns indicate that dissolved copper is strongly complexed.^{134,136} This underscores our lack of knowledge on the sensitive parameters that govern this speciation.

Few studies have dealt with the evaluation of manganese speciation. Hofmann et al.³⁵ showed that manganese in rainwater sampled in Germany is present in positively charged molecular forms, especially under its +II oxidation state. Pehkonen et al.¹⁷⁷ and Siefert et al.²⁹ evaluated the concentrations of manganese(III), manganese(IV), and manganese(II) in atmospheric liquid water sampled at different locations in the United States. Oxidized manganese-(III) and manganese(IV) concentrations were often below the detection limit, and a large fraction of manganese in the +II oxidation state was observed. The authors suggest that there exist important reductive pathways for manganese(III) and manga-

Figure 9. Chemistry of OH and HO_2 in clouds. Major reaction pathways are indicated (adapted from Jacob¹⁸²).

nese(IV) that lead to an increase in the amount of reduced manganese, the form needed for the catalytic oxidation of sulfur(IV). As for iron and copper, some modeling studies have sought to assess copper speciation in atmospheric liquid phases. The kinetic model of Siefert et al.²⁹ predicted that manganese-(II) would be predominant under daylight and nighttime conditions, with manganese(III) increasing during the daytime. Herrmann et al.²² and Deguillaume et al.²³ have shown that the predominant oxidation state of manganese is +II, mainly due to the reaction between Mn^{3+} and H_2O_2 . The modeling studies appear to corroborate this observation, but further in situ measurements are necessary to confirm the explanation of manganese speciation drawn from the model.

The importance of iron, copper, and manganese in tropospheric chemistry is linked to sulfur chemistry, because iron acts as a catalyst in the oxidation of sulfur(IV) into sulfur(VI), and to HO_x chemistry, which plays a role in the production of free radicals in the atmospheric aqueous phase.^{20,60,119,133,178–181} We will now attempt to describe this reactivity within the atmospheric aqueous phase. Several laboratory studies and in situ measurements have sought to work out the mechanisms of iron reactivity, and modeling studies make it possible to gauge the impact of this reactivity on the chemistry going on in atmospheric liquid phases.

4. Reactivity

After describing in detail the source of transition metal ions in the atmospheric liquid phase, a discussion on their reactivity in the atmospheric liquid phase will constitute the main focus of this review. The reactivity of transition metals depends on numerous parameters, such as their oxidation state, their state of complexation, and the pH.

Because of their concentration and reactivity, the most intensely studied transition metals in atmospheric liquid phases are iron (Fe), copper (Cu), and manganese (Mn). In this section we will attempt to describe their reactivity in order to assess their potential impact on multiphase chemistry and in particular on radical and sulfur chemistry.

4.1. Iron Reactivity in the Atmospheric Liquid Phase

4.1.1. Reactivity with HO_x Radicals

Figure 9 summarizes current knowledge of tropospheric HO_x chemistry in clouds.¹⁸²

Modeling studies of multiphase cloud chemistry, supplemented with laboratory measurements of chemical reactivity, make it possible to assess the HO_x chemistry in cloudy air.^{19,20,22,23,156,172,183–186} Photolysis of iron(III) complexes [Fe(III)-L in Figure 9] and the Fenton reaction $[Fe(II) + H_2O_2 \text{ in Figure 9}]$ lead to OH radical formation. Iron, in both oxidized and reduced states, triggers the formation of OH radicals; iron acts as a "catalyst" for OH radical formation in hydrometeors because it is regenerated. Following the release of organic ligands by the photoreduction of iron(III) complexes, ligands can reform new iron(III) complexes, or they can react with O_2 , producing HO_2/O_2^- radicals, or they can reduce other iron(III) species, or finally they can form a reduced organic radical with a shortened carbon chain (degradation). The evolution of these reduced radicals depends on the competition between their reactions with the dissolved iron(III) and with the dissolved oxygen. On the one hand, if most of the reducing radicals react with iron(III), iron(II) is produced; on the other hand, if the reaction with O_2 is prevalent, oxidants such as O_2^- , HO_2 , H_2O_2 , and OH are formed and can then react with iron(II) and iron(III) in a complex chemical mechanism as described in Figure 9. Although the iron reactivity seems to be well described, some reactions are still subject to controversy as to their relative importance or even their chemical pathways.

Photolysis of iron(III) complexes is known to be a potential source of HO_x radicals in solution. Evans and Uri^{187} were the first to study photochemical

Figure 10. Qualitative energy diagram of orbital molecular of a transition metal complex.

processes occurring during the irradiation of acidic solutions of FeCl₃. Thereafter, Bates and Uri¹⁸⁸ showed that ferric ions irradiated by ultraviolet light were able to oxidize organic compounds in acidic solutions. The agent responsible for this oxidation was assumed to be the OH radical produced by photolysis of the ferric ion:

$$Fe^{3+} + h\nu + H_2O \rightarrow Fe^{2+} + OH + H^+$$
 (9)

At this stage there occur transmissions of ligandto-metal charge transfer, and these are characteristic of the coordination complexes in which ligands are found fixed onto a metal center. Figure 10 represents the qualitative energy diagram of a molecular orbital of an iron-like transition metal.

When a transition metal complex is irradiated with a photon energy corresponding to the ligand-to-metal charge transfer, an excited state is produced in which the ligand and metal are, respectively, oxidized and reduced (reactions 10 and 11).

$$Fe(III)-L + h\nu \rightarrow [Fe(III)-L]^*$$
 (10)

$$[Fe(III)-L]^* \leftrightarrow [Fe(II)-L^{\bullet}]_{cage}$$
(11)

$$[Fe(II)-L^{\bullet}]_{cage} \leftrightarrow Fe(II) + L^{\bullet}$$
(12)

A deactivation of the excited state may then lead either to a release of the oxidized ligand and reduced metal or to a return of the transition metal complex in its initial state by giving off energy (reaction 12).

Among the first studies carried out on the photochemical reactions in aqueous solutions containing the ferric ions, some are mainly interested in quantum yields of formation of the iron(II) and hydroxyl radicals and with the influence of certain factors (the wavelength of irradiation, pH, etc). These studies were carried out in acid solutions, with concentrations in iron(III) of 10^{-3} – 10^{-6} M and concentrations of traps of hydroxyl radicals of 10^{-1} – 10^{-3} M. Trap-

Table 11. (A) $\Phi_{Fe(II)}$ under Different Experimental Conditions and (B) Φ_{OH} of the Different Iron(III) Complexes

solutio	on	l irradiation (nm)	$\Phi_{Fe(II)}$	ref
$[\mathrm{Fe}^{3+}]_0 = 1.0$	$0 \ 10^{-4} \ \mathrm{M}$	313	0.08	Mazellier et al. ¹⁹⁰
92% [Fe(OH)]2+	365	0.055	
$[\mathrm{Fe}^{3+}]_0 = 1.0$	$0 \ 10^{-4} \ { m M}$	313	0.02	Mazellier et al. ¹⁹⁰
10% [Fe(OH	$]^{2+}$	365	0.008	
	λ irradiation	n		
solution	(nm)	$\Phi_{ m OH}$		ref
[Fe(H ₂ O) ₆] ³⁺	≤ 310	0.05	Benkel	berg and Warneck ¹⁹¹
	254	0.065	Langfo	rd and Carey ³⁴⁴
	254	0.046	Lee and	d Yoon ³⁴⁵
[Fe(OH)] ²⁺	313	0.14 - 0.19	Baxend	lale et al. ³⁴⁶
	280	0.31	Baxend	lale et al. ³⁴⁶
	313	0.14	Faust a	and Hoigné ¹¹⁶
	360	0.017	Faust a	and Hoigné ¹¹⁶
	280 - 370	0.312 - 0.074	Benkel	berg and Warneck ¹⁹¹
	254	0.69	Lee and	d Yoon ³⁴⁵
$[Fe(OH)_2]^+$	280 - 360	0.300 - 0.071	Benkel	berg et al. ³⁴⁷

ping, with alcohol terbutylic or 2-propanol, for instance, is an important method to measure quantum yields of the formation of OH radicals or iron(II). Indeed, the use of these scavengers allows the reverse reaction between OH and iron(II) to be avoided and therefore the exact quantum yield to be obtained.¹⁸⁹ Table 11A indexes the results of the studies on iron-(II) formation when aqueous solutions of iron(III) are irradiated. The values of these quantum yields depend on the wavelength of excitation and the nature of the monomeric species of iron(III) present in solution. The monomeric complex $[Fe(OH)]^{\bar{2}+}$ is the most photoactive complex of iron(III) in terms of iron-(II) formation. Indeed, under an irradiation of 313 nm, as the percentage of $[Fe(OH)]^2$ + decreases, the quantum yield of iron(II) formation also decreases: from 0.08 per 92% of $[Fe(OH)]^{2+}$, it passes to 0.02 per $10 \ [Fe(OH)]^{2+}.^{190}$

Table 11B lists the results of the studies on hydroxyl radical formation during irradiation of an aqueous iron(III) solution. The quantum yield of OH radical formation produced by photolysis of [Fe(OH)]²⁺ is much greater than for photolysis of the other monomeric species of iron(III). Discrepancies between measurements of Benkelberg and Warneck¹⁹¹ at 370 nm and Faust and Hoigné¹¹⁶ at 360 nm could be due to different experimental conditions such as pH and concentration of scavengers.

From measurements of quantum yield at various wavelengths, Benkelberg and Warneck¹⁹¹ established the empirical relationship

$$\Phi_{\rm OH} = \frac{a}{1 + \exp(\lambda - \lambda_0)/b} + c \tag{E5}$$

with $a = 0.359 \pm 0.08$, $b = 21.95 \pm 4.6$, $c = 0.054 \pm 0.01$, and $\lambda_0 = 300.7 \pm 9.1$ nm.

OH radicals are seen to be formed more efficiently when the wavelength of irradiation is shorter, that is, when photon energy is higher. This observation is consistent with the fact that more kinetic energy is required for the ejection of the hydroxyl radicals from the solvent cage than for the electron transition. This excess of energy will increase as excitation wavelengths shorten, causing a rise in the production of the hydroxyl radicals.^{25,191}

These results suggest that in aqueous solutions with pH between 2.5 and 5.0 the most photoreactive species is the complex $[Fe(OH)]^{2+}$.

The studies carried out on the cross sections of iron-(III) complexes by Graedel and Weschler¹⁹ and by Benkelberg and Warneck¹⁹¹ made it possible to compile cross sections as a function of wavelength (see Table 12).

The photolysis of $Fe(OH)^{2+}$ cations represents a source of OH radicals, and this contribution is important becau se of its high reaction rate.¹⁴⁰

$$\operatorname{Fe}(\operatorname{OH})^{2^+} + h\nu \to \operatorname{Fe}^{2^+} + \operatorname{OH}$$
 (13)

Weschler et al.¹¹⁹ and Faust and Hoigné¹¹⁶ were the first to have shown that photolysis of the Fe-(OH)²⁺ complex was a source of OH in the atmospheric liquid phases. Graedel et al.¹⁷⁸ highlighted the catalytic effect of iron in the oxidation processes taking place in cloud droplets. According to this study, photolysis of the ferric complexes is the primary source of free OH radicals in the droplets during the daytime, even at low iron concentrations, and this yields iron(II) concentrations that are close to the iron(III) concentrations. Thereafter, some studies show that this source is not fast enough to be really significant.^{20,151} Using a one-dimensional model, Jacob et al.²⁰ concluded that the relative contribution of iron(III) complex photolysis to aqueous-phase OH production is minor. Weschler et al.¹¹⁹ used values for cross sections and quantum yields that were too low and assumed that there was no radiative enhancement within the droplets. This yielded small values for the photolysis rates of iron complexes, which explains the negligible impact of iron photolysis on them. More recent absorption cross sections and OH quantum yields of iron complexes are larger.¹⁹¹ Irradiating cloud water from Whiteface Mountain, NY, Arakaki and Faust¹⁵¹ concluded that iron complex photolysis is negligible as an OH production pathway independent of H₂O₂. Indepen-

Table 12. Fe Cross Sections in Aqueous Solution

(A) Fe^{3+} Cross Sections (Benkelberg and Warneck ¹⁹¹)						
λ (nm)	$\sigma ({\rm cm^2/molecule}) imes 10^{21}$					
280	1311.6					
290	549.5					
300	212.5					
310	79.4					
320	23.7					
330	5.3					
(B) $Fe(OH)^{2+}$ Cross Sections (Benkelberg and Warneck ¹⁹¹)						

λ (nm)	$\sigma({\rm cm^2\!/molecule}) imes 10^{19}$					
280	28.5					
290	32.5					
300	32.9					
310	30.3					
320	26					
330	20.6					
340	15.2					
350	10.5					
360	6.9					
370	4.3					
(C) [Fe(OH) ₂] ⁺ C	ross Sections (Weschler et al. ¹¹⁹)					
λ (nm)	$\sigma ({\rm cm^2\!/molecule}) imes 10^{18}$					
290	9					
300	10					
310	10					
320	8					
330	6					
340	4					
350	3					
360	1					
370	0.9					
380	0.5					

0.2

0

390

400

dently, direct measurements of HO_x radical concentration after the irradiation of cloud water sampled in different locations in the eastern United States¹⁹² indicated little correlation between radical quantity and iron concentration. More recent modeling studies,^{23,172} using a multiphase chemistry box model, have shown that the contribution of complex Fe-(OH)²⁺ photolysis to the production of OH in droplets depends on environmental conditions, with the contribution increasing from the marine to the urban scenario. These various studies emphasize the potential impact of this photolytic pathway in the production of OH radicals and its dependence on many factors, such as iron concentrations, concentrations of oxidizing and complexing species, the intensity of the actinic flux, and the pH value. Depending on all of these parameters, this production pathway of the OH radical may or may not be significant. The most favorable conditions are high iron concentration, high actinic flux, pH values between 3 and 4, and low concentrations of complexing species. Because of the large number of parameters, only a combination of in situ measurements, laboratory experiments, and modeling studies are able to determine the significance of this OH production pathway.

The oxidation of organic substrates catalyzed by both iron(II) and hydrogen peroxide is called "Fenton chemistry", on the basis of an article by Fenton¹⁹³ that deals with tartaric acid oxidation in the presence of H_2O_2 and iron(II). The Fenton reaction of iron(II) with H_2O_2 can contribute significantly to the production of OH radicals, even though its reaction rate is weak ($\sim 50 \text{ M}^{-1} \text{ s}^{-1}$ at 25 °C, Dunford¹⁹⁴). However, the importance of the Fenton reaction in the production of OH radicals in solution is still subject to controversy. The mechanism by which hydrogen peroxide is degraded by iron(II) is still uncertain and under debate. Several studies have attempted to resolve this discrepancy. Recently, two major studies examined the Fenton reaction and the various possible associated reaction mechanisms.^{33,194} Theoretical studies by Ensing and Baerends,¹⁹⁵ Buda et al.,¹⁹⁶ and Ensing et al.¹⁹⁷ have sought to determine the most probable mechanism for Fenton chemistry through simulations of molecular dynamics. All of these studies on Fenton chemistry are in agreement as to the evolution of the mixture. When iron(II) is in excess over hydrogen peroxide, no iron(III) or oxygen is produced; when hydrogen peroxide is in excess over iron(II), oxygen is produced, and iron(II) is regenerated.

However, these studies differ in the chemical mechanism proposed to explain the observations. Barb et al.^{198,199} suggested the following kinetic mechanism:

$$\operatorname{Fe}^{2^+} + \operatorname{H}_2\operatorname{O}_2 \rightarrow \operatorname{Fe}^{3^+} + \operatorname{OH} + \operatorname{OH}^-$$
 (14)

$$\operatorname{Fe}^{2^+} + \operatorname{OH} \rightarrow \operatorname{Fe}^{3^+} + \operatorname{OH}^-$$
 (15)

$$OH + H_2O_2 \rightarrow HO_2 + H_2O \tag{16}$$

$$\mathrm{HO}_{2} + \mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+} + \mathrm{HO}_{2}^{-} \qquad (17)$$

$$HO_2 + Fe^{3+} \rightarrow Fe^{2+} + O_2 + H^+$$
 (18)

and/or
$$O_2^{-} + Fe^{3+} \rightarrow Fe^{2+} + O_2$$
 (18')

When iron(II) is in excess, the germane reactions are reactions 14 and 15, which convert iron(II) into iron (III) without any production of oxygen. In this case, reaction 14 is the limiting step, implying stationary state production of OH and an identical conversion rate of iron(III) into iron(III) via reactions 14 and 15. When hydrogen peroxide is in excess, the mechanism to be considered includes reactions 14, 16, 17, 18, and 18', which reproduce the formation of oxygen and the observed iron(II) regeneration. This mechanism is based on the assumption that the reaction of hydrogen peroxide with iron(II) produces OH radicals and iron(III). OH radical production via the Fenton reaction has been questioned in several studies suggesting that the reaction between H_2O_2 and iron(II) produces the ferryl ion [iron(IV)], which is then the active intermediate species in the Fenton chemistry. Ferryl ion reactivity has been studied in detail by Logager et al.²⁰⁰ and Jacobsen et al.^{201,202} Initially, Logager et al.²⁰⁰ studied ferryl ion production via the reaction between ozone and iron(II). Later, Jacobsen et al.^{201,202} studied the reactivity of the ferryl ion with inorganic and organic species present in the atmospheric liquid phases. Bray and Gorin²⁰³ were the first to suggest that the ferryl ion

is the active intermediate in the Fenton chemistry, postulating that iron(II) and iron(III) are connected through the following equilibrium:

$$2\mathrm{Fe}^{3+} + \mathrm{H}_{2}\mathrm{O} \nleftrightarrow \mathrm{Fe}^{2+} + \mathrm{Fe}\mathrm{O}^{2+} + 2\mathrm{H}^{+} \quad (19)$$

When hydrogen peroxide is in excess, they explained the observed oxygen production and iron(II) regeneration by the two following reactions:

$$\operatorname{Fe}^{2^+} + \operatorname{H}_2\operatorname{O}_2 \rightarrow \operatorname{FeO}^{2^+} + \operatorname{H}_2\operatorname{O}$$
 (20)

$$\mathrm{FeO}^{2+} + \mathrm{H_2O_2} \rightarrow \mathrm{Fe}^{2+} + \mathrm{H_2O} + \mathrm{O_2} \qquad (21)$$

When iron(II) is in excess, they explained the observed production of iron(III) and the absence of oxygen production by the two following reactions:

$$\operatorname{Fe}^{2^+} + \operatorname{H}_2\operatorname{O}_2 \rightarrow \operatorname{Fe}\operatorname{O}^{2^+} + \operatorname{H}_2\operatorname{O}$$
 (20)

$${\rm FeO}^{2+} + {\rm Fe}^{2+} (+2{\rm H}^+) \rightarrow 2{\rm Fe}^{3+} + {\rm H}_2{\rm O}$$
 (22)

This last disproportionation reaction of iron(IV) with iron(II) was not considered in Bray and Gorin's paper²⁰³ but was proposed by Cahill and Taube.²⁰⁴ If reaction 20 is slow and reaction 22 is fast, the ferryl ion is in stationary state and the conversion rate of iron(II) into iron(III) is given by

$$v = 2k_7 [\text{Fe}^{2+}] [\text{H}_2\text{O}_2]$$
 (E6)

with $k_7 = 52.4 \pm 0.9 \text{ M}^{-1} \text{ s}^{-1}$ (Kremer²⁰⁵).

More recent studies have shown that the Fenton chemistry mechanism cannot be restricted to the mechanisms of Barb et al.^{198,199} or Bray and Gorin.²⁰³ Indeed, Gozzo³³ showed that the Fenton reaction produces OH radicals only under particular conditions (equimolar concentrations of diluted reagents in water and pH 2). Gozzo³³ explained this OH production at low pH value by a mechanism intermediate between those of Barb et al.^{198,199} and Bray and Gorin:²⁰³ The reaction of iron(II) with hydrogen peroxide produces the ferryl ion, but this ion is a weak acid in equilibrium with its combined base Fe-(OH)³⁺:

$$\text{FeO}^{2+} + \text{H}^+ \leftrightarrow \text{Fe(OH)}^{3+} (\text{p}K_a \approx 2)$$
 (23)

At low pH, this equilibrium moves toward Fe- $\rm (OH)^{3+}$ formation, which according to Gozzo^{33} is unstable and should decompose to yield the OH radical

$$(\mathrm{Fe}^{\mathrm{IV}} = \mathrm{O})^{2+} + \mathrm{H}^+ \rightarrow (\mathrm{Fe}^{\mathrm{IV}} - \mathrm{OH})^{3+} \rightarrow \mathrm{Fe}^{\mathrm{III}} + \mathrm{OH}$$
(24)

where Fe^{IV} and Fe^{III} can be free or complexed iron.

This study suggests that the active intermediates in the Fenton chemistry (ferryl ion or OH radical) depend not only on the pH value but also on relative iron(II) and hydrogen peroxide initial concentrations.

Figure 11. Proposed chemical mechanism of the Fenton reaction. Reprinted with permission from ref 205. Copyright 2003 American Chemical Society.

Similarly, the study of Hug and Leupin²⁰⁶ suggested that the active intermediate depends on pH, and they proposed the following mechanism:

$$\begin{split} [\mathrm{Fe}^{\mathrm{II}}(\mathrm{H}_{2}\mathrm{O})_{6}]^{2+} + \mathrm{H}_{2}\mathrm{O}_{2} \rightarrow \\ & [(\mathrm{H}_{2}\mathrm{O})_{5}\mathrm{Fe}^{\mathrm{II}} - \mathrm{O}_{2}\mathrm{H}_{2}]^{2+} + \mathrm{H}_{2}\mathrm{O} \ \ (25) \end{split}$$

The complex $[(H_2O)_5Fe^{II}-O_2H_2]^{2+}$ quickly decomposes into an intermediate compound with an unknown chemical structure:

$$[(\mathrm{H}_{2}\mathrm{O})_{5}\mathrm{Fe}^{\mathrm{II}} - \mathrm{O}_{2}\mathrm{H}_{2}]^{2+} \rightarrow \mathrm{INT}$$
 (26)

This intermediate compound with its combined base INT–OH is a weak acid in equilibrium:

$$INT-OH + H^+ \leftrightarrow INT$$
 (27)

This weak acid and its combined base follow two different degradation pathways:

$$INT \rightarrow Fe^{III}(OH)^{2+} + OH$$
 (28)

$$INT-OH \rightarrow Fe^{IV}$$
 (29)

Thus, depending on the pH value, the active intermediate is the OH radical or the ferryl ion.

Successive studies by Kremer^{205,207,208} attempted to work out a detailed reaction mechanism for the Fenton chemistry that refuted the presence of the OH radical as the active intermediate. The last study, incorporating their previous results, presented a new reaction mechanism (Figure 11) that takes into consideration the observed pH dependence of the Fenton reaction. The authors based the construction of this mechanism on the following four experimental observations: (1) no evolution of the O₂ concentration over time when Fe²⁺ is in excess over H₂O₂, (2) Fe²⁺ regeneration coupled with O₂ formation when H₂O₂ is in excess over Fe^{2+} , (3) an increase in the rate of O_2 formation as the pH goes up, and (4) a rise in the rate of O_2 formation as the initial Fe^{3+} increases.

In Figure 11, the ferryl ion is in equilibrium with its combined base $[Fe(OH)]^{3+}$, as suggested by Goz-zo.³³ $[Fe(OH)]^{3+}$ reacts with Fe²⁺ to produce iron(III) again, rather than an OH radical, as was proposed by Gozzo,³³ who used organic compounds as indicators of the presence of the OH radical to demonstrate that this radical is formed in the Fenton chemistry under specific conditions. Meanwhile, theoretical studies investigated the most probable reaction pathways for the Fenton chemistry. These studies showed that the ferryl ion is the most probable product of the reaction between iron(II) and hydrogen peroxide¹⁹⁵ and that for many organic substrate oxidations the ferryl ion can function as the active intermediate in the Fenton chemistry.¹⁹⁷ Moreover, the study by Buda et al.¹⁹⁶ showed that the most probable chemical pathways explaining the O₂ formation observed during laboratory experiments are

$$\operatorname{FeO}^{2^+} + \operatorname{H}_2\operatorname{O}_2 \rightarrow \operatorname{Fe}(\operatorname{OH})^{2^+} + \operatorname{HO}_2$$
 (30)

$$\operatorname{Fe(OH)}^{2+} + \operatorname{HO}_2 \rightarrow \operatorname{Fe}^{2+} + \operatorname{O}_2 + \operatorname{H}_2\operatorname{O}$$
 (31)

The result of these two reactions is equivalent to reaction 21, which is also considered (R₄ reaction in Figure 11) in Kremer's diagram.²⁰⁵ However, the currently available studies on iron reactivity with HO₂ and its combined base, the superoxide ion O₂⁻ (Rush and Bielski³¹ and references therein), showed that the reaction of iron(III) with the HO₂ radical is slower (kinetic constant of <10³ M⁻¹ s⁻¹) than the reaction with the superoxide ion.

Finally, the pH-dependent pathways represent the most promising mechanism for determining whether the active intermediate in the Fenton chemistry is the OH radical or the ferryl ion.^{33,206} The mechanism

proposed by Hug and Leupin²⁰⁶ seems to provide a correct explanation for the various experimental observations of the Fenton chemistry. However, the nature of the intermediate (INT) proposed in this study is currently unknown. Up to now, all available Fenton chemistry mechanisms have failed to give a complete, detailed reaction mechanism explaining the experimental observations.

Modeling studies on the radical pathways in the Fenton chemistry have sought to appraise the relative importance of the Fenton reaction on OH production for different chemical scenarios. Ervens et al.¹⁷² showed that the Fenton reaction is predominant for urban and rural scenarios, for example, given sufficient initial iron concentrations. Deguillaume et al.²³ have emphasized the fact that the relative contribution of the Fenton reaction depends on the H_2O_2 regime. Under polluted conditions, H_2O_2 is efficiently consumed by S(IV), leading to low H_2O_2 concentration; this is not the case in the rural scenario. Despite the fact that the initial iron concentration is lower in the rural data, the relative contribution of the Fenton reaction to OH production is nevertheless higher in rural than in urban conditions.

The reactions of HO_2/O_2^- with iron compete with the reaction between O_2^- and $O_3,^{21,209,210}$ which represents an efficient ozone sink in the aqueous phase for pH values >5 and consequently in the gas phase as well.² If the iron concentration in the aqueous phase is higher than that of ozone, the HO₂/ O_2^- radicals react mainly with iron. The result is that the concentration in HO_2/O_2^- is reduced by a factor of at least 2 when transition metals are taken into account, and the destruction of ozone by the superoxide ion in the aqueous phase is eliminated.¹⁸² This makes this pathway, in comparison with the others, a negligible producer of OH radicals.¹⁶⁹ Matthijsen et al.²⁰⁹ undertook to evaluate the influence of iron and copper on tropospheric ozone by simulating different chemical scenarios with an air parcel model. Under average continental conditions, they showed that when iron and copper are taken into account, aqueous-phase ozone destruction decreases by up to 70% and that the aqueous-phase destruction of H_2O_2 increases by up to 5%, resulting in a significant aqueous-phase concentration of OH. Under polluted continental conditions, they demonstrated that the destruction of O₃ is controlled by the reaction of O₃ with iron(II) and that, depending on iron concentrations, O₃ destruction can be very rapid. Sedlak et al.²⁸ showed that for a given iron concentration the Fenton reaction contribution to HO_r radical production is negligible in comparison with the HO_x sink consisting of reactions of iron with HO_2/O_2^- radicals. Thus, they concluded that the major effect of the iron chemistry is to eliminate the ozone destruction cycle in the aqueous phase. Matthijsen et al.²¹⁰ used a threedimensional atmospheric model coupled with modules describing gas chemistry, aqueous chemistry, and emissions (model LOTTOS) to investigate the influence of clouds on ozone at the regional scale (Europe). They showed that iron and copper reactions change the aqueous-phase reaction pathways substantially, leading to an ozone sink in droplets that is 4 times smaller than when copper and iron are not considered. Iron(II) is also oxidized by ozone in the aqueous phase, and this reaction is still subject to controversy. The first studies on the reactivity of iron-(II) with ozone suggested that this oxidation produced iron(III) as well as an OH radical. Thereafter, Logager et al.²⁰⁰ highlighted that this reaction leads to the formation of the ferryl ion FeO^{2+} (iron under its +IV oxidation state). The kinetic constants and the activation energies for the reactions of the ferryl ion with certain organic and inorganic compounds that are present in atmospheric liquid phases were measured by Jacobsen et al.^{201,202} In the aqueous phase the ferryl ion is potentially important because of its strong oxidation capacity, and consequently it could modify the redox iron cycle in cloud droplets. However, Ervens et al.¹⁷² and Deguillaume et al.,²³ using a multiphase chemistry box model on academic scenarios, showed that the contribution of this compound to the redox cycle of iron is not significant. Since then, Deguillaume et al.²¹¹ have shown by running sensitivity tests on the potential active Fenton chemistry intermediaries (OH radical versus ferryl ion) that the ferryl ion can indeed play a significant role in the redox iron cycle, especially during the night.

In conclusion, OH production in the aqueous phase is partly driven by iron reactivity. On the one hand, for maritime clouds with low iron concentrations, OH radical production will be predominantly due to the reaction between ozone and O_2^- and to the mass transfer of OH radicals from the gas phase.^{23,172} On the other hand, for continental clouds the sources of OH are numerous, and the respective contributions of each one depend on the concentrations of chemical species in the aqueous phase, the pH value, the actinic flux, etc.^{23,172}

4.1.2. Reactivity with S Compounds

The multiphase chemistry of sulfur compounds leads to the conversion of S(IV) into S(VI), a process extensively investigated within the framework of the environmental problem known as acid rain.^{9,27} The conversion of sulfite into sulfate in atmospheric liquid phases occurs via

• direct oxidation of sulfite by hydrogen peroxide, ozone, organic peroxides, or pernitric acid HNO₄;

 \bullet an indirect oxidation pathway initiated by OH, $\rm Cl_2^-,$ and $\rm NO_3$ radicals and propagated by $\rm SO_3^-,$ $\rm SO_4^-,$ and $\rm SO_5^-$ radicals; and

• oxidation by dissolved oxygen, catalyzed by transition metals and in particular by iron.

Titoff²¹² first showed that the oxidation of sulfur-(IV) to sulfur(VI) is catalyzed by ions of transition metals such as copper, iron, or manganese and that it is difficult to eliminate traces of such metals from aqueous solutions. In fact, the reaction can be quenched by the addition of metal complexing agents,^{213,214} so that the claim by some investigators to have observed the uncatalyzed reaction must be viewed with caution. Connick et al.²¹⁵ recently reassessed the problem and presented new evidence for a noncatalyzed pathway. The observed rate was too slow to be of any significance in clouds. Most of the studies exploring the metal-catalyzed oxidation of sulfur(IV) have focused on iron as the catalyst. Hegg and Hobbs²¹⁶ and Martin²¹⁷ reviewed empirical rate laws derived from laboratory studies; Brandt and van Eldik²⁷ provided an updated, extensive review of the literature on this chemical pathway.

The iron-oxygen-S(IV) system is now relatively well-known²¹⁸⁻²²² and is described by the following chain mechanism:

$$\operatorname{Fe(III)} + \operatorname{HSO}_3^{-} \rightarrow \operatorname{Fe(II)} + \operatorname{SO}_3^{-} + \operatorname{H}^+$$
 (32)

$$\mathrm{SO}_{3}^{-} + \mathrm{O}_{2} \rightarrow \mathrm{SO}_{5}^{-} \tag{33}$$

$$\mathrm{SO}_{5}^{-} + \mathrm{Fe(II)} + \mathrm{H}^{+} \rightarrow \mathrm{HSO}_{5}^{-} + \mathrm{Fe(III)}$$
 (34)

$$\mathrm{HSO}_{5}^{-} + \mathrm{Fe(II)} \rightarrow \mathrm{SO}_{4}^{-} + \mathrm{OH}^{-} + \mathrm{Fe(III)} \quad (35)$$

$$\mathrm{SO}_4^- + \mathrm{Fe(II)} \rightarrow \mathrm{SO}_4^{2-} + \mathrm{Fe(III)}$$
 (36)

The catalytic efficiency of iron in the oxidation of sulfur(IV) into sulfur(VI) depends on its speciation.²⁷ Therefore, as has been shown above in the discussion of iron speciation, iron's ability to catalyze the conversion of sulfur(IV) into sulfur(VI) depends on the intensity of the actinic flux, the oxidant concentrations (O₃, OH, O₂, H₂O₂, HO₂/O₂⁻, etc.), the concentration in reducing agents [HO₂/O₂⁻, sulfur-(IV), etc.], and the concentration of complexing agents (oxalate, formate, etc.).^{169,223}

Moreover, iron in solution under its +III oxidation state forms an $[Fe(SO_4)]^+$ complex with sulfate ions, which is photolyzed forming iron(II) and sulfate radical:

$$[Fe(SO_4)]^+ + h\nu \rightarrow Fe^{2+} + SO_4^-$$
 (37)

Benkelberg and Warneck¹⁹¹ determined the quantum yield of SO_4^- radical formation by photolysis of the complex $[Fe(SO_4)]^+$. This quantum yield varies from 7.28 \times 10⁻³ to 1.51 \times 10⁻³ for wavelengths varying from 280 to 350 nm. Depending on the intensity of the actinic flux, the sulfato complex will accumulate or not and will reduce more or less the efficiency of the iron–oxygen–S(IV) system.

If iron(II) predominates over iron(III), the catalytic cycle of the oxidation of sulfur(IV) into sulfur(VI) is hindered until iron(III) (the active catalyst) has been produced from iron(II).²²³ Grgić et al.,²²⁴ Ziajka et al.,²²¹ and Nović et al.²²⁵ showed that an equilibrium is established between iron(II) and iron(III) during the conversion of sulfur(IV) into sulfur(VI). As previously detailed, iron is involved in a set of chemical and/or photochemical reactions resulting in a rapid iron(II)-iron(III) cycle. This iron redox cycle makes it very complex to evaluate iron's catalytic ability in the oxidation cycle of sulfur(IV) into sulfur(VI). The efficiency of this catalytic cycle is linked to the interactions between iron and SO5-, HSO5-, and SO4radicals and between iron and the other chemical compounds present in the atmospheric aqueous phase. Dissolved organic compounds (DOCs) are likely to reduce the efficiency of the catalytic cycle

due to their reactivity with sulfate radicals^{26,226} and to the formation of organic complexes between DOCs and iron(III). Grgić et al., 223, 227 Sedlak and Hoigné, 228, 229 Wolf et al.,²³⁰ and Zuo and Zhan²³¹ have studied the inhibiting effect of the formation of iron(III) complexes on the iron catalytic cycle; whereas oxalate shows a significant effect, acetate and formate seem to have a negligible effect due to their lower complexation constants. Because of the interactions between the sulfate radical and DOCs, the efficiency of the catalytic cycle is reduced, and under typical atmospheric cloud conditions the contribution of these chemical pathways is in general negligible as compared to the total formation of sulfuric acid in the atmospheric liquid phases.¹⁶⁹ This catalytic cycle can become significant under particular conditions. especially in continental clouds or fogs in which there is low photochemical activity.²³² The box modeling study of Pandis et al.²³³ showed that the iron catalysis of sulfate production in fog droplets is favored at night, when hydrogen peroxide and ozone concentrations are low. Warneck et al.²³⁴ used a box model of a small sunlit cumulus cloud to explore the efficiency of various chemical cloud reactions contributing to the oxidation of sulfur(IV). They showed that the reaction of iron(III) with HSO₃⁻, which can trigger the chain oxidation of sulfur(IV), turns out to be unimportant under these conditions, because iron-(III) is rapidly converted to iron(II) by reacting with HO₂/O₂⁻ and copper(I). Ervens et al.¹⁷² and Deguillaume et al.²³ showed that the direct oxidation of sulfur(IV) by H_2O_2 is the chief contributor to sulfur-(VI) production, whereas the indirect pathway through iron catalysis is insignificant.

However, iron can also have an indirect role on the oxidation of sulfur(IV) due to its role in the hydrogen peroxide production, which is an effective oxidant of sulfur(IV). Zuo and Hoigné,¹⁸⁰ Faust and Zepp,²³⁵ and Pehkonen et al.⁴⁸ showed that photolysis of iron(III)— oxalato complexes produces H_2O_2 , which efficiently converts sulfur(IV) into sulfur(VI). This indirect role makes it more complicated to evaluate the impact of iron on the conversion of sulfur(IV) into sulfur(IV).

Heterogeneous photocatalytic effects may also play a role in converting sulfur(IV) to sulfur(VI) (see Brandt and van Eldik²⁷ and references therein). Cho and Carmichael²³⁶ showed that iron oxide can chemisorb sulfur dioxide, converting it to sulfate at the gas—solid interface. Laboratory experiments showed that α -Fe₂O₃ (hematite) is photocatalytically active in the oxidation of sulfur(IV), whereas γ -Fe₂O₃ (maghemite) has little effect.²³⁷ These iron oxides can be photoactivated by visible light, and iron oxohydroxides may be also involved. The order of reactivity is α -Fe₂O₃ > γ -FeOOH $\approx \beta$ -FeOOH $\gg \alpha$ -FeOOH.²³⁸ More laboratory investigations are needed to understand this potential heterogeneous photocatalytic effect in cloudy conditions.

4.1.3. Reactivity with Soluble Organic Compounds

The chemistry of oxygenated VOCs in the aqueous phase can interact with the chemistry of iron via the formation of organic complexes.¹¹⁹ Zuo and Hoigné,¹⁸⁰ on the basis of some irradiation experiments on synthetic solutions, concluded that the consumption of oxalic acid in the photochemical cycle of iron(III)/ iron(II)-oxalato complexes can represent a major oxalic acid sink in the atmosphere and leads to carbon dioxide radical anion and eventually to carbon dioxide formation. The complexes formed between iron(III) and the carboxylate ions (formate, acetate, and oxalate) can be photolyzed to form iron(II) and the organic anion, which is then oxidized.^{48,120,180,235,239}

$$Fe(III)$$
-Org + $h\nu \rightarrow Fe(II)$ + Org (radical) (38)

Org (radical) + $O_2 \rightarrow O_2^-$ + Org (oxidized) (39)

Oxalate is found in atmospheric waters at concentrations that approach micromolar levels.^{26,29,240–243} Due to a high complex-formation constant of iron-(III)-oxalate, a fraction of the dissolved iron(III) is present as iron (oxalate 1), $Fe(C_2O_4)^+$, iron (oxalate 2), $Fe(C_2O_4)_2^-$, or iron (oxalate 3), $Fe(C_2O_4)_3^{3-.180,244}$ All three complexes absorb light with a similar absorption band that extends from the UV-A into the visible region. Even at a spectral region of high overlap with tropospheric sunlight (e.g., at 360 nm), they still exhibit a molar extinction value of ~ 1000 cm⁻¹ M⁻¹. In the presence of oxygen their photolysis in dilute solution indirectly forms O₂⁻ and iron(II).²⁴⁵ For the 2- and 3-oxalato complexes, a high absorption coefficient is combined with high photolysis quantum efficiency.²⁴⁶ Zuo and Hoigné¹⁸⁰ showed that photolysis of the iron–oxalato complexes is \sim 100 times faster than that of the complex $[Fe(OH)]^{2+}$ because of the differences between the UV-visible absorption spectra of these complexes. Therefore, photolysis of ironoxalato complexes is a potential source of iron(II) and O_2^- in atmospheric waters.

A laboratory study carried out by Arakaki and Faust¹⁵¹ using cloud water sampled at Whiteface Mountain showed that the diurnal iron(II)/iron(III) cycle is driven by reaction 38 and the Fenton reaction, which are major OH radical sources during the day. Siefert et al.²⁴⁷ irradiated aqueous solutions of aerosols sampled at different sites in the United States. They attributed the observed iron(II) production after irradiation to photolysis of the iron-oxalato complexes. On the basis of the production rate measured during irradiation, they concluded that reactions 38 and 39 are responsible for an HO_x production of $\sim 10^6 - 10^7$ molecules cm⁻³ s⁻¹ in summertime conditions at noon, which is similar to HO_x production in the gas phase.²⁴⁸ It is, however, possible that part of the iron(II) production measured by Siefert et al.²⁴⁷ comes from the reaction between iron-(III) and O_2^- , which does not produce HO_x . Pehkonen et al.⁴⁸ showed that the photolysis of iron-carboxylate complexes could be an important degradation pathway of atmospheric carboxylic acids. The degradation products include carboxylic acids with shortened carbon chains and hydrogen peroxide. 48,180,247,249,250 Previous studies had shown that the major source of hydrogen peroxide in the atmosphere is driven by reactions in the gas phase.^{251,252} However, Zuo and Hoigné¹⁸⁰ showed that iron(III)-carboxylate complex photolysis could play an important role in the production of H₂O₂ in the aqueous phase and, therefore,

Figure 12. Scheme for the photochemical/chemical cycling of iron and formation of H_2O_2 . Reprinted with permission from ref 180. Copyright 1992 American Chemical Society.

in the gas phase. The general mechanism of iron-(III)-oxalato complex decomposition and associated hydrogen peroxide formation is summarized in Figure 12, where the iron(III)-oxalato complex is represented by Fe(III)Ox_n. Photolysis of the iron(III)- oxalato complex produces an Ox⁻(C₂O₄⁻) radical, which reacts with the dissolved oxygen to form an O₂⁻ radical, leading finally to the formation of hydrogen peroxide.

In a recent study Kieber et al.¹⁷⁵ irradiated authentic rainwater with simulated sunlight to determine the different photochemical production pathways of iron(II). They indicated that the photolysis of iron(III) hydroxide and oxalate complexes is a potentially significant source of iron(II) in rainwater, but results suggest that another iron(III) ligand is responsible for much of the observed photochemical production of iron(II). They proposed that the complexation of iron(III) by humic-like substances can be significant because they are rapidly photodegraded under ambient sunlight conditions²⁵³ (cf. section 3.1.1).

Furthermore, iron chemistry leads to an OH production in the aqueous phase that can induce stronger VOC oxidation and thus produce HO_2/O_2^- radicals that yield a higher level of $H_2O_2^{23,178,231}$. Jans and Hoigné¹⁷⁶ showed that photolysis of high concentrations of iron(III) oxalate complexes in aqueous phase represents an expanded source of O_2^- that grows to a level comparable with or greater than the $O_2^$ contributed by the gas phase.

Recently, Stemmler and von Gunten²⁵⁴ investigated the OH oxidation of 2-butoxyethanol, used as a model species, in the presence of iron and/or copper in the aqueous phase to study the interactions between peroxyl radicals and transition metals. They showed that the presence of transition metals can induce an efficient catalysis of the reactions between the peroxyl and the HO₂ radical or with that radical's combined base O_2^- , which produces organic hydroperoxides. The production of organic hydroperoxides is then strongly dependent on the solution pH, the

Figure 13. Proposed mechanism for the manganese(III/II)-catalyzed autoxidation of hydrogen sulfite. Reprinted with permission from ref 130. Copyright 1995 Elsevier Science and Technology (http://www.elsevier.com).

concentrations of HO₂ radical, iron(II), and copper-(I) [a more effective catalyst for these reactions than iron(II)]. They also showed that the formation of transition metal complexes with oxalate tends to reduce this production of organic hydroperoxides. Studies in the laboratory carried out by Khaikin et al.²⁵⁵ highlighted a direct reaction between iron(II) and RO_2 peroxyl radicals through the formation of an intermediate complex RO_2 -Fe³⁺, which then decomposes into iron(III). The higher the initial Fe²⁺ concentration and pH value, the faster this decomposition proceeds. Iron can also interact with organic hydroperoxides directly through "Fenton-like" reactions. These kinds of reactions have been recently studied under atmospheric conditions for methyl hydroperoxide (MHP) and ethyl hydroperoxide (EHP).²⁵⁶ In this study, the kinetic constants for reactions of MHP and EHP with the ferrous ion were determined, and the values obtained are in the same range as the kinetic constant of the Fenton-like reaction with iron(II) with H_2O_2 . Analysis of the major products of these reactions shows that alkoxyl radicals appear and are rearranged in the aqueous phase before reacting with oxygen to form peroxyl radicals. These radicals can then decompose to form aldehydes and HO₂ radicals, or they can react with themselves to give the corresponding acids and hydrogen peroxide, or they can react with HO_2 radicals to yield the corresponding hydroxy hydroperoxides. Chevallier et al.²⁵⁶ have predicted that these reactions should influence iron(II)/iron(III) cycles and HO_r multiphase chemistry.

The three studies cited above are the only ones to have examined the interactions between transition metals, peroxyl radicals, and organic hydroperoxides, which is why to date the interactions between oxygenated VOCs in the aqueous phase and transition metals are still poorly known.

4.2. Copper and Manganese Reactivity in the Atmospheric Liquid Phase

Because of its low reactivity, in particular with HO_2/O_2^- radicals, and its weak concentration in atmospheric liquid phases, as demonstrated by available modeling studies on cloud chemistry,^{20,22,23,172,178} manganese does not seem to play a significant role in HO_x chemistry.

However, Graedel et al.¹⁷⁸ indicated that the mechanism of manganese-catalyzed sulfur(IV) oxidation could be an important source of sulfate in droplets, particularly at pH <4 and relatively low concentrations of hydrogen peroxide. Berglund et al.²⁵⁷ first suggested that manganese(II) behaves in the same way as iron(II) in the catalysis of sulfur(IV) oxidation and attempted to work out a chemical mechanism describing interactions between manganese and sulfur chemistry. On the basis of their experimental observations [induction period, manganese(II) and (III) dependence, sulfur dependence, oxygen dependence, pH dependence, etc.] and correlated with previous studies,^{179,257-265} Berglund et al.¹³⁰ proposed a chemical mechanism at pH 2.4 for the manganesecatalyzed autoxidation of hydrogen sulfite (see Figure 13).

Berglund et al.¹³⁰ proposed that in a first step manganese(II) forms a hydrogen sulfite complex [Mn- (HSO_3^+)] in this way

$$Mn^{2+} + HSO_3^{-} \rightarrow [Mn(HSO_3)^{+}]$$
(40)

From their point of view, this is the only way to explain the saturation of the reaction rate observed for increasing concentrations of manganese(II). In the second reaction step, $[Mn(HSO_3)^+]$ reacts with manganese(III) to form SO_3^- radicals. These radicals rapidly react with dissolved molecular oxygen, pro-

Figure 14. Revised mechanism for the manganese(III/II)-catalyzed autoxidation of hydrogen sulfite. Reprinted with permission from ref 131. Copyright 1998 American Chemical Society.

ducing SO_5^- radicals. Reaction between SO_5^- and manganese(II) regenerates manganese(III) and forms $HSO_5^{-.266}$ Hydrogen peroxomonosulfate oxidizes the complex [Mn(HSO₃)⁺] to produce sulfur(IV) as the final product. This mechanism was revised by Fronaeus et al.¹³¹ on the basis of previous comprehensive kinetic studies and thermodynamic data for iron-manganese redox processes and manganese(II) and manganese(III) protolysis equilibriums (see Figure 14).

The catalytically active manganese species was concluded to be an oxo-bridged (or hydroxo-bridged) mixed-valence complex of composition (OH)Mn^{III}-OMn^{II}_(aa) formed via rapid reaction of Mn²⁺ with hydrolyzed manganese(III) aqua hydroxo complexes. This complex initiates a chain reaction via formation of a precursor complex with HSO_3^- , within which rapid bridged electron transfer from sulfur(IV) to manganese(III) takes place, resulting in the formation of chain-propagating sulfite SO₃⁻ radicals. Moreover, their thermodynamic calculations confirm the conclusions of their kinetic measurements: A mixedvalence complex is formed, but its composition is still uncertain. This study emphasizes that there are still uncertainties in the mechanism of aqueous phase sulfur(IV) oxidation by manganese-catalyzed oxygen.

Even though the concentrations of copper are typically 10 times lower than iron concentrations in atmospheric liquid water, copper can have a significant influence on HO_x chemistry because it reacts more quickly than iron with HO₂/O₂⁻ radicals^{141,228} (reactions 4 and 5). Available modeling studies of cloud chemistry suggest that the reaction of copper with HO₂/O₂⁻ radicals leads to HO_x destruction, entailing, for polluted clouds, a decrease of ozone production in the gas phase.^{21,210} Moreover, the effect of copper on radical chemistry can be important in the efficient conversion of HO₂/O₂⁻ radicals into hydrogen peroxide^{23,172} via the reaction of copper(I) with the superoxide ion (reaction). Jans and Hoigné¹⁷⁶ showed that copper is the main sink for O₂⁻ in droplets that contain dissolved copper at concentrations of a few nanomolars. Because reactions with O_2^- interconvert copper(I) and copper(II) cyclically, [copper(I)]/[copper(II)] is kept at a steady-state ratio. Thus, a significant fraction of the total copper is always present as copper(I). During daylight the reaction of ozone with copper(I) to produce the OH radical represents a major O_3 sink. There consequently occurs an indirect $O_2^--Cu(I)$ -OH reaction cycle that is driven by O_3 and releases OH radicals.

As has been seen earlier, the redox iron cycle has great influence on aqueous HO_x chemistry. Through the direct interaction between iron and copper via reaction 41 below, copper chemistry has an indirect effect on HO_x concentrations, because it controls iron speciation.^{22,178} Sedlak and Hoigné,²²⁸ using a simple box model, noted that this direct reaction between iron(III) and copper(I) causes the [iron(II)]/[iron(III)] ratio to increase as the [copper(I)]/[copper(II)] ratio decreases:

$$Fe^{3+} + Cu^+ \rightarrow Fe^{2+} + Cu^{2+}, k =$$

1.3 × 10⁷ M⁻¹ s⁻¹(Buxton et al.³²) (41)

This reaction partly explains the iron speciation simulated by some models of cloud chemistry.^{20,22,23,172,178} Graedel et al.¹⁷⁸ showed that the reduction of iron(III) is driven by the Cu⁺ ion and HO₂/O₂⁻ radicals during the night and by the Cu⁺ ion and the photolysis of iron(III) complexes during the day.

Leaving aside complexation with organics, studies by Sedlak and Hoigné,²²⁹ Hoigné and Bühler,²⁶⁷ and Sedlak et al.²⁸ showed that if the copper/iron ratio exceeds 1-2%, then the copper(I)/copper(II) pair becomes the predominant superoxide radical sink within the droplet, altering the HO_x and iron(II)/iron-(III) redox cycles. Copper reacts with hydrogen peroxide much like iron in the Fenton reaction.

The reality of the oxidation of copper(I) by H_2O_2 in Fenton-like reactions in aqueous solution has been debated.^{268–274} In particular, the possible involvement of copper(III) in the production of OH radicals was evoked.^{270,272,275} Johnson et al.²⁷⁰ suggested that H_2O_2 can oxidize Cu^+ directly to $Cu^{III}_{(aq)}$:

$$Cu^{+}_{(aq)} + H_2O_2(+2H^+) \rightarrow Cu^{III}_{(aq)} + 2H_2O$$
 (42)

However, they neglected the following equilibrium based on the work of Meyerstein et al.²⁷⁶

$$\operatorname{Cu}^{3+}_{(\mathrm{aq})} \leftrightarrow \operatorname{Cu}^{2+} + \operatorname{OH} + \operatorname{H}^{+}$$
 (43)

which shifts to the right in acidic solutions. Masarwa et al.²⁷² explained the production of OH at low pH by the shifting of equilibrium 43 to the right. Eberhardt et al.²⁷³ showed that in neutral or weakly acidic solutions, Cu^{3+} produced via Cu^{2+} + OH does not hydroxylate aromatic compounds. They concluded that in the reaction of Cu^+ with H₂O₂, the OH radical is the major reactive species with aromatic compounds and is generated in the Fenton-like reaction

$$\mathrm{Cu}^{+} + \mathrm{H}_{2}\mathrm{O}_{2} \rightarrow \mathrm{Cu}^{2+} + \mathrm{OH} + \mathrm{OH}^{-} \qquad (44)$$

with $k = 7.0 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$ (Berdnikov²⁶⁹).

The more recent study by Urbanski and Beresewicz²⁷⁷ confirmed the OH production for neutral or weakly acidic solutions. Moreover, in the same way as for iron, the oxidation of copper(I) by H_2O_2 in Fenton-like reactions seems to involve an active intermediate copper(III),^{270,272,275,274,278} but the nature and the pK_a of this intermediate are still uncertain. Modeling studies show that this pathway of OH radical production is not negligible in cloud droplets.²³ As is the case for iron, further laboratory investigations seem to be necessary to clarify the chemical process of the copper Fenton reaction.

Moreover, Spokes et al.¹³⁴ analyzed rainwater sampled in the United Kingdom, where total copper concentrations were between 0.01 and 0.03 μ M, natural ligand concentrations in the same range, and free Cu²⁺ ion concentrations between only 10⁻⁵ and 10⁻⁶ μ M, showing that copper is largely complexed. At these concentrations, dissolved copper cannot play a significant role in HO_x chemistry. This study emphasizes that the impact of copper on HO_x chemistry is dependent on the presence of natural ligands in the atmospheric liquid phase.

In addition, the coexistence of several transition metals in the aqueous phase can have a synergistic effect on sulfur(IV) oxidation by improving the efficiency of the catalytic cycle.^{130,131,257,259,262,265,279–281} For instance, sulfur(IV) oxidation catalyzed by a mixture of iron and manganese is more efficient than sulfur(IV) oxidation catalyzed by only one of these two metals.²⁸²

Most of the studies on copper deal with the homogeneous copper(II) catalysis in sulfur(IV) oxidation. $^{27,137-139,283-289}$

Bäckström²⁸³ argued that reduction of copper(I) by sulfur(IV) is the initial step in the copper(II)-catalyzed free radical oxidation of sulfur(IV).

$$Cu(II) + SO_3^{2-} \rightarrow Cu(I) + SO_3^{-} \qquad (45)$$

The relatively slow sulfur(IV) to copper(II) electrontransfer rates make this reaction an improbable initiation step for the copper(II)-catalyzed chain reaction proposed by Bäckström.²⁸³

Veprek-Siska and Lunak²⁸⁶ reported that the cupric ion is immediately and quantitatively reduced by sulfite to the cuprous ion, and they proposed that the metal-catalyzed autoxidation of sulfur(IV) proceeds via the formation of sulfite-cuprous intermediates rather than a free chain reaction. However, Lunak et al.²⁸⁸ found that 2-propanol cuprous complexes act as an inhibitor of copper(II)-catalyzed sulfur(IV) autoxidation. Their mechanism involves the reduction of copper(II) to copper(I) by sulfur(IV), followed by the formation of sulfito-2-propanol cuprous complexes. The first systematic study of the kinetics of the reduction of copper(II) by sulfur(IV) in the absence of O₂ was done by Zeck and Carlyle.²⁸⁷ They assumed that the rate of disappearance of copper(II) was given by a second-order equation of the following form:

$$-d[Cu(II)]/dt = k[Cu(II)][S(IV)]$$
(E7)

The study of Conklin and Hoffmann¹³⁷ showed that copper(II) forms transient complexes such as CuSO₃ with S(IV) in solution. They calculated that at pH 3.5, 15% of the copper(II) exists as a copper(I)-sulfito complex and that at pH 6.3, 98.5% of the copper(II) is complexed by sulfite. The formation of a complex appears to be a necessary step in the mechanism of sulfur(IV) oxidation for thermodynamic reasons. Conklin and Hoffmann¹³⁸ studied the redox chemistry of copper(II)-sulfur(IV) complexes. The reduction of copper(II) is shown to proceed via $Cu^{\rm II}{}_2SO_3{}^{2+}$ and $Cu^{II}_{2}SO_{3}OH^{+}$ intermediates; copper(I), SO_{4}^{2-} , and a mixed-valence compound, Cu^{II}SO₃Cu^I₂SO₃·2H₂O, are determined to be the principal products. The possible influence of atmospheric stability and copper-sulfito complexes on sulfur(IV) to sulfur(VI) conversion is still unknown. Grgić et al.²⁶³ showed that copper(II) is catalytically active at pH 7. It appears that the copper(II) ion is not a sufficiently strong oxidizing agent to generate chain carriers from the sulfur(IV) species at low pH values, whereas at high pH the copper(II) ion readily converts the sulfite ion into a sulfite free radical.

Because copper is present as oxides in the aqueous particulate phase, some studies have looked into the heterogeneous catalysis of these oxides in sulfur(IV) oxidation.^{290,291} Copper oxides exhibit different catalytic activities due to the different bond strengths of oxygen at the metal surface. For instance, Prasad et al.²⁹² observed no significant oxidation of sulfur(IV) oxides when using CuO as catalyst in the absence of oxygen. Manoj et al.²⁹¹ showed that cupric oxide (Cu₂O) coming from aerosol particles scavenged by fog and cloud droplets can catalyze the oxidation of sulfite into sulfate via a heterogeneous pathway, with an induction period, and a conversion rate of 0.19% per hour under typical atmospheric conditions. The authors conclude that Cu₂O catalysis may not be significant in the acidification of rain, because the lifetime of the raindrop (1-5 min) is shorter than the induction period, whereas it is important in mist, fog, and cloud droplets, which have a much longer lifetime. The results further suggest that the presence of organic acids and complexing anions shortens the induction period and favors the catalysis that releases copper(II) ions.

Moreover, it is assumed that copper can significantly influence the interactions of sulfur(IV) with other transition metals such as iron through its efficient reactivity with HO₂/O₂⁻ radicals²⁹³ (cf. section 4.2). The modeling study of Deguillaume et al.²³ showed that the reaction of Cu⁺ with oxygen leads to high HO₂/O₂⁻ concentration in the aqueous phase, which results in continuous H₂O₂ formation through reactions of HO₂/O₂⁻ with iron(II) and Cu⁺. Iron is mainly present as iron(II) during the day, and the Cu⁺ concentration is maintained by the reaction of Cu²⁺ with the HO₂/O₂⁻ radical. The contribution of iron and copper to sulfur(IV) oxidation through the efficient production of H₂O₂ is, in this instance, indirect.

Iron and manganese are the most effective catalysts in the oxidation of sulfur(IV) in aqueous solution.²⁷ Numerical and/or laboratory studies have undertaken to compare the contribution of manganese and iron to sulfur autoxidation. Graedel et al.¹⁷⁸ calculated that the contributions of iron(III) and manganese(II) to the oxidation of sulfur(IV) at pH 4 are 6–8 and 22–29%, respectively. In contrast, Cocks and McElroy²⁹⁴ reported an oxidation state 10 times smaller for the manganese(II)-catalyzed pathway than for iron(III) catalysis at pH 4. According to Warneck,²⁹⁵ the catalytic activities of iron(III) and manganese(II) are almost equal at pH 4.

Thus, like iron, copper and manganese are thought to catalyze the oxidation of sulfur(IV) into sulfur(VI) via homogeneous and heterogeneous pathways. Further laboratory investigations are needed to characterize these chemical mechanisms accurately, and numerical studies are necessary to evaluate the role of those mechanisms in sulfur(IV) to sulfur(VI) conversion within the atmospheric liquid phase.

4.3. Proposed Chemical Mechanism for in Cloud Chemistry Model

The mechanism proposed here, rounded out with inorganic and organic chemistry processes occurring in clouds (presented by Leriche et al.296 and by Ervens et al.¹⁷²), can be used in cloud chemistry models. This mechanism includes 99 reactions, 6 photolysis reactions, and 4 equilibria that describe the chemistry of iron, manganese, and copper with HO_x radicals, sulfur compounds, nitrogen compounds, chlorine compounds, carbonates, and water-soluble organic compounds. The aim of this mechanism is to present an exhaustive list of reactions involving iron, copper, and manganese in atmospheric liquid phases with the chemical species involved in atmospheric aqueous chemistry. Whereas iron reactivity is well documented, data concerning copper and manganese reactivity are still meager, both for reaction mechanisms and for kinetic constants.

Tables 13 and 14 present iron reactions to be included in a multiphase atmospheric model. The chemical pathways of the Fenton reaction between

hydrogen peroxide and iron(II) are still subject to controversy (see section 4.1.1), and the classic radical pathway is thought to drive mechanism R1. Photolysis of the iron(III) complexes also involves the formation of OH radicals (J1, J2, J3). On the other hand, the reaction of iron(III) and iron(II) with the O_2^{-}/HO_2 radicals represents an efficient $HO_x \operatorname{sink} (R3-R7)$. Iron(II) is oxidized by ozone, and this reaction is also prone to controversy. Early studies on the reactivity of iron(II) with ozone showed that this oxidation produces iron(III) as well as an OH radical.²⁹⁷ More recently, Logager et al.²⁰⁰ emphasized that this reaction leads to the formation of the ferryl ion FeO²⁺ and an oxygen molecule (R11). Jacobsen et al.^{201,202} studied the reactivity of the ferryl ion with inorganic and organic species present in the atmospheric liquid phases (R2, R8, R10, R12–R16, R19, R22, R23, R30, R32-R34). Reaction between the ferryl ion and iron-(II) yields either a dimer $Fe(OH)_2Fe^{4+}$ or Fe^{3+} directly (R13 and R14). The formation of this dimer is favored at higher temperatures. This species then forms iron-(III) (R15 and R16). According to Jacobsen et al., $^{\rm 202}$ for rainwater with a pH of \sim 3 the ferryl ion can be regarded as a temporary sink of OH radicals, whereas for more acidic droplets, this compound reacts in solution like a full-fledged species. The reactivity of the peroxyl radicals with iron was studied by Khaikin et al.²⁵⁵ The peroxyl radical CH₃O₂ reacts with iron-(II) and forms an intermediate complex $FeCH_3O_2^{2+}$ (R37), which decomposes to give methyl hydroperoxide (MHP) and iron(III) (R38 and R39). The formation (R45-R50) and photolysis processes of the ironoxalato complexes are considered to be an efficient pathway for the reduction of iron(III) (J5, J6).

Iron(III) is a catalyst in the autoxidation of sulfur-(IV) to sulfur(VI) (cf. section 4.1.2). The general mechanism of iron-catalyzed sulfur(IV) oxidation is represented by reactions R24-R27, accompanied by reaction 34.

In addition, iron(III) and the sulfate ion SO_4^{2-} are in equilibrium with the complex $[Fe(SO_4)]^+$ (R51 and R52). This complex produces an SO_4^- radical (J4) when photolyzed, or it is oxidized by the O_2^- radicals (R28), leading in both cases to the formation of iron-(II) and sulfate.³¹

Table 15 presents the copper reactions to be considered in a multiphase atmospheric model. Although the copper concentrations are lower than those of iron, copper plays a significant role in the aqueous HO_x chemistry because of its reactivity with the O_2^-/HO_2 radicals (cf. section 4.2.). Copper(II) is reduced by the O_2^-/HO_2 radicals to copper(I) (R61 and R62). In the same way, copper(I) is oxidized into copper(II) by O_2^-/HO_2 radicals, producing hydrogen peroxide H₂O₂ (R59 and R60).

Finally, Tables 16 and 17 present the manganese reactions to be considered in a multiphase atmospheric model. Manganese interacts mainly with the HO_x and sulfur chemistry. In HO_x chemistry the reaction of manganese(II) with O_2^-/HO_2 radicals is still under discussion. Jacobsen et al.²⁹⁸ highlighted the formation of a manganese(II)—superoxide complex MnO_2^+ in solution. They were interested in the role of this complex in the oxidation of manganese-

Table 13. Iron Chemistry

			kinetic	activation	
	1		constant	energy	c .
reagents	products	no.	$(M^{-n+1} s^{-1})$	$E_{\rm a}/R$ (K)	ret
$\mathrm{Fe}^{3+} + h \nu + \mathrm{H}_2\mathrm{O}$	$\mathrm{Fe}^{2+} + \mathrm{OH} + \mathrm{H}^+$	J1	calcd		Benkelberg and Warneck ¹⁹¹
$Fe(OH)^{2+} + h\nu$	$\mathrm{Fe}^{2+} + \mathrm{OH}$	J2	calcd		Benkelberg and Warneck ¹⁹¹
${ m Fe(OH)_2^+} + h u$	$Fe^{2+} + OH + OH^{-}$	J3	calcd		Weschler et al., ¹¹⁹ Benkelberg et al. ³⁴⁷
$Fe(SO_4)^+ + h\nu$	$\mathrm{Fe}^{2+}+\mathrm{SO}_4^-$	J4	calcd		Benkelberg and Warneck ¹⁹¹
$[Fe(C_2O_4)_2]^- + h\nu$	$Fe^{2+} + C_2O_4^{2-} + C_2O_4^{-}$	J5	calcd		Faust and Zepp ²³⁵
$[Fe(C_2O_4)_3]^{3-} + h\nu$	$Fe^{2+} + 2C_2O_4^{2-} + C_2O_4^{-}$	J6	calcd		Faust and Zepp ²³⁵
$H_2O_2 + Fe^{2+}$	$Fe^{3+} + OH + OH^{-}$	R1	52.4	5050	Kremer, ²⁰⁵ Christensen et al. ³⁴⁸
$H_2O_2 + FeO^{2+}$	$Fe^{3+} + HO_2 + OH^-$	R2	9.5×10^{3}	2800	Jacobsen et al. ²⁰¹
$U_2^- + Fe^2 + 2H^+$	$H_2O_2 + Fe^{3+}$	R3	$1.0 \times 10^{\prime}$	5050	Kush and Bielski ³¹
$HO_2 + Fe^{2+} + H^+$	$Fe^{3+} + H_2O_2$	R4	$1.2 \times 10^{\circ}$	5050	Jayson et al. ¹⁷⁰
$O_2 + Fe^{3/2}$	$Fe^{2+} + O_2$	КЭ DC	1.0×10^{8} 1.5 × 10 ⁸		Push and Pielski ³¹
$O_2 + Fe(OH)^{-1}$	$Fe^{2+} + O_2 + OH$	К0 D7	$1.0 \times 10^{\circ}$ 1.5 × 10 ⁸		actimated from Buch and Biolaki ³¹
$H_{02} + F_{0}(011)_{2}$	$Fe^{-} + O_2 + 2OH$ $Fo^{3+} + O_2 + OH^{-}$	R8	1.5×10^{6}		Iscobson et al ²⁰¹
$OH + Fe^{2+}$	$Fe^{-} + O_2 + O_1$ $Fo^{(OH)^{2+}}$	R0	2.0×10^{8}	1100	Christonson and Sohostod ³⁴⁹
OH + Fe $OH + FeO^{2+} + H^+$	Fe(OII) $Fa^{3+} + H_aO_a$	R10	4.0×10^{7}	1100	Loggger et al 200
$O_2 + Fe^{2+}$	$FeO^{2+} + O_{2}$	R11	8.2×10^5		Logager et al ²⁰⁰
$F_{e}O^{2+} + H_{2}O$	$Fe^{3+} + OH + OH^{-}$	R12	1.3×10^{-2}	4100	Jacobsen et al. ²⁰¹
$FeO^{2+} + Fe^{2+} + H_2O$	$2 \text{ Fe}^{3+} + 2 \text{OH}^{-}$	R13	7.2×10^4	840	Jacobsen et al. ²⁰¹
$FeO^{2+} + Fe^{2+} + H_2O$	$Fe(OH)_2Fe^{4+}$	R14	1.8×10^4	5050	Jacobsen et al. ²⁰¹
Fe(OH) ₂ Fe ⁴⁺	$2 \text{ Fe}^{3+} + 2 \text{ OH}^{-}$	R15	0.49	8800	Jacobsen et al. ²⁰¹
$Fe(OH)_2Fe^{4+} + H^+ + H^+$	$2~{ m Fe}^{3+}+2~{ m H}_2{ m O}$	R16	2	5650	Jacobsen et al. ²⁰¹
$Cl_2^- + Fe^{2+}$	$Fe^{3+} + 2 Cl^{-}$	R17	$1.0 imes 10^7$	3060	Thornton and Laurence ³⁵⁰
$\mathrm{Cl}_2^- + \mathrm{Fe}^{2+}$	$\mathrm{FeCl}^{2+}+\mathrm{Cl}^{-}$	R18	$4.0 imes10^6$	3700	Thornton and Laurence ³⁵⁰
$\mathrm{Cl^-} + \mathrm{FeO^{2+}} + \mathrm{H^+}$	$\rm Fe^{3+}+ClOH^-$	R19	100		Jacobsen et al. ²⁰²
$\mathrm{NO}_3 + \mathrm{Fe}^{2+}$	$\mathrm{Fe^{3+}+NO_{3}^{-}}$	R20	$8.0 imes10^6$		Pikaev et al. ³⁵¹
$NO_2 + Fe^{2+}$	$\mathrm{Fe}^{3+} + \mathrm{NO}_2^-$	R21	$3.1 imes 10^4$		Epstein et al. ³⁵²
$HNO_2 + FeO^{2+}$	$\mathrm{Fe}^{3+} + \mathrm{NO}_2 + \mathrm{OH}^-$	R22	$1.1 imes 10^4$	4150	Jacobsen et al. ²⁰²
$NO_2^- + FeO^{2+} + H^+$	$\mathrm{Fe}^{3+} + \mathrm{NO}_2 + \mathrm{OH}^-$	R23	$1.0 imes10^5$		Jacobsen et al. ²⁰²
$HSO_3^- + Fe(OH)^{2+}$	$Fe^{2+} + SO_3^- + H_2O$	R24	30		Ziajka et al. ²²¹
$SO_5^- + Fe^{2+} + H_2O$	$Fe(OH)^{2+} + HSO_5^{-}$	R25	2.65×10^{7}		Williams ³⁵³
$HSO_5^- + Fe^2 +$	$Fe(OH)^{2+} + SO_4^-$	R26	3.0×10^4	0105	Gilbert et al. ³⁵⁴
$SO_4^- + Fe^{2+} + H_2O$	$Fe(OH)^{2+} + SO_4^{2-} + H^+$	R27	4.1×10^{3}	-2165	Buxton et al. ³³⁵
$O_2 + Fe(SO_4)^+$ $S = O_2^{2-} + F_2^{2+} + H = O_2^{2+}$	$Fe^{2} + SO_4^2 + O_2$	R28	$1.5 \times 10^{\circ}$		Rush and Bielski ⁵¹
$S_2 O_8^2 + F e^2 + \Pi_2 O_{12}^2$	$Fe^{3+} + SO_4^2 + SO_4$	R29 D20	17 95 x 105		Loophan et al 202
$\Gamma SO_3 + \Gamma eO^{-1}$ $CO_{2} + F_{2}^{2+}$	$Fe^{3+} + SO_{3-} + OH$ $Fo^{3+} + CO_{2}^{2-}$	100 100	2.3×10^{-2}		actimated from Hommonn et al 22
$HCOOH + F_0O^{2+} + O_0 + H^+$	$Fe^{3+} + CO_{3}$ $Fe^{3+} + CO_{2} + HO_{2} + H_{2}O_{3}$	R31 R32	2.0 × 10 160	2680	Iscobson et al ²⁰²
$HCOO^{-} + FeO^{2+} + O_2 + H^{+}$	$Fe^{3+} + CO_2 + HO_2 + H_2O$	R33	3.0×10^{5}	2000	Jacobsen et al ²⁰²
$CH_{2}(OH)_{2} + FeO^{2+} + O_{2}$	Fe^{3+} + HCOOH + HO ₂ + OH ⁻	R34	400	5350	Jacobsen et al. ²⁰²
$CH_2OOH + Fe^{2+}$	$Fe^{3+} + OHCH_2O_2 + OH^-$	R35	$52.4 = k_{\rm P1}$	5050	Chevallier et al ²⁵⁶
$OHCH_2OOH + Fe^{2+} + O_2$	Fe^{3+} + HCOOH + HO ₂ + OH ⁻	R36	$52.4 = k_{\rm R1}$	5050	Chevallier et al. ²⁵⁶
$CH_3O_2 + Fe^{2+}$	$CH_3O_2Fe^{2+}$	R37	$8.6 imes 10^5$		Khaikin et al. ²⁵⁵
$CH_3O_2Fe^{2+}$	$CH_3O_2 + Fe^{2+}$	R38	$1.3 imes10^3$		Khaikin et al. ²⁵⁵
$\mathrm{CH_3O_2Fe^{2+}+H_2O}$	$\mathrm{Fe}^{3+} + \mathrm{CH}_{3}\mathrm{OOH} + \mathrm{OH}^{-}$	R39	100		Khaikin et al. ²⁵⁵
$\mathrm{CH}_3\mathrm{O}_2\mathrm{Fe}^{2+}+\mathrm{H}^+$	$\rm Fe^{3+}+CH_3OOH$	R40	$3.0 imes10^4$		Khaikin et al. ²⁵⁵
$OHCH_2O_2 + Fe^{2+}$	$OHCH_2O_2Fe^{2+}$	R41	$5.9 imes10^5$		Khaikin et al. ²⁵⁵
$OHCH_2O_2Fe^{2+}$	$OHCH_2O_2 + Fe^{2+}$	R42	$1.3 imes10^3$		Khaikin et al. ²⁵⁵
$OHCH_2O_2Fe^{2+} + H_2O$	$\mathrm{Fe}^{3+} + \mathrm{OHCH}_2\mathrm{OOH} + \mathrm{OH}^-$	R43	100		Khaikin et al. ²⁵⁵
$OHCH_2O_2Fe^{2+} + H^+$	$Fe^{3+} + OHCH_2OOH$	R44	3.0×10^{4}		Khaikin et al. ²⁵⁵
$C_2O_4^{2-} + Fe^{3+}$	$Fe(C_2O_4)^+$	R45	$7.5 imes 10^{6}$		estimated using stability constant: Martell and Smith ³⁵⁶
$Fe(C_2O_4)^+$	$C_2O_4^{2-} + Fe^{3+}$	R46	$3.0 \times 10^{-3} = k_{\rm R48}$		estimated
$C_2O_4^{2-} + Fe(C_2O_4)^+$	$Fe(C_2O_4)_2^-$	R47	1.89×10^{4}		Martell and Smith ³⁵⁶
$Fe(C_2O_4)_2^-$	$C_2O_4^{2-} + Fe(C_2O_4)^+$	R48	3.0×10^{-5}		Moorhead and Sutin ³⁵⁷
$C_2O_4^{2-} + Fe(C_2O_4)_2^{-}$	$Fe(C_2O_4)_3^{3-1}$	R49	4.8×10^{1}		estimated using stability constant: Martell and Smith ³⁵⁶
$Fe(C_2O_4)_{3^{3^-}}$	$C_2O_4^{2-} + Fe(C_2O_4)_2^{-}$	R50	$3.0 \times 10^{-3} = k_{\rm R48}$		estimated
$Fe^{3+} + SO_4^{2-}$	$Fe(SO_4)^+$	R51	3.2×10^{3}		Jayson et al. ³⁰⁸
$Fe(SO_4)^+$	$Fe^{3+} + SO_4^{2-}$	K52	27		Jayson et al. ³⁰⁰
$Fe^{-1} + CI^{-1}$	$\Gamma e C l^{2+}$	K53	4.ð		Au et al. ³⁰⁷
reul"	re st + CI	к54	9.2×10^{-1}		esumated

Table 14. Iron Equilibria

equilibrium	no.	$K(\mathbf{M})$	$\Delta H/R$ (K)	ref
$\label{eq:eq:expansion} \hline Fe^{3+} + H_2O \nleftrightarrow Fe(OH)^{2+} + H^+ \\ Fe(OH)^{2+} + H_2O \nleftrightarrow Fe(OH)_2^+ + H^+$	E1 E2	$egin{array}{c} 6.00 imes 10^{-3} \ 7.60 imes 10^{-4} \end{array}$		Brandt and van Eldik ²⁷ Brandt and van Eldik ²⁷

(II) into manganese(III). It is formed via two chemical pathways, the first one driven by two equilibria (R70 and R71; R73 and R74) and the second one derived from the reaction between hydrogen peroxide and

 $[\rm Mn(OH)]^{2+}$ (R80). The $\rm MnO_2^+$ complex is destroyed by reacting with HO_2 (R76) and by its self-reaction (R75). In both cases, hydrogen peroxide and manganese(II) are produced. The reactivity of manganese-

Table 15. Copper Chemistry

reagents	products	no.	$\stackrel{kinetic \ constant}{(M^{-n+1}\ s^{-1})}$	activation energy $E_{\rm a}/R~({\rm K})$	ref
$\begin{array}{l} OH+Cu^{+}\\ O_{3}+Cu^{+}+H^{+}\\ O_{2}+Cu^{+}\\ H_{2}O_{2}+Cu^{+}\\ HO_{2}+Cu^{+}+H^{+}\\ O_{2}^{-}+Cu^{+}+2H^{+}\\ HO_{2}+Cu^{2+}\\ O_{2}^{-}+Cu^{2+}\\ Cl_{2}^{-}+Cu^{+}\\ SO_{4}^{-}+Cu^{+}\\ CO_{3}^{-}+Cu^{+}\\ Cu_{2}^{-}+OH\\ Cu(OH)^{2+}\\ \end{array}$	$\begin{array}{c} Cu^{2+} + OH^- \\ Cu^{2+} + OH^+ O_2 \\ Cu^{2+} + O_2^- \\ Cu^{2+} + OH^+ OH^- \\ Cu^{2+} + H_2O_2 \\ Cu^{2+} + H_2O_2 \\ Cu^+ + O_2 + H^+ \\ Cu^+ + O_2 \\ Cu^{2+} + 2 Cl^- \\ Cu^{2+} + SO_4^{2-} \\ Cu^{2+} + CO_3^{2-} \\ Cu(OH)^{2+} \\ Cu^{2+} + OH \end{array}$	R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 R65 R66 R67	$\begin{array}{c} 3.0 \times 10^9 \\ 3.0 \times 10^7 \\ 4.6 \times 10^5 \\ 7.0 \times 10^3 \\ 3.5 \times 10^9 \\ 9.4 \times 10^9 \\ 1.0 \times 10^8 \\ 8.0 \times 10^9 \\ 1.0 \times 10^7 = k_{17} \\ 4.1 \times 10^9 = k_{\text{R27}} \\ 2.0 \times 10^7 \\ 3.5 \times 10^8 \\ 3.0 \times 10^4 \end{array}$	$3060 \\ -2165$	Goldstein et al. ³⁶⁰ Hoigné and Bühler ²⁶⁷ Bjergbakke et al. ³⁶¹ Berdnikov et al. ²⁶⁹ Berdnikov et al. ²⁶⁹ Von Piechowski et al. ¹⁶⁴ Rabani et al. ¹⁷³ Rabani et al. ¹⁷³ Rabani et al. ¹⁷³ estimated estimated estimated from Herrmann et al. ²² Baxendale et al. ³⁶²

Table 16. Manganese Chemistry

			kinetic constant	activation energy	
reagents	products	no.	$(M^{-n+1} s^{-1})$	$E_{\rm a}/R$ (K)	ref
$\overline{OH + Mn^{2+}}$	Mn(OH) ²⁺	R68	$2.0 imes 10^7$		Jacobsen et al. ²⁹⁸
$O_3 + Mn^{2+}$	$MnO^{2+} + O_2$	R69	$1.65 imes10^3$	4750	Jacobsen et al. ³⁰⁰
$Mn^{2+} + O_2^{-}$	MnO_2^+	R70	$9.5 imes10^7$		Jacobsen et al. ²⁹⁸
MnO_2^+	$Mn^{2+} + O_2^-$	R71	$7.5 imes10^3$		Jacobsen et al. ²⁹⁸
$\mathrm{Mn}^{2+} + \mathrm{HO}_2$	$\mathrm{MnO}_{2^{+}} + \mathrm{H}^{+}$	R72	$1.45 imes10^6$		Jacobsen et al. ²⁹⁸
$\mathrm{MnO}_{2^{+}} + \mathrm{H}^{+}$	$\mathrm{Mn}^{2+} + \mathrm{HO}_2$	R73	$1.4 imes10^7$		Jacobsen et al. ²⁹⁸
$MnO^{2+} + Mn^{2+} + 2H^{+}$	$2~\mathrm{Mn^{3+}+H_2O}$	R74	$1.0 imes 10^5$		Jacobsen et al. ³⁰⁰
$\mathrm{MnO}_{2^+} + \mathrm{MnO}_{2^+} + 2\mathrm{H}^+$	$2 \mathrm{~Mn^{2+} + H_2O_2 + O_2}$	R75	$6.0 imes10^6$		Jacobsen et al. ²⁹⁸
$\mathrm{MnO}_{2^{+}} + \mathrm{HO}_{2} + \mathrm{H}^{+}$	$\mathrm{Mn^{2+}+H_2O_2+O_2}$	R76	$1.0 imes10^7$		Jacobsen et al. ²⁹⁸
$Mn^{3+} + Mn^{3+}$	$\mathrm{Mn}^{2+} + \mathrm{Mn}^{4+}$	R77	$1.0 imes 10^7$		estimated from Jacobsen et al. ³⁰⁰ and Rosseinsky ³⁰¹
$Mn^{2+} + Mn^{4+}$	$\mathrm{Mn^{3+}+Mn^{3+}}$	R78	$1.0 imes 10^7$		estimated from Jacobsen et al. ³⁰⁰ and Rosseinsky ³⁰¹
${ m H_2O_2 + Mn^{3+}}$	$\mathrm{Mn}^{2+} + \mathrm{HO}_2 + \mathrm{H}^+$	R79	$7.3 imes10^4$		Davies et al. ³⁶³
$H_2O_2 + Mn(OH)^{2+}$	$\mathrm{MnO}_{2^{+}} + \mathrm{H}^{+} + \mathrm{H}_{2}\mathrm{O}$	R80	$2.8 imes10^3$		Jacobsen et al. ²⁹⁸
${ m H_2O_2 + Mn^{4+}}$	${ m Mn^{2+}+2H^++O_2}$	R81	$1.25 imes10^8$		estimated from Jacobsen et al. ³⁰⁰
$\mathrm{NO}_3 + \mathrm{Mn}^{2+}$	$\mathrm{Mn^{3+}+NO_{3}^{-}}$	R82	$1.1 imes10^6$		Neta and Huie ³⁶⁴
$\mathrm{Cl}_2^- + \mathrm{Mn}^{2+}$	$\mathrm{Mn^{3+}+2Cl^{-}}$	R83	$8.5 imes10^6$	4090	Laurence and Thornton ³⁶⁵
$\mathrm{Cl}_{2^{-}} + \mathrm{Mn}^{2+}$	$\mathrm{MnCl}_{2^{+}}$	R84	$2.0 imes10^7$	4090	Laurence and Thornton ³⁶⁵
$\mathrm{MnCl}_{2^{+}}$	$\mathrm{Mn}^{2+} + \mathrm{Cl}_2^-$	R85	$3.0 imes10^5$		Laurence and Thornton ³⁶⁵
$MnCl_{2}^{+}$	$\mathrm{Mn^{3+}+2Cl^{-}}$	R86	$2.1 imes10^5$	2100	Laurence and Thornton ³⁶⁵
$\mathrm{HSO}_{5^{-}} + \mathrm{Mn}^{2+}$	$\mathrm{Mn^{3+}+SO_4^-+OH^-}$	R87	$3.0 imes 10^4 = k_{ m R26}$		estimated
$\mathrm{SO}_4^- + \mathrm{Mn}^{2+}$	$\mathrm{Mn^{3+}+SO_4^{2-}}$	R88	$1.8 imes10^7$	4100	Buxton et al. ³⁵⁵
$\mathrm{SO}_5^- + \mathrm{Mn}^{2+} + \mathrm{H}_2\mathrm{O}$	$\mathrm{Mn^{3+} + HSO_5^- + OH^-}$	R89	$1.0 imes10^8$		Fronaeus et al. ¹³¹
$Mn^{2+} + HSO_3^-$	$MnHSO_3^+$	R90	$3.0 imes10^7$		Berglund et al. ²⁵⁷
$MnHSO_3^+$	$\mathrm{Mn}^{2+} + \mathrm{HSO}_3^-$	R91	$1.0 imes 10^3$		Berglund et al. ²⁵⁷
$MnHSO_3^+ + Mn^{3+}$	$2{ m Mn^{2+}}+{ m SO_3^-}+{ m H^+}$	R92	$1.3 imes10^6$		Berglund et al. ²⁵⁷
$CO_{3}^{-} + Mn^{2+}$	$Mn^{3+} + CO_3^{2-}$	R93	$1.5 imes10^7$		Cope et al. ³⁶⁶

Table 17. Manganese Equilibria

equilibrium		$K(\mathbf{M})$	$\Delta H/R$ (K)	ref
$\frac{Mn^{3+} + H_2O \nleftrightarrow Mn(OH)^{2+} + H^+}{Mn(OH)^{2+} + H_2O \nleftrightarrow Mn(OH)_2^+ + H^+}$	${f E3}{f E4}$	$9.3 imes 10^{-1}\ 1.0 imes 10^{-5}$		Wells and Davies ³⁶⁷ Baral et al. ³⁶⁸

(III) with hydrogen peroxide is correlated with the chemistry between manganese(II) and O₂^{-/}HO₂ radicals via this MnO_2^+ complex. According to Jacobsen et al.,²⁹⁸ these reactions should have an effect on the oxidizing capacity of the atmospheric aqueous phase. In the same way as for iron, manganese is oxidized by ozone in solution. Available information on this reaction is contradictory. Sheng,²⁹⁹ reasoning theoretically, contends that the reaction between ozone and manganese(II) produces manganese(III) and an OH radical. Jacobsen et al.³⁰⁰ described a more plausible mechanism based on laboratory studies: Mn^{2+} reacts with ozone in solution to form the manganyl ion MnO²⁺ (R69). Manganese is then under its +IV oxidation state with no formation of an OH radical. This is similar to the mechanism for the

formation of the ferryl ion. Then, MnO²⁺ reacts quickly with Mn^{2+} to form manganese(III) (R74). Unlike for the ferryl ion, no studies on the reactivity of the manganyl ion with organic and inorganic species in solution are available. Last, the Mn⁴⁺ ion is examined in the mechanism, via the equilibrium (R77 and R78), corresponding to the reversible selfreaction of Mn³⁺.^{202,301} Jacobsen et al.³⁰⁰ (R81) suggested that the reaction of hydrogen peroxide with Mn⁴⁺ leads to the formation of manganese(II). In the autoxidation of sulfur(IV) into sulfur(VI), manganese-(II) plays a catalytic role in a similar way to iron (R86-R91 + reaction 46). For the initial step, a hydrogen sulfite complex $[Mn(HSO_3^+)]$, as described by Berglund et al.²⁵⁷ (R90, R91), is envisioned (cf. section 4.1.2). To summarize, despite the uncertain-

Table	18.	Coupled	тмі	Chemistry
		comprou		01101110013

reagents	products	no.	$\stackrel{\text{kinetic constant}}{(\mathrm{M}^{-n+1}~\mathrm{s}^{-1})}$	activation energy E_{a}/R (K)	ref
$\begin{array}{l} Fe^{3+}+Cu^+\\ Fe(OH)^{2+}+Cu^+\\ Fe(OH)_{2^+}+Cu^+\\ Mn^{3+}+Fe^{2+}\\ Mn(OH)^{2+}+Fe^{2+}\\ Mn^{2+}+FeO^{2+}+2H^+\\ \end{array}$	$\begin{array}{l} {\rm Fe}^{2+} + {\rm Cu}^{2+} \\ {\rm Fe}^{2+} + {\rm Cu}^{2+} + {\rm OH}^- \\ {\rm Fe}^{2+} + {\rm Cu}^{2+} + 2{\rm OH}^- \\ {\rm Mn}^{2+} + {\rm Fe}^{3+} \\ {\rm Mn}^{2+} + {\rm Fe}({\rm OH})^{2+} \\ {\rm Mn}^{3+} + {\rm Fe}^{3+} + {\rm H}_2{\rm O} \end{array}$	R94 R95 R96 R97 R98 R99	$egin{array}{llllllllllllllllllllllllllllllllllll$	2700	Buxton et al. ³² estimated estimated Davies ¹²⁶ Davies ¹²⁶ Jacobsen et al. ²⁰²

ties in the manganese reactivity, manganese is expected to play a significant role in the catalytic conversion of sulfite into sulfate under low photolytic condition and high manganese concentrations.²³²

Then, reactions between iron(III) and copper(I) that yield iron(II) and copper(II) are taken up (R94–R96) (Table 18). These reactions have high kinetic constants and play a considerable role in the reactivity of iron in solution (cf. section 4.2.).

Even if this mechanism represents the topical knowledge of cloud chemistry, it presents a limitation due to the lack of laboratory data on the organic complexation of transition metal ions. In particular, in the mechanism, the organic complexation of iron is dominated by oxalate, implying that the model likely overestimates the importance of iron-oxalate photochemistry.

5. Summary and Concluding Remarks

This paper is concerned with the influence of transition metal ions on heterogeneous chemistry within clouds. Transition metals are initially in the atmospheric particulate phase. Gas reactions involving trace metals may occur directly at the surface of dry particles. However, the major atmospheric chemical effects of transition metals take place through homogeneous aqueous phase chemistry in wet aerosols, cloud droplets, and raindrops. Even at nanomolar concentrations, transition metal ions undergo catalytic and photocatalytic cycles in the liquid atmospheric water. TMI are transferred into liquid phase from solid particles by dissolution processes. Various field experiments report noticeable concentrations (up to 100 μ M) for dissolved trace metals in the atmospheric water: rainwater, cloud water, and fog water. Due to their abundance and their reactivity in atmospheric water as well as in aerosol particles, iron (Fe), copper (Cu), and manganese (Mn) are the most investigated transition metals.

In the first part (section 2), this review describes the source of TMI in the atmospheric liquid phases and the way they are transferred. This source is aerosol particles containing transition metals in various chemical forms. Aerosol particles are emitted in the atmosphere from both natural and anthropogenic sources: wind erosion, biomass and waste burning, industrial activities, and motor emissions. The chemical state and the amount of metals emitted depend on the source; there are large differences in composition between aerosol particles produced by combustion processes and those produced by mechanical erosion and sea spray drying. Wind erosion produces mineral aerosol particles in arid and semiarid areas, where metals are present in a mineral matrix, mainly as silicates and oxides, with relative abundance close to the natural soil abundance. Industrial production and combustion processes produce suspended solid particles, the metal-carrying matrices of which can be either mineral or organic. Dissolution processes control the actual amount of transition metals in the atmospheric liquid phases, and those processes depend on many factors. In particular, some innovative laboratory experiments of dissolution processes have been presented in this review. These experiments analyze the various parameters that drive the dissolution processes. The pH is a key parameter in the dissolution of transition metals because the dissolution of solid particles influences the pH through the release of neutralizing and acidifying species and the dissolution process is more effective at low pH values. The physicochemical nature of aerosol particles also affects its solubility. The great diversity of aerosol particles complicates the identification of the chemical bonds in the particles that play an important role in the dissolution processes. Moreover, the transport of aerosol particles, and in particular the mixing and the weathering that occur during this transport, modifies the solubility of aerosols in atmospheric aqueous phases. The weathering of aerosol particles is itself governed by the solubility of the aerosol particles and thus by their physicochemical nature. The kinetics of the solid-phase dissolution competes with chemical kinetics in the homogeneous aqueous phase. Indeed, transition metals, once dissolved in the atmospheric aqueous phase, will react with various compounds such as HO_x radicals, sulfur compounds, and organic compounds. To understand the impact of TMI on atmospheric chemistry, chemical and dissolution kinetics should both be considered in cloud chemistry model to assess their relative contribution. Experimental laboratory studies are designed to assess the dissolution process as a function of environmental conditions. The assessment of the concentrations of dissolved metal is very difficult and requires a real effort to parametrize the effect of each factors. In this context, new laboratory studies may be required, especially under realistic conditions. Indeed, many data available from laboratory experiments have been obtained with particle loadings that are relatively high compared to environmental loadings. Furthermore, the dramatic gradient in pH and ionic strength sustained by aerosol during cloud process is not realistically simulated. Finally, laboratory simulations up to now did not consider organic ligands or biological activities that will act to enhance metals solubility. In view of these caveats, the attempt to parametrize metals dissolution will be limited to some very simple model calculations designed to determine dissolution kinetics, as long as laboratory simulations will be not more realistic.

In the second part (section 3), this paper focuses on available measurements of transition metal ion concentrations and speciations in atmospheric liquid phases. Speciation discriminates the main oxidation states of a chemical species; for instance, iron is essentially present under two oxidation states in liquid atmospheric phases: +II and +III. These measurements in fog and cloud droplets, in raindrops, and in snow show great heterogeneity with higher concentration levels in polluted conditions than in less polluted ones. TMI concentrations depend on many factors, such as meteorological conditions, air mass origin, primary emissions, and droplet properties. More work is needed to correlate TMI concentrations with these environmental parameters. The speciation of TMI among their oxidation states is the key parameter of their reactivity in solution. In the atmospheric liquid phase, the speciation of dissolved iron, copper, and manganese is still subject to major uncertainties. This is especially the case for manganese and copper, for which very few measurements are available. The speciation of iron in atmospheric liquid water exhibits great variability because it depends on many factors such as the concentration level of oxidants (e.g., HO₂/O₂⁻, H₂O₂, O₃, OH, O₂), of reductants [HO₂/O₂⁻, sulfur(IV)], of complexing agents (e.g., organic ligands such as oxalate and formate), and of the actinic flux intensity. The trend in iron speciation measurements shows higher concentrations of iron(II) than of iron(III) during the daytime and the opposite at night. To conclude, whatever the goal of the transition metals measurements is, that is, concentration or redox speciation, it is crucial that scientists define and follow some common rules. As shown in this paper, many research groups have worked in this field, but there is no clear connection between their results: thus, it is impossible to compare them directly. The first important point is the notion of solubility of transition metals. The scientific community must clarify the notion of soluble transition metals. Which kind of species should be considered as soluble, that is, complexes or colloids, and which size should be considered as limiting for soluble species? If we want to compare the results between different sites (rural or marine or urban), it is necessary to have the same references. Second, given the rapid (photochemical) redox reactions of iron(III) and iron(II) species, which occur on time scales of a few minutes, it is essential to develop techniques that can rapidly sample and characterize atmospheric waters and aerosols for their iron speciation, ideally within minutes (or less) of sampling. The third important aspect for the optimization and the validation of the results in this field of research is to keep in mind that experimentations must be carried out in a global and multidisciplinary program. The determination of meteorological, physicochemical, and chemical parameters in the same time is essential to reach solid conclusions about the implication of transition metal in the atmosphere. Moreover, the multiplication of the

measurements over a long period of time (on the order of years) is also a guarantee of success for such studies. Finally, the precise characterization of transition metals (organic speciation) in the atmosphere will be the challenge for the next decades to clarify and understand better the role of such metal in atmospheric chemistry. Indeed, the chemical structure (aquacomplexes, organic complexes, aggregates, colloids, oxides) in which the metal is present is a key point to know the chemical and photochemical impact on the atmospheric chemistry.

In the last part (section 4), the paper presents the reactivity of TMI in atmospheric liquid phases. Weschler et al.¹¹⁹ first attempted to review the complex redox chemistry of transition metals in atmospheric water. They indicated that TMI could play an important role in the radical chemistry of the atmospheric liquid phases via the production of OH radical by photolysis of iron(III) complexes and via the redox chemistry of TMI with HO₂/O₂⁻ radicals and H_2O_2 . They also emphasized the ability of TMI to catalyze the sulfur(IV) to sulfur(VI) oxidation by dissolved oxygen in solution. Finally, they pointed out that a number of organic processes in atmospheric liquid phases may involve TMI. Following this work, some aspects of the transition metal redox chemistry in atmospheric waters have been investigated through different approaches: laboratory studies, field experiments, and calculations from cloud chemistry models. TMI chemistry leads to the production of OH radical in the aqueous phase through photolysis of iron(III)hydroxo species, through photolysis of iron(III)organic complexex, and through the Fenton reaction between H_2O_2 and iron(II). This last reaction is still subject to much controversy as to whether the chemical mechanism involves the production of OH radical or the production of an intermediate oxidant species. Further laboratory investigations are needed to characterize the Fenton chemistry precisely. Iron and copper have been shown to be very reactive with HO₂/ O_2^- radicals and to catalyze the self-reaction of HO₂/ O_2^- efficiently, to yield H_2O_2 . Calculations from cloud chemistry models suggest that depletion of HO_r by reactions between copper and HO₂/O₂⁻ radical significantly slows O_3 production in polluted clouds. Catalysis of sulfur(IV) autoxidation by iron and manganese has been investigated in many laboratory studies. The coexistence of two or more catalytically active transition metals in atmospheric liquid water exhibits a significant synergy effect on sulfur(IV) autoxidation. Model studies show that catalyzed metal reactions are prevalent in aqueous sulfate formation in fog droplets during the night, when H_2O_2 and O_3 concentrations are low. Catalyzed sulfur(IV) autoxidation may significantly contribute to the total oxidation of SO_2 in continental clouds and in fog droplets under wet conditions with low photochemical activity. At this time, it is still complicated to discern which transition metal is the most important catalyst in the catalytic oxidation of sulfur(IV), and the catalytic activity of TMI measured in the laboratory under known reaction conditions cannot be extrapolated to atmospheric conditions, because the overall reaction process is very sensitive to the presence of other oxidants such as H_2O_2 , O_3 , or various radicals. TMI interact directly with organic compounds in aqueous phase in two ways. On the one hand, organic ions, such as formate and oxalate. can complex TMI and then modify their reactivity and their photoreactivity; on the other hand, TMI can interact with peroxyl radicals and organic hydroperoxide compounds via Fenton-like reactions in a way similar to their interaction with hydroperoxyl/ superoxide ion radicals and hydrogen peroxide. TMI, through their direct contribution to HO_x chemistry, also have an indirect effect on organic compounds. On the basis of this review of TMI reactivity, a chemical mechanism for TMI chemistry (for iron, copper, and manganese) in atmospheric liquid phases is proposed for use in cloud chemistry models (see Tables 13–18). This section on reactivity emphasizes several crucial gaps in our knowledge. First, the mechanism of Fenton chemistry still needs to be elucidated. Second, the reactivity of the ferryl ion in atmospheric liquid waters need to be investigated, especially if it is the intermediate in the Fenton chemistry. Finally, further investigations are needed on interactions between TMI and organic compounds such as Fenton-like reactions and complexation.

It should be clear from the present contribution that much work is still needed to solve the uncertainties of TMI chemistry within clouds. There should be a strong degree of interaction among workers performing field measurements, modelers, and those making laboratory measurements. Comparisons between field measurements and numerical model calculations of atmospheric chemistry often reveal discrepancies, spurring further laboratory work. The results of laboratory studies are incorporated into atmospheric models, improving (one hopes ...) their agreement with field measurements. These past 15-20 years have seen a real advance in our knowledge of the detailed chemistry of TMI occurring in the atmosphere, and there is no reason to anticipate that this will not continue!

6. Acknowledgments

This work was supported by the Programme National de Chimie Atmosphérique (PNCA) of the Institut des Sciences de l'Univers (INSU). We gratefully acknowledge Pascal Bleuyard for his invaluable computer support as well as his input and patience in revising the paper.

7. References

- (1) Feingold, G.; Kreidenweis, S. J. Geophys. Res. 2000, 105, 24351.
- (2) Lelieveld, J.; Crutzen, P. Nature 1990, 343, 227.
- (3) Ramanathan, V.; Cess, R. D.; Harrison, E. F.; Minnis, P.; Backstrom, B. R.; Ahmad, E.; Hartmann, D. Science 1989, 143, 57
- (4) Köhler, H. Meteorol. Z. 1921, 38, 168.
- (5) Feingold, G.; Kreidenweis, S. J. Geophys. Res. 2002, 107, 4687, doi 10.1029/2002JD002054.
- (6) Hegg, D. A. IGACtivities Newsl. 2001, 23, 3.
- (7) Twomey, S. Atmos. Environ. 1974, 8, 1251.
- (8) Albrecht, B. Science 1989, 245, 1227.
- Calvert, J. G.; Lazrus, A.; Kok, G. L.; Heikes, B. G.; Walega, J. (9)G.; Lind, J.; Cantrell, C. A. Nature 1985, 317, 27.
- (10) Mégie, G. Ozone, l'équilibre rompu; Presses du CNRS: Paris, France, 1989; 260 pp.

- (11) Ruggaber, A.; Dlugi, R.; Bott, A.; Forkel, R.; Hermann, H.; Jacobi, H.-W. Atmos. Environ. 1997, 31, 3137.
 Strekowski, R. S.; Remorov, U. R.; George, C. J. Phys. Chem. A
- 2003, 107, 2497.
- (13) Fuzzi, S., et al. Contr. Atmos. Phys. / Beitr. Phys. Atmosph. 1998, 71.3.
- (14) Wobrock, W., et al. Atmos. Res. 2001, 58, 231, doi 10.1016/ S0169-8095(01)00094-1.
- (15)Voisin, D.; Legrand, M.; Chaumerliac, N. J. Geophys. Res. 2000, 105, 6817
- (16), 6017.
 (16) Noone, K. J.; Charlson, R. J.; Covert, D. S.; Ogren, J. A.; Heintzenberg, J. Aerosol Sci. Technol. 1983, 10, 517.
 (17) C. Hett, J. L.; Oberhelser, P.; Stechol. 1983, 10, 517. (17)
- Collett, J., Jr.; Oberholzer, B.; Staehelin, J. Atmos. Environ. 1993, 27A, 33. (18) Collett, J., Jr.; Iovinelli, R.; Demoz, B. Atmos. Environ. 1995,
- 29, 1145(19) Graedel, T. E.; Weschler, C. J. Rev. Geophys. Space Phys. 1981,
- 19, 505. (20) Jacob, D. J.; Gottlieb, E. W.; Prather, M. J. J. Geophys. Res. 1989,
- 94, 12975. (21) Walcek, C. J.; Yuan, H.; Stockwell, W. R. Atmos. Environ. 1997,
- 31, 1221. (22) Herrmann, H.; Ervens, B.; Jacobi, H.-W.; Wolke, R.; Nowacki,
- P.; Zellner, R. J. Atmos. Chem. 2000, 36, 231. (23) Deguillaume, L.; Leriche, M.; Monod, A.; Chaumerliac, N. Atmos.
- Chem. Phys. 2004, 4, 95.
- (24) Galloway, J. N.; Gaudry, A. Atmos. Environ. 1984, 18, 2649.
 (25) Behra, P.; Sigg, L. Nature 1990, 344, 419.
- (26) Kotronarou, A.; Sigg, L. Environ. Sci. Technol. 1993, 27, 2725.
- (27) Brandt, C.; van Eldik, R. *Chem. Rev.* **1995**, *95*, 119.
 (28) Sedlak, D. L.; Hoigné, J.; David, M. M.; Colvile, R. N.; Seyffer, E.; Acker, K.; Wiepercht, W.; Lind, J. A.; Fuzzi, S. Atmos. Environ. 1997, 31, 2515.
- (29) Siefert, R. L.; Johansen, A. M.; Hoffmann, M. R. J. Air Waste Manag. Assoc. 1998, 48, 128
- (30) Moore, K. F.; Sherman, D. E.; Reilly, J. E.; Collett, J. L. Atmos. Environ. 2004, 38, 1389.
- (31) Rush, J. D.; Bielski, B. H. J. J. Phys. Chem. 1985, 89, 5062
- (32) Buxton, G. V.; Mulazzani, Q. G.; Ross, A. B. J. Phys. Chem. Ref. Data 1995, 24, 1055.
- (33) Gozzo, F. J. Mol. Catal. A: Chem. 2001, 171, 1.
- (34) Turekian, K. K. Geochemical distribution of the elements. In Encyclopedia of Sciences and Tecnology; McGraw Hill: New York, 1971; Vol. 4.
- (35) Hofmann, H.; Hoffmann, P.; Lieser, K. Fresenius' J. Anal. Chem. 1991, 340, 591-597.
- (36) Pactya, J. Source inventories for atmospheric trace metals. In Atmospheric Particles; Harrison, R., Grieken, R. V., Eds.;
- Chickey Parateses, Tarrison, K., Grieken, K. V., Eds.;
 Wiley: Chichester, U.K., 1998.
 (37) Hoffmann, P.; Dedik, A. N.; Ensling, J.; Weinbruch, S.; Weber, S.; Sinner, T.; Gutlich, P.; Ortner, H. M. J. Aerosol Sci. 1996, 27, 325.
- (38) Nriagu, J. Nature 1989, 338, 47.
- (39) Coudé-Gaussen, G.; Rognon, P.; Coustumer, M. L. Incorporation progressive des poussiéres Sahariennes aux limons des îles orientales. C. R. Acad Sci., Ser. II 1994; Vol. 319, pp 1343-1349.
- (40) Rognon, R.; Coudé-Gaussen, G.; Revel, M.; Grousset, F.; Pedemay, P. Sedimentology 1996, 43, 359.
- (41) Eltayeb, M. A. H.; Injuk, J.; Maenhaut, W.; Grieken, R. V. J. Atmos. Chem. 2001, 40, 247.
- (42) Jickells, T. D., et al. Science 2005, 308, 67.
 (43) Hogg, C. S.; Malden, P. J.; Meads, R. E. Miner. Mag. 1975, 40, 89.
- (44) Rengasamy, P. Clays Clay Miner. 1976, 20, 265.
- (45) Kopcewicz, B.; Kopcewicz, M. Struct. Chem. 1991, 2, 303.
- (46) Kopcewicz, B.; Kopcewicz, M. Hyperfine Interact. 1992, 71, 1457.
- (47) Kopcewicz, B.; Kopcewicz, M. Atmos. Environ. 2001, 35, 3739. (48) Pehkonen, S. O.; Slefert, R.; Erel, Y.; Webb, S.; Hoffmann, M.
- R. Environ. Sci. Technol. **1993**, 27, 2056. Weber, S.; Hoffmann, P.; Ensling, J.; Dedik, A. N.; Weinbruch, S.; Miehe, G.; Gütlich, P.; Ortner, H. M. J. Aerosol Sci. **2000**, (49)31,987
- (50) Lafon, S.; Rajot, J.-L.; Alfaro, S. C.; Gaudichet, A. Atmos. Environ. 2004, 38, 1211.
- Patel, K.; Shukla, A.; Tripathi, A. N.; Hoffmann, P. Geochim. Cosmochim. Acta 2004, 68, 2623. Hlavay, J.; Polyak, K.; Molnar, A.; Meszaros, E. Analyst 1998, (52)
- 123.859
- (53) Bikkes, M.; Polyak, K.; Hlavay, J. J. Anal. At. Spectrom. 2001, 1116, 74.
- (54) Voutsa, D.; Samara, C. Atmos. Environ. 2002, 36, 3583.
- (55) Gunst, S.; Weinbruch, S.; Wentzel, M.; Ortner, H. M.; Skogstad,
- A.; Hetland, S.; Thomassen, Y. J. Environ. Monit. 2000, 2, 65. Vassilev, S.; Eskenazy, G. M.; Vassileva, C. Fuel Process. Technol. 2001, 72, 103. (56)
- Huggins, F. E.; Huffman, G. P.; Robertson, J. D. J. Hazard. (57)Mater. 2000, 74, 1.
- Takeda, K.; Marumoto, K.; Minamikawa, T.; Sakugawa, H.; Fujiwara, K. Atmos. Environ. 2000, 34, 4525. (58)

- (59) Desboeufs, K. V.; Sofikitis, A.; Losno, R.; Colin, J. L.; Ausset, P. Chemosphere 2005, 58, 195.
- (60) Zhuang, G.; Yi, Z.; Duce, R. A.; Brown, P. R. Global Biochem. Cycles 1992, 6, 161.
- (61) Sulzberger, B.; Laubscher, H. Mar. Chem. 1995, 50, 103.
 (62) Desboeufs, K. V. Processus de dissolution des aérosols atmosphériques au sein de la goutte d'eau nuageuse. Thèse de
- (63) Hoffmann, P.; Dedik, A. N.; Deutsch, F.; Sinner, T.; Weber, S.; Eichler, R.; Sterkel, S.; Sastri, C. S.; Ortner, H. M. Atmos. Environ. 1997, 31, 2777.
- Wilkinson, R. J.; Reynolds, B.; Neal, C.; Hill, S.; Neal, M.; Harrow, M. L. Hydrol. Earth Syst. Sci. 1997, 1, 557. Colin, J. L.; Jaffrezo, J. L.; Gross, J. M. Atmos. Environ. 1990, (64)
- (65)24A, 537.
- (66) Thompson, A. M. Geochem. Cosmochim. Acta 1964, 28, 1273.
- (67) Luck, J. M.; Ben Othman, D. Chem. Geol. 2002, 182, 443.
- (68) Williams, P. T.; Radojević, M.; Clarke, A. G. Atmos. Environ. 1988, 22, 1433.
- (69)Jickells, T. D.; Davies, T. D.; Tranter, M.; Landsberger, S.; Jarvis, K.; Abrahams, P. Atmos. Environ. 1992, 26A, 393.
- (70) Nimmo, M.; Fones, G. R.; Chester, R. Croat. Chem. Acta 1998, 71, 323
- (71) Freydier, R.; Dupre, B.; Lacaux, J. P. Atmos. Environ. 1998, 32, 749.
- Spokes, L. J.; Jickells, T. D.; Lim, B. Geochim. Cosmochim. Acta (72)**1994**, *58*, 3281.
- Chester, R.; Lin, F. J.; Murphy, K. J. T. Environ. Technol. Lett. (73)1989, 10, 887.
- (74) Kyotani, J.; Iwatsuki, M. Atmos. Environ. 2002, 36, 639.
- (75) Lindberg, S. E.; Harriss, R. C. J. Geophys. Res. 1983, 88, 5091.
- (76) Zhu, X.; Prospero, J. M.; Savoie, F. J. M. D. L.; Brass, G. W. Mar. Chem. 1992, 38, 91.
- (77) Al-Momani, I. F. Atmos. Environ. 2003, 37, 4507.
- (78) Kieber, R. J.; Peake, B.; Willey, J. D.; Jacobs, B. Atmos. Environ. **2001**, *35*, 6041.
- (79)Statham, P. J.; Chester, R. Geochim. Cosmochim. Acta 1988, 52, 2433.
- (80) Losno, R.; Bergametti, G.; Buat-Menard, P. Geophys. Res. Lett. 1988, 15, 1389.
- (81)Chester, R. Sci. Geol. 1990, 88, 23.
- (82) Chester, R.; Nimmo, M.; Corcoran, P. A. Mar. Chem. 1997, 58, 293
- (83) Lim, B.; Jickells, T. D.; Colin, J. L.; Losno, R. Global Biogeochem. Cycles 1994, 8, 349.
 (84) Pedersen, A. J.; Ottosen, L. M.; Villumsen, A. J. Hazard. Mater.
- (84) Pedersen, A. J., S., Construction 2003, 100, 65.
 (85) Chester, R.; Nimmo, M.; Fones, G. R.; Keyse, S.; Zhang, J. Atmos. Environ. 2000, 34, 3875.
 (86) Desboeufs, K. V.; Losno, R.; Vimeux, F.; Cholbi, S. J. Geophys. Base 1000, 104, 21287.
- (80) Becs 1999, 104, 21287.
 (87) Stumm, W. Chemical processes at the particle–water interface. In Aquatic Surface Chemistry; Stumm, W., Ed.; Wiley-Interscience: New York, 1987
- (88) Huertas, F. J.; Chou, L.; Wollast, R. Geochim. Cosmochim. Acta **1999**, *63*, 3261.
- Millet, M.; Wortham, H.; Mirabel, P. Atmos. Environ. 1995, 29, (89)2625.
- (90) Desboeufs, K. V.; Losno, R.; Colin, J. L. Anal. Bioanal. Chem. **2003**, 375, 567.
- Praharaj, T.; Powell, M. A.; Hart, B. R.; Tripathy, S. *Environ. Int.* **2002**, *27*, 609. (91)
- (92) Loye-Pilot, M. D.; Martin, J. M.; Morelli, J. Nature 1986, 321, 427
- (93) Chester, R.; Keyse, S.; Corcoran, P. A.; Nimmo, M. Factors controlling the solubility of Pb in rainwaters: the sol id state speciation of Pb in scavenged aerosols. In Water Pollution Research Report 32, EROS 2000; Martin, J.-M., Barth, H., Eds.; European Commission: Luxembourg, 1995.
- (94) Alabdula'aly, A. I.; Khan, M. Arch. Environ. Contam. Toxicol. 2000, 39, 66.
- (95) Chester, R.; Nimmo, M.; Keyse, S. The influence of Saharan and Middle eastern desert-derived dust on the trace metal composition of Mediterranean aerosol and rainwaters: an overview. In The Impact of Desert Dust across the Mediterranean; Guerzoni, S., Chester, R., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996.
- (96) Lefebvre-Drouet, E.; Rousseau, M. F. Soil Biol. Biochem. 1995, 27, 1041.
- (97) Sigg, L.; Stumm, W.; Zobrist, J.; Zürcher, F. Chimia 1987, 41, 159.
- Galloway, J. N.; Thornton, J. D.; Norton, S. A.; Volchok, H. L.; McLean, R. A. N. Atmos. Environ. **1982**, *16*, 1677. (98)
- (99) Benjamin, M. M.; Leckie, J. O. Environ. Sci. Technol. 1981, 15, 1050.
- Velay, J. M.; A., R. L.; Desboeufs, K. V.; Colin, J. L.; Sofikitis, (100)A. Factors influencing iron speciation in atmospheric water. In Proceedings of the EAC 2003, Madrid, Sept, 2003. J. Aerosol Sci. 2003, 34-2, 757.

- (101) Sofikitis, A. Sources et évolution des formes redox du fer en phase aqueuse atmosphèrique. Ph.D. thesis, University of Paris VII, 2004.
- (102) Zhu, X.; Prospero, J. M.; Millero, F. J. J. Geophys. Res. 1997, 102, 21297.
- (103) Deutsch, F.; Hoffmann, P.; Ortner, H. M. Fresenius' J. Anal. Chem. 1997, 357, 105.
- (104) Anderson, J. R.; Buseck, P. R.; Patterson, T. L.; Arimoto, R. Atmos. Environ. 1996, 30, 319.
- (105) Levin, Z.; Ganor, E. The effect of desert particles on cloud and rain formation in the eastern Mediterranean. In The Impact of Desert Dust across the Mediterranean; Guerzoni, S., Chester, R., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996
- (106) Busek, P. R.; Posfai, M. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 3372.
- (107) Davis, B. L.; Jixiang, G. Atmos. Environ. 2000, 34, 2703.
 (108) Gao, Y.; Anderson, J. R. J. Geophys. Res. 2001, 106, 18037.
- (109) Song, C. H.; Carmichael, G. R. Atmos. Env. 1999, 33, 2203.
- (110) Özsoy, T.; Saydam, A. C. J. Atmos. Chem. 2001, 40, 41.
- (111) Hamilton-Taylor, J.; Giusti, L.; Davison, W.; Tych, W.; Hewitt, C. N. Colloids Surf. A: Physicochem. Eng. Aspects 1997, 120, 205.
- (112) Desboeufs, K. V.; Losno, R.; Colin, J. L. J. Atmos. Chem. 2003, 46, 159.
- (113) Kieber, R. J.; Skrabal, S. A.; Smith, C.; Willey, J. D. Environ. Sci. Technol. 2005, 39, 1576.
- (114) Flynn, C. M., Jr. Chem. Rev. 1984, 84, 31.
- (115) Lopes, L.; de Laat, J.; Legube, B. Inorg. Chem. 2002, 41, 2505.
- (116) Faust, B. C.; Hoigné, J. H. Atmos. Environ. 1990, 24A, 79.
- (117) Sommer, B. A.; Margerum, D. W. Inorg. Chem. 1970, 9, 2517.
- (118) Stumm, W.; Morgan, J. In Aquatic Chemistry, 2nd ed.; Wiley: New York, 1981.
- (119)Weschler, C. J.; Mandich, M. L.; Graedel, T. E. J. Geophys. Res. 1986, 91, 5189.

- (122) Zappoli, S.; Andracchio, A.; Fuzzi, S.; Facchini, M. C.; Gelencsér, A.; Kiss, G.; Krivacsy, Z.; Molnar, A.; Mészaros, E.; Hansson, H.-C.; Rosman, K.; Zebühr, Y. Atmos. Environ. **1999**, *33*, 2733.
- (123) Facchini, M. C.; Fuzzi, S.; Zappoli, S.; Andracchio, A.; Gelencsér, A.; Kiss, G.; Krivácsy, Z.; Mészáros, E.; Hansson, H.-C.; Alsberg, T.; Zebühr, Y. J. Geophys. Res. 1999, 104, 26821.
- (124) Kiss, G.; Tombácz, E.; Varga, B.; Alsberg, T.; Persson, L. Atmos. Environ. 2003, 37, 3783.
- (125) Feng, Y.; Möller, D. J. Atmos. Chem. 2004, 48, 217.
- (126) Davies, G. Coord. Chem. Rev. 1969, 4, 199.
- (127) Moffet, J. W.; Zika, R. G. The photochemistry of copper complexes in sea water. In *Photochemistry of Environmental Aquatic Systems*; Zika, R. G., Cooper, W. J., Eds.; Advances in Chemistry Series 327; American Chemical Society: Washington, DC, 1987; pp 116-130.
- (128) Sykora, J. Coord. Chem. Rev. 1997, 159, 95.
- (129) Achterberg, E. P.; van Elteren, J. T.; Kolar, Z. I. Environ. Sci.
- Technol. 2005, 36, 914. (130) Berglund, J.; Elding, L. I. Atmos. Environ. 1995, 29, 1379.
- (131) Fronaeus, S.; Berglund, J.; Elding, L. Inorg. Chem. 1998, 37, 4939
- (132) Schroeder, W. H.; Dobson, M.; Kane, D. M.; Johnson, N. D. J. Air Pollut. Control Assoc. 1987, 37, 1267.
- (133) Xue, H.; Conçalves, M. L. S.; Reutlinger, M.; Sigg, L.; Stumm, W. Environ. Sci. Technol. **1991**, 25, 1716. (134) Spokes, L. J.; Campos, M. L. A. M.; Jickells, T. D. Atmos.
- Environ. 1996, 30, 3959.
- (135) Nimmo, M.; Fones, G. R. Atmos. Environ. 1997, 31, 693.
- (136) Kieber, R. J.; Skrabal, S. A.; Smith, C.; Willey, J. D. Environ. Sci. Technol. 2004, 38, 3587, doi 10.1021/es030698r.
- (137) Conklin, M. H.; Hoffmann, M. R. Environ. Sci. Technol. 1988, 22, 883.
- (138) Conklin, M. H.; Hoffmann, M. R. Environ. Sci. Technol. 1988, 22.891
- (139) Conklin, M. H.; Hoffmann, M. R. Environ. Sci. Technol. 1988, 22,898
- (140) Warneck, P. Ber. Bunsenges. Phys. Chem. 1992, 99, 59.
- (141) Hoigné, J.; Zuo, Y.; Nowell. In Aquatic and Surface Photochemistry; Helz, G. R., Zepp, R., Crosby, D., Eds.; Lewis Publishers: Boca Raton, FL, 1994
- (142) Schwanz, M.; Warneck, P.; Preiss, M.; Hoffmann, P. Contr. Atmos. Phys. 1998, 70, 131.
- (143) Erel, Y.; Pekhonen, S. O.; Hoffmann, M. J. Geophys. Res. 1993, 98, 18423
- (144) Sinner, T.; Hoffmann, P.; Ortner, H. M. Beitr. Phys. Atmos. 1994, 67, 353.
- (145) Rao, X.; Collett Jr., J. L. J. Atmos. Chem. 1998, 30, 273.
- (146) Deutsch, F.; Hoffmann, P.; Ortner, H. M. J. Atmos. Chem. 2001, 40, 87.

- (147) Kieber, R. J.; Willey, J. D.; Williams, K. H.; Skrabal, S. A.; Avery, G. B. Mar. Chem. 2001, 73, 83. (148) Fuzzi, S., et al. Tellus 1992, 44B, 448, doi 10.1034/j.1600-
- 0889.1992.t01-4-00002.x.
- (149) Marinoni, A.; Laj, P.; Abida, O.; Mailhot, G. J. Phys. IV Fr. 2003, 107, 823.
- (150) Parazols, M.; Marinoni, A.; Amato, P.; Abida, O.; Laj, P.; Mailhot, G. Atmos. Environ. 2005, submitted for publication.
- (151) Arakaki, T.; Faust, B. C. J. Geophys. Res. 1998, 103, 3487.
- (152) Sellegri, K.; Laj, P.; Peron, F.; Dupuy, R.; Legrand, M.; Pre-unkert, S.; Putaud, J.-P.; Cachier, H.; Ghermandi, G. J. Geophys. Res. 2003, 108, 433, doi 10.1029/2002JD002747.
- (153) Arimoto, R.; Duce, R. A.; Hewitt, A. D.; Boldi, R.; Hudson, A. J. Geophys. Res. 1990, 92, 8465.
- (154) Halstead, M. J. R.; Cunninghame, R. G.; Hunter, K. A. Atmos. Environ. 2000, 34, 665.
- (155) Patel, K.; Shukla, A.; Tripathi, A. N.; Hoffmann, P. Water, Air Soil Pollut. 2001, 130, 463.
- (156) Jacob, D. J. J. Geophys. Res. 1986, 91, 9807.
- (157) Miller, D.; Byrd, J.; Perona, M. Water, Air Soil Pollut. 1987, 32, 329.
- (158) Siefert, R.; Johansen, A.; Hoffmann, M.; Pehkonen, S. J. Air Waste Manag. Assoc. 1997, 48, 128.
 (159) Pruppacher, H. R.; Klett, J. D. Microphysics of Clouds and
- Precipitation, 2nd ed.; Reidel Publishing: Boston, MA, 1997; 954 pp.
- (160) Kogut, M. B.; Voelker, B. M. Environ. Sci. Technol. 2001, 35, 1149
- (161) Zafiriou, O. C.; Voelker, B. M.; Sedlak, D. L. J. Phys. Chem. A 1998, 102, 5693.
- (162)Voelker, B. M.; Sedlak, D. L.; Zafiriou, O. Environ. Sci. Technol. 2000, 34, 1036.
- Goldstone, J. V.; Voelker, B. M. Environ. Sci. Technol. 2000, 34, (163)1043
- (164) M. Piechowski von, T. N.; Hoignè, T.; Buhler, R. Ber. Bunsenges. Phys. Chem. 1993, 97, 762.
 (165) Pehkonen, S. O.; Erel, Y.; Hoffmann, M. R. Environ. Sci. Technol.
- **1992**, 26, 1731. (166) Dedik, A. N.; Hoffmann, P. Atmos. Environ. **1992**, 26A, 2545.
- (167) Münger, J. W.; Jacob, D. J.; Waldman, J. M.; Hoffmann, M. R. J. Geophys. Res. 1983, 88, 5109.
- (168) Faust, B. C. A review of the photochemical redox reactions of iron(III) species in atmospheric, oceanic, and surface waters: influences on geochemical cycles and oxidant formation. In Aquatic Surface and Photochemistry; Helz, G., Ed.; CRC Press: Boca Raton, FL, 1994.
- (169) Warneck, P. In Chemistry of the Natural Atmosphere, 2nd ed.; Dmowska, R., Holton, J., Rossby, H., Eds.; Academic Press: London, U.K., 2000; Vol. 71.
- (170) Jayson, G. G.; Parson, B. J.; Swallow, A. J. J. Chem. Soc.
- (170) Jayson, G. G.; Parson, B. J.; Swallow, A. J. J. Chem. Soc. Faraday Trans. 1973, 69, 236.
 (171) Wiesinger, G.; Ismail, S. S. Hyperfine Interact. 1990, 57, 2319.
 (172) Ervens, B.; George, C.; Williams, J. E.; Buxton, G. V.; Salmon, G. A.; Bydder, M.; Wilkinson, F.; Dentener, F.; Mirabel, P.; Wolke, R.; Herrmann, H. J. Geophys. Res. 2003, 108.
 (173) Rabani, J.; Klug-Roth, D.; Lilie, J. J. Phys. Chem. 1973, 77, 1169.
 (174) Bielski, B. H. J.; Cabelli, D. E.; Arudi, R. L.; Ross, A. B. J. Phys. Chem. Ref. Data 1985, 14, 1041.
 (175) Kieher, R. J.; Hardison, D. B.; Whitehead, R. F.; Willey, J. D.
- (175) Kieber, R. J.; Hardison, D. R.; Whitehead, R. F.; Willey, J. D. Environ. Sci. Technol. 2003, 37, 4610, doi 10.1021/es030345s.
 (176) Lair J. Lair J. Alman, Barling, 2000, 24, 1000
- (176) Jans, U.; Hoigné, J. Atmos. Environ. 2000, 34, 1069.
- Pehkonen, S. O.; Erel, Y.; Siefert, R.; Klewicki, K.; Hoffmann,
 M. R.; Morgan, J. J. Isr. J. Earth Sci. 1994, 43, 279. (177)
- (178) Graedel, T. E.; Mandich, M. L.; Weschler, C. J. J. Geophys. Res. **1986**, *91*, 5205.
- (179) Martin, L. R.; Hill, M. W. Atmos. Environ. 1987, 21, 1487.
- (180) Zuo, Y.; Hoigné, J. Environ. Sci. Technol. 1992, 26, 1014.
 (181) Siefert, R. L.; Pehkonen, S. O.; Erel, Y.; Hoffmann, M. R.
- Geochim. Cosmochim. Acta 1994, 58, 3271.
- (182) Jacob, D. J. Atmos. Environ. 2000, 34, 2131.
- (183) Chameides, W. L.; Davis, D. D. J. Geophys. Res. 1982, 87, 4863.
 (184) Lelieved, J.; Crutzen, P. J. J. Atmos. Chem. 1991, 12, 229.

- (185) Losno, R. *Phys. Chem. Earth (B)* **1999**, *24*, 281.
 (186) Leriche, M.; Voisin, D.; Chaumerliac, N.; Monod, A.; Aumont, B. Atmos. Environ. 2000, 34, 5015, doi 10.1016/S1352-2310(00)-00329-0.
- (187) Evans, M. G.; Uri, N. Nature 1949, 164, 404.
- (188) Bates, H. G. C.; Uri, N. J. Am. Chem. Soc. 1953, 75, 2554.
- (189) Feng, Y.; Nansheng, D. Chemosphere 2000, 41, 1137.
- (190) Mazellier, P.; Mailhot, G.; Bolte, M. New J. Chem. 1997, 21, 389.
 (191) Benkelberg, H. J.; Warneck, P. J. Phys. Chem. 1995, 99, 5214.
- (192) Anastasio, C.; Faust, B. C.; Allen, J. M. J. Geophys. Res. 1994, 99.8231
- (193) Fenton, H. J. H. J. Chem. Soc. 1894, 65, 899.
- (194) Dunford, H. B. Coord. Chem. Rev. 2002, 233/234, 311.
- (195) Ensing, B.; Baerends, E. J. J. Phys. Chem. A 2002, 106, 7902.
 (196) Buda, F.; Ensing, B.; Gribau, M. C. M.; Baerends, E. J. Chem. Eur. J. 2003, 9, 3436.

- (197) Ensing, B.; Buda, F.; Gribnau, M. C. M.; Baerends, E. J. J. Am. Chem. Soc. **2004**, *126*, 4355. (198) Barb, W. G.; Baxendale, J. H.; George, P.; Hargrave, K. R. Trans.
- Faraday Soc. 1951, 47, 461.
- (199) Barb, W. G.; Baxendale, J. H.; George, P.; Hargrave, K. R. Trans. Faraday Soc. 1951, 47, 591.
 (200) Logager, T.; Holcman, J.; Sehested, K.; Petersen, T. Inorg. Chem.
- 1992, 31, 3523.
- (201) Jacobsen, F.; Holcman, J.; Sehested, K. Int. J. Chem. Kinet. 1997, 29, 17.
- (202) Jacobsen, F.; Holcman, J.; Sehested, K. Int. J. Chem. Kinet. 1998, 30, 215.
- (203) Bray, W. C.; Gorin, M. H. J. Am. Chem. Soc. 1932, 54, 2124.
- (204) Cahill, A. E.; Taube, H. J. Am. Chem. Soc. 1952, 74, 2312.
 (205) Kremer, M. L. J. Phys. Chem. A 2003, 107, 1734.
- (206) Hug, S. J.; Leupin, O. Environ. Sci. Technol. 2003, 37, 2734.
 (207) Kremer, M. L. Phys. Chem. Chem. Phys. 1999, 1, 3595.
 (208) Kremer, M. L. J. Inorg. Biochem. 2000, 78, 255.

- (209) Matthijsen, J.; Builtjes, P. J. H.; Sedlak, D. H. Meterol. Atmos. Phys. 1995, 57, 43.
 (210) Matthijsen, J.; Builtjes, P. T. H.; Meijer, E. W.; Boersen, G.
- Atmos. Environ. 1997, 31, 3227.
- (211) Deguillaume, L.; Leriche, M.; Chaumerliac, N. Chemosphere 2005, in press.
- (212) Titoff, A. Z. Phys. Chem. 1903, 45, 641.
- (213) Tsunogai, S. Geochem. J. 1971, 5, 175.
- (214) Huss, A.; Kim, P. K.; Eckert, C. A. J. Am. Chem. Soc. 1978, 100, 6252.
- (215)Connick, R. E.; Zhang, Y.-X.; Lee, S.; Adamic, R.; Chieng, P. *Inorg. Chem.* **1995**, *34*, 4543. (216) Hegg, D. A.; Hoobs, P. V. *Atmos. Environ.* **1978**, *15*, 1597.
- (217) Martin, L. R. Kinetic Studies of Sulfite Oxidation. In Aqueous Solution Acid Precipitation Series; Calvert, J. G., Teasley, J. I., Eds.; Vol. 3: SO₂, NO and NO₂ Oxidation Mechanisms: Atmospheric Considerations; Butterworth Publishers: Boston, MA, 1984; pp 63-100.
- (218) Reddy, K. B.; Coichev, N.; van Eldik, R. J. Chem. Soc., Chem. Commun. 1991, 481.
- Reddy, K. B.; van Eldik, R. Atmos. Environ. 1992, 26A, 661. (219)
- (220) Brandt, C.; Fábián, I.; van Eldik, R. Inorg. Chem. 1994, 33, 687.
 (221) Ziajka, J.; Beer, F.; Warneck, P. Atmos. Environ. 1994, 28, 2549.
 (222) Warneck, P.; Ziajka, J. Ber. Bunsenges. Phys. Chem. 1995, 99,
- 59
- (223) Grgic, I.; Poznic, M.; Bizjak, M. J. Atmos. Chem. 1999, 33, 89. (224) Grgic, I.; Hudnik, V.; Bizjak, M.; Levect, J. Atmos. Environ. 1993, 27Ă, 1409.
- (225) Novic, M.; Grgic, I.; Poe, M.; Hudnik, V. Atmos. Environ. 1996, 30, 4191.
- Herrmann, H.; Ervens, B.; Reese, A.; Umschlag, T.; Wicktor, F.; Zellner, R. Free radical (NO₃, SO_4^- , Cl_2^-) oxidation reactions of (226)VOCs and their degradation products in the atmospheric aqueous phase. In Air Pollution Research Report 67: Chemical Mechanism of Atmospheric; Becker, K.-H., Angeletti, G., Eds.; Office for Official Publications of the European Communities: Luxembourg, 1999
- (227) Grgic, I.; Dovzan, A.; Bercic, G.; Hudnik, V. J. Atmos. Chem. 1998, 29, 315.
- (228) Sedlak, D. L.; Hoigné, J. Atmos. Environ. 1993, 27A, 2173.
- (229) Sedlak, D. L.; Hoigné, J. Atmos. Environ. 1994, 28, 1898.
 (230) Wolf, A.; Deutsch, F.; Hoffmann, P.; Ortner, H. M. J. Atmos.
- Chem. 2000, 37, 125.

- (231) Zuo, Y.; Zhan, J. Atmos. Environ. 2005, 39, 27.
 (232) Warneck, P. Fresenius' J. Anal. Chem. 1991, 340, 585.
 (233) Pandis, S. N.; Seinfeld, J. H.; Pilini, C. Atmos. Environ. 1992, 26, 2509.
- (234)Warneck, P. Phys. Chem. Chem. Phys. 1999, 1, 5471.
- (235) Faust, B. C.; Zepp, R. G. Environ. Sci. Technol. 1993, 27, 2517.
- (236) Cho, S. Y.; Carmichael, G. R. Atmos. Environ. 1986, 20, 1959.
- (237) Ansari, A.; Peral, J.; Domenech, X.; Rodriguez, R. Environ. Pollut. 1997, 3, 383.
- (238)Turro, N.; Lakshminarasimhan, P.; Jockusch, S.; O'Brien, S.; Grandcharov, S.; Redl, F. Nano Lett. **2002**, *2*, 325. (239) Pehkonen, S. O. Analyst **1995**, *120*, 2655.
- (240)Norton, R.; Roberts, J.; Huebert, B. Geophys. Res. Lett. 1988, 8, 235.
- (241) Joss, F.; Baltensperger, U. Atmos. Environ. 1991, 25A, 217.
- (242) Chebbi, A.; Carlier, P. Atmos. Environ. 1996, 30, 4233.
- (243) Laj, P., et al. Atmos. Environ. 1997, 31, 2589.
- (244) Vincze, L.; Papp, S. Talanta 1987, 34, 299.
- (245) Balzani, V.; Carassiti, V. In Photochemistry of Coordination Compounds; Academic Press: London, U.K., 1970.
- (246) Vincze, L.; Papp, S. J. Photochem. 1987, 36, 289.
 (247) Siefert, R. L.; Webb, S. M.; Hoffmann, M. R. J. Geophys. Res.
- **1996**, *101*, 14441. McKeen, S. A.; Hsie, E.-Y.; Trainer, M.; Tallamraju, R.; Liu, S. (248)(249) Mickeen, S. A., Hisle, E.-I., Hanner, M., Fahaliraju, K., Elu, S. C. J. Geophys. Res. 1991, 96, 809.
 (249) Zuo, Y. Geochim. Cosmochim. Acta 1995, 59, 3123.
 (250) Zuo, Y.; Deng, D. Geochim. Cosmochim. Acta 1999, 63, 3451.
 (251) Gunz, D. W.; Hoffmann, M. R. Atmos. Environ. 1990, 24A, 1601.

3430 Chemical Reviews, 2005, Vol. 105, No. 9

- (252) Thompson, A. M. Science 1992, 256, 1157.
- (253) Kieber, R.; Xianliang, Z.; Mopper, K. Limnol. Oceanogr. 1990, 35, 1503.
- (254) Stemmler, K.; Von Gunten, U. Atmos. Environ. 2000, 34, 4253.
- (255) Khaikin, G. I.; Alfassi, Z. B.; Huie, R. E.; Neta, P. J. Phys. Chem. 1996, 100, 7072.
 (256) Chevallier, E.; Jolibois, R. D.; Meunier, N.; Carlier, P.; Monod, A. Atmos. Environ. 2004, 38, 921.
- (257) Berglund, J.; Fronaeus, S.; Elding, L. I. Inorg. Chem. 1993, 32,
- 4527(258) Pasiuk-Bronikowska, W.; Bronikowski, T. Chem. Eng. Sci. 1981,
- 36.215.
- (259) Hoffmann, M. R.; Jacob, D. J. Kinetics and mechanisms of the catalytic oxidation of dissolved sulfur dioxide in aqueous solution: an application to nighttime fog water chemistry. In Aqueous Solution Acid Precipitation Series; Calvert, J. G., Teasley, J. I., Eds.; Vol. 3: SO₂, NO, and NO₂ Oxidation Mechanisms: Atmospheric Considerations; Butterworth: Boston, MA, 1984; pp 101–171. (260) Collins, K. R. Kinetics of oxidation of aqueous sulfur(IV) as
- catalyzed by manganous ion. Ph.D. thesis, Georgia Institute of Technology, 1987.
- (261) Pasiuk-Bronikowska, W.; Bronikowski, T. Chem. Eng. Sci. 1989, 44, 1361.
- (262) Martin, L. R.; Good, T. W. Atmos. Environ. 1991, 25, 2395.
- (263) Grgic, I.; Hudnik, V.; Bizjak, M.; Levect, J. Atmos. Environ. 1991, 25A, 1591
- (264) Grgic, I.; Hudnik, V.; Bizjak, M.; Levect, J. Atmos. Environ. 1992, 26A, 1591.
- (265) Coichev, N.; v. R. Eldik. Inorg. Chem. Acta 1991, 185, 2375.
- (266) Berglund, J.; Buxton, G. V.; Elding, L. I.; Govan, M. S.; Salmon, G. A. J. Chem. Soc., Faraday Trans. 1994, 90, 3309.
- (267) Hoigné, J.; Bühler, R. E. Heterogeneous and Liquid-Phase Processes; Springer-Verlag: Berlin, Germany, 1996.
 (268) Koslov, Y.; Berdnikov, N. Russ. J. Phys. Chem. 1973, 47, 338.
 (269) Berdnikov, V. M. Russ. J. Phys. Chem. 1973, 47, 1060.
- (270) Johnson, G. R. A.; Nazhat, N. B.; Saadalla-Nazhat, R. A. J. Chem. Soc., Chem. Commun. 1985, 407.
- (271) Moffett, J. W.; Zika, R. G. Environ. Sci. Technol. 1987, 21, 804.
- (272) Masarwa, M.; Cohen, H.; Meyerstein, D.; Hickman, D.; Bakac, A.; Espenson, J. J. Am. Chem. Soc. 1988, 110, 4293.
 (273) Eberhardt, M. K.; Ramirez, G.; Ayala, E. Am. Chem. Soc. 1989,
- 54, 5922
- (274) Sawyer, D. T. Coord. Chem. Rev. 1997, 165, 297.
 (275) Maestre, P.; Lambs, L.; Thouvenot, J. P.; Berthon, G. Free Radical Res. 1994, 20, 205.

- *Radical Kes.* 1994, 20, 205.
 (276) Meyerstein, D. Inorg. Chem. 1971, 10, 638.
 (277) Urbanski, N.; Beresewicz, A. Acta Biochim. Pol. 2000, 47, 951.
 (278) Strlic, M.; Kolar, J.; Selih, V.-S.; Kocar, D.; Pihlar, B. Acta Chim. Slov. 2003, 50, 619.
 (279) Ibusuki, T.; Takeuchi, K. Atmos. Environ. 1987, 21, 1555.
 (280) Reda, X. Water Sci. Technol. 1988, 20, 45.
 (281) van Eldik, R.; Coichev, N.; Bal Reddy, K.; Gerhaard, A. Ber. Bunsenges. Phys. Chem. 1992, 96 478.

- Bunsenges. Phys. Chem. 1992, 96, 478.
- (282) Grgic, I.; Bercic, G. J. Atmos. Chem. 2001, 39, 155.
 (283) Bäckström, H. L. J. Z. Phys. Chem., Abt. B 1934, 25B, 122.
- (284) Barron, C. H.; O'Herrn, H. A. Chem. Eng. Sci. 1966, 21, 397.
 (285) Carlyle, D. W.; Zeck, O. F. J. Inorg. Chem. 1973, 12, 2978.
 (286) Veprek-Siska, J.; Lunak, S. Z. Naturforsch. B: Anorg. Chem., Org. Chem. 1974, 29, 689.
- (287) Zeck, O. F.; Carlyle, D. W. Inorg. Chem. 1974, 13, 34.
 (288) Lunak, S.; El-Wakil, A. M.; Vepreck-Siska, J. Collect. Czech. Chem. Commun. 1978, 43, 3306.
- (289) Jain, U.; Sharma, M.; Rani, A.; Gupta, K. S. Indian J. Chem. **1995**, *34A*, 971. (290) Chen, L. C.; Peoples, S. M.; Carthy, J. F.; Amdur, M. O. *Atmos.*
- Environ. 1989, 23, 149.
- (291) Manoj, S. V.; Sharma, M.; Gupta, K. S. Atmos. Environ. 1999, 33, 1503.
- (292) Prasad, D. S. N.; Rani, A.; Gupta, K. S. Environ. Sci. Technol. 1992, 26, 1361.
- (293) Herrmann, H.; Ervens, B.; Weise, D. IGACtivities Newsl. 2001, 23.6.
- (294) Cocks, A. T.; McElroy, W. J. The Role of Transition Metal Ions in Atmospheric Droplet Chemistry; Technical Report TPRD/L/ 3001/R86; Central Electricity Research Laboratories: Leatherland, U.K., 1986.
- (295) Warneck, P. In Formation, Distribution and Chemical Transformation of Air Pollutants; Zellner, R., Ed.; Verlag Chemie: Weinheim, Germany, 1987; Vol. 104.
 (296) Leriche, M.; Deguillaume, L.; Chaumerliac, N. J. Geophys. Res.
- 2003, 108, 4433, doi 10.1029/2002JD002950.
- (297) Hoigné, J.; Bader, H.; Haag, W. R.; Staehelin, J. Water Res. 1985, 19, 993.
- (298) Jacobsen, F.; Holcman, J.; Sehested, K. J. Phys. Chem. A 1997, 101. 1324.
- (299) Sheng, H. J. Chem. Technol. Biotechnol. 1993, 56, 163.
- (300) Jacobsen, F.; Holcman, J.; Sehested, K. Int. J. Chem. Kinet. 1998, 30. 207.

- (301) Rosseinsky, D. R. J. Chem. Soc. 1963, 1181.
- (302) Morselli, L.; Olivieri, P.; Brusori, B.; Passarini, F. U. Environ. Pollut. 2003, 124, 457.
- (303) Gatz, D. F.; Warner, B. K.; Chu, L. C. Solubility of metal ions in rain water. In Deposition both Wet and Dry; Hicks, B. B., Ed.;
- rain water. In Deposition both Wet and Dry; Hicks, B. B., Ed.; Ann Arbor Sciences: Ann Arbor, MI, 1984.
 (304) Guieu, C.; Chester, R.; Nimmo, M.; Martin, J. M.; Guerzoni, S.; Nicolas, E.; Mateu, J.; Keyse, S. Deep-Sea Res. II 1997, 44, 665.
 (305) Chester, R.; Murphy, K. J. T.; Lin, F. J.; Berry, A. S.; Bradshaw, G. A.; Corcoran, P. A. Mar. Chem. 1993, 42, 107.
 (306) Seames, W. S.; Sooroshian, J.; Wendt, J. J. Aerosol Sci. 2002, 277
- 33, 77.
- (307)Zhu, X.; Prospero, J. M.; Savoie, D. L.; Millero, F. J.; Zika, R. G.; Saltzman, E. S. J. Geophys. Res. **1993**, 98, 9039. (308) Cawse, P.; Peirson, D. H. An Analytical Study of Trace Elements
- in the Atmospheric Environment; AERE-R 7134; Atmospheric Energy Research Establishment: Harwell, U.K., 1972.
- (309) Peirson, D. H.; Cawse, P. A.; Salmon, L.; Cambray, R. S. Nature 1973, 241, 252
- (310) Betz, M. Diplomarbeit thesis, Institüt für Meteorologie and Geophysik der Universität, 1976.
- (311) Beavington, F.; Cawse, P. A. Sci. Total Environ. 1979, 13, 263.
- (312) Gravenhorst, G.; Beilke, S.; Betz, M.; Georgii, H.-W. In Effect of Acid Precipitation on Terrestrial Ecosystems; Hutchinson, T. C., Havas, M., Eds.; Plenum Publishing: New York, 1980.
- (313) Thornton, J. D.; Eisenreich, S. J. Atmos. Environ. 1982, 16, 1945.
- (314) Church, T. M.; Taramontano, J. M.; Scudlark, J. P.; Jickells, T. D.; Tokos, J. J.; Knap, A. H.; Galloway, J. N. Atmos. Environ. 1984, 18, 2657
- Waldman, J. M.; Münger, J. W.; Jacob, D. J.; Hoffmann, M. R. (315)*Tellus* **1985**, *37B*, 91. (316) Chan, W. H.; Tang, J. S.; Chung, H. S.; Lusis, M. A. Water, Air
- Soil Pollut. 1986, 29, 373.
- (317) Radojevic, M.; Clarke, A. G. In Acid Rain: Scientific and Technical Advances: Based on Papers Presented at the Acid Rain Conference in Lisbon, Sept 1-3; Perry, R., Harrison, R., Bell, J., Lester, J., Eds.; Publications Division, Selpter Ltd.: London, U.K., 1987.
- (318) Arimoto, R.; Duce, R. A.; Ray, B. J.; Hewitt, A. D.; Williams, J. J. Geophys. Res. 1987, 90, 2391.
- (319) Balls, P. Atmos. Environ. 1989, 23, 2751.
 (320) Church, T. M.; Veron, A.; Patterson, C. C.; Settle, D.; Erel, Y.; Maring, H. R.; Flegal, A. R. Global Biogeochem. Cycles 1990, 4, 431.
- (321) Ross, H. B. Atmos. Environ. 1990, 24A, 1929.
- (322) Lim, B.; Jickells, T. D.; Davies, T. Atmos. Environ. 1991, 25A, 745.
- (323) Brandt, C.; Lepentsiotis, V.; Paul, A.; Hohmann, H.; van Eldik, R. *GIT Fachz. Lab.* **1994**, *38*, 770.
 (324) Manoj, S. V.; Mishra, C. D.; Sharma, M.; Rani, A.; Jain, R.;
- Mahoj, S. V.; Mishra, C. D.; Sharma, M.; Kani, A.; Jain, K.; Bansal, S. P.; Gupta, K. S. Atmos. Environ. **2000**, *34*, 4479. Waldman, J. M.; Munger, J. W.; Jacob, D. J.; Flagan, R. C.; Morgan, J. J.; Hoffmann, M. R. Science **1982**, *218*, 677. Jacob, D. J.; Waldman, J. M.; Munger, J. W.; Hoffmann, M. R. (325)
- (326)*Tellus* **1984**, *36B*, 272. Jacob, D. J.; Waldman, J. M.; Munger, J. W.; Hoffmann, M. R.
- (327)(221) Sacos, D. S., Waldman, S. M., Mulger, S. W., Environ. Sci. Technol. 1985, 19, 730.
 (328) Khwaja, H. A. Atmos. Environ. 1995, 29, 127.
- (329) Hosono, T.; Okochi, H.; Igawa, M. Bull. Chem. Soc. Jpn. 1994, 67.368
- (330) Wobrock, W., et al. J. Atmos. Chem. 1994, 19, 3
- (331) Bizjak, M.; Divjak, B.; Kosak-Legrisa, E.; Poje, M.; Hudnik, V. GDF93: Aerosol black carbon (soot) and cloud water transition metal concentration. In Proceedings of the EUROTRAC Symposium 94, April 11-15; Garmisch-Partenkirchen, Germany, 1994
- (332) Lindberg, S. E.; Turner, R. In Proceedings of the Internationl Conference on Heavy Metals in the Environment, Heidelberg, September; CEP Consultants: Edinburgh, U.K., 1983.
- Horvath, Z.; Lasztity, A.; Varga, E.; Meszaros, E.; Molnar, A. (333)Talanta 1994, 41, 1165.
- (334) Landis, M. S.; Keeler, G. J. Environ. Sci. Technol. 1997, 31, 2610.
- (335)Garnaud, S.; Mouchel, J. M.; Chebbo, G.; Thevenot, D. R. Sci. Total Environ. 1999, 235, 235. Maneux, E.; Grousset, F. E.; Buat-Ménard, P.; Lavaux, G.;
- Rimmelin, P.; Lapaquellerie, Y. Water, Air Soil Pollut. 1999, 114, 95.
- Cabon, J. Y. Water, Air Soil Pollut. 1999, 111, 399. (337)
- (338) Jambers, W.; Dekov, V.; Van Grieken, R. Sci. Total Environ. 2000, 256, 133.
- (339) Kim, G.; Scudlark, J. R.; Church, T. M. Atmos. Environ. 2000, 34, 3437.
- Roy, S.; Negrel, P. U. Sci. Total Environ. 2001, 277, 225. (340)
- (341) Deboudt, K.; Flament, P.; Bertho, M.-L. Water, Air Soil Pollut. 2004, 151, 335.
- Johnson, C. A.; Sigg, L.; Zobrist, J. Atmos. Environ. 1987, 21, (342)2365.
- (343) Spokes, L. J.; Jickells, T. D. Aquat. Geochem. 1996, 1, 355.
- (344) Langford, C. H.; Carey, J. H. Can. J. Chem. 1975, 53, 2430.

- (345) Lee, C.; Yoon, J. Chemosphere 2004, 57, 1449.
- (346) Baxendale, J. H.; Bridge, N. K. J. Phys. Chem. **1955**, 59, 783. (347) Benkelberg, H. J.; Schäfer, A.; Warneck, P. Product quantum yields for the photodecomposition of H_2O_2 and Fe(III) complexes in aqueous solution. In Air Pollution Research Report 33: Atmospheric Oxidation Processes; Becker, K.-H., Ed.; European Commission: Brussels, Belgium, 1991; 130 pp.
- (348) Christensen, H.; Sehested, K.; Logager, T. Radiat. Phys. Chem. 1993, 41, 575.
- (349) Christensen, H.; Sehested, K. Radiat. Phys. Chem. 1981, 18, 723-731.
- (350) Thornton, A. T.; Laurence, G. S. J. Chem. Soc., Dalton Trans. 1973, 804.
- (351) Pikaev, A. K.; Sibirskaya, G. K.; Shirshov, E. M.; Glazunov, P. Y.; Spitsyn, V. I. Dokl. Phys. Chem. Proc. Acad. Sci. U.S.S.R. 1974, 215, 328.
- (352) Epstein, I. R.; Kustin, K.; Simoyi, R. H. J. Am. Chem. Soc. 1982, 104, 712.
- (353) Williams, J. Ph. D.thesis, University of Leeds, 1996.
- (354) Gilbert, B. C.; Stell, J. K. J. Chem. Soc., Perkin Trans. 1990, 2, 1281.
- (355) Buxton, G. V.; Malone, T. N.; Salmon, G. A. J. Chem. Soc., Faraday Trans. 1997, 93, 2893.
- (356) Martell, A.; Smith, R. Other organic ligands. In Critical Stability Constants; Plenum Press: New York, 1977; Vol. 3.

- (357) Moorhead, E.; Sutin, N. Inorg. Chem. 1966, 5, 1866.
- (358) Jayson, G. G.; Parson, B. J.; Swallow, A. J. J. Chem. Soc., Faraday Trans. 1973, 69, 1079.
- (359) Xu, F. C.; Krouse, H. R.; Swaddle, T. W. Inorg. Chem. 1985, 24, 267.
- Goldstein, S.; Czapski, G.; Cohen, H.; Meyerstein, D. Inorg. (360)Chim. Acta 1992, 192, 87.
- (361) Bjergbakke, E.; Sehested, K.; Rasmussen, O. L. Radiat. Res. 1976, 66, 433.
- (362) Baxendale, J. H.; Ward, M. D.; Wardman, P. Trans. Faraday Soc. 1971, 67, 2532.
- (363) Davies, G.; Kirschenbaum, L. J.; Kustin, K. Inorg. Chem. 1968, 7, 146.
- (364) Neta, P.; Huie, R. E. J. Phys. Chem. 1986, 90, 4644.
- (365) Laurence, G. S.; Thornton, A. T. J. Chem. Soc., Dalton Trans. 1973, 1637.
- Cope, V. W.; Hoffman, M. Z.; Chen, S. J. Phys. Chem. 1978, 82, (366)2665.
- (367) Wells, G. F.; Davies, G. A. J. Chem. Soc. A 1967, 1858.
- (368) Baral, S.; Lume-Pereira, C.; Janata, E.; Henglein, A. J. Phys. Chem. A 1986, 90, 6025.

CR040649C