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Robotic Manipulation and Sensing of
Deformable Objects in Domestic and
Industrial Applications: A Survey

Jose Sanchez1,2, Juan-Antonio Corrales1,2, Belhassen-Chedli Bouzgarrou1,2 and Youcef
Mezouar1,2

Abstract

We present a survey of recent work on robot manipulation and sensing of deformable objects, a field with relevant

applications in diverse industries such as medical (e.g. surgery assistance), food handling, manufacturing, and domestic

chores (e.g. folding clothes). We classify the reviewed approaches into four categories based on the type of object they

manipulate. Furthermore, within this object classification we divide the approaches based on the particular task they

perform on the deformable object. Finally, we conclude this survey with a discussion of the current state of the art and

propose future directions within the proposed classification.
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1. Introduction

Endowing robots with the ability to manipulate deformable
objects spawns diverse applications with tremendous
economical benefit. For instance, using robots to handle
fragile products in the food industry could reduce labor
cost (Tokumoto et al. 1999; Buckingham et al. 2001),
manufacturing plants could use robots to manipulate
flexible objects in order to lessen physically burdens on
workers (Acker and Henrich 2003; Rambow et al. 2012) or
robots becoming more involved in caregiving activities (e.g.
dressing, feeding) for the elder and disabled (Chen et al.
2013; Yamazaki et al. 2014).

Although manipulation and grasping of rigid objects is a
mature field in robotics, with over three decades of work, the
study of deformable objects has not been as extensive in the
robotics community. Another important issue is that many of
the techniques and strategies devised for the manipulation
of rigid objects cannot be directly applied to deformable
objects. For instance, two of the main conditions applied to
grasping rigid objects are form closure and force closure.
The former consists in applying kinematic constraints on
an object such that the object cannot perform any relative
motion (Nguyen 1988), and the latter considers a set of
contact points such that contact forces can balance an
arbitrary external wrench (Bicchi 1995). When it comes to
deformable objects, form closure fails to immobilize every

degree of freedom of the object since deformable objects
have infinite degrees of freedom (Guo et al. 2013). Similarly,
force closure relies on applying a set of forces to restrain the
object’s movement based on its undeformed shape. However,
the required contact forces applied to the deformable object
rely on its deformation (Jia et al. 2011). This entails that the
force closure calculation needs to be performed continuously
in order to consider the object’s new shape caused by the
grasping action.

Furthermore, rigid object manipulation considers mostly
the control of the grasped object’s pose, as noted
by Khalil et al. (2010). However, the manipulation of a
deformable object also needs to address its deformation.
This consideration, as well as the inapplicability of
the aforementioned conditions, has led to many diverse
approaches to handle deformable objects with robots.

In this survey, we review the latest advances on the topic
of robotic manipulation of deformable objects. Previous
surveys have covered topics such as manipulation of
deformable objects in industrial applications (Henrich and
Wörn 2000; Saadat and Nan 2002), or planning the
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manipulation of deformable objects (Jimenez 2012). Henrich
and Wörn (2000) reported the first attempts of the robotic
community to manipulate deformable objects. This was
followed by the survey of Saadat and Nan (2002), where
the objects are classified based on their shape, material
and industrial application. More recently, Jimenez (2012)
presented a survey that focuses on object modeling and
on manipulation planning of deformable objects. Khalil
and Payeur (2010) present a very comprehensive survey,
where most of the surveyed papers focus on modeling
and simulation, and approaches that have been applied
to industrial tasks such as assembly and food handling.
However, since these surveys, the field of deformable object
manipulation has seen significant contributions.

Our survey focuses on recent advances in the robotics
community to address the sensing and manipulation of
deformable objects, particularly in domestic and industrial
applications. We propose a new classification of deformable
objects that not only considers their geometric shape (as it
has been previously suggested in (Jimenez 2012; Saadat and
Nan 2002)), but also their physical properties. We consider
as deformable the objects that either 1) have no compression

strength or 2) have a large strain1 or present a large

displacement. Objects that have no compression strength are
those which do not present any resistance when two opposite
endpoints are pushed towards each other. Ropes and clothes
are examples of objects with no compression strength.

As noted before, objects can also be categorized based on
their geometry. Objects having one dimension significantly
larger than the other two, for instance the length of a cable
is much larger than its width or height, are considered
uniparametric. Biparametric objects are those having one
dimension considerably smaller than its other two, for
instance the thickness of a paper is negligible compared to
its width and height. Finally, triparametric objects represent
solid objects. Using these two criteria we classify the
reviewed approaches into the following four main categories,
as shown in Figure 1:

Type I: Uniparametric objects that either have no compres-
sion strength such as cables, strings and ropes; or they
have a large strain such as elastic tubes and beams. This
type of object are widely referred to as linear in the
robotics community.

Type II: Biparametric objects that present a large strain, or
a large displacement, such as paper, cards and foam
sheets. Also, thin-shell objects such as empty plastic
bottles and hollow rubber balls are considered in this

category. In the literature, these type of objects are
commonly referred to as planar objects.

Type III: Biparametric objects not possessing any compres-
sion strength. Shirts, pants, curtains and fabric sheets are
examples of this type of object. These objects are mostly
known as cloth-like objects.

Type IV: Triparametric objects such as a sponges, plush
toys and food products fall in this object category.
Common names used to describe these objects are solid
or volumetric.

Deformable

objects

Large
strain

TriparamB iparamUniparam

No
compression
strength

UniparamB iparam

Physical property

Object’s shape

Cloth-like "Linear" "Planar" Solid

Figure 1. Proposed classification of deformable objects.

To further divide the approaches, we group them based
on their applications, and three main groups are considered:
1) sensing, 2) manipulation and 3) task-specific. The latter
group deals with tasks inherent to the object types. For
instance, folding a shirt or tying a knot on a rope.
This proposed categorization, based on both object and
application type, is succinctly presented in tables that group
the approaches for each type of object.

Following this introduction, frequent concepts and terms
used in the field of deformable objects are presented in
Section 2. Then we review the approaches that focus on
type I objects in Section 3, followed by type II objects
in Section 4. Section 5 presents approaches handling type
III objects and Section 6 focuses on objects of type IV. A
summary of this survey and future directions are outlined in
Section 7 and finally, our concluding remarks are stated in
Section 8.

2. Fundamentals of Deformation Modeling

This section introduces common concepts and terminology
frequently used in the field of deformable object manip-
ulation, particularly on object deformation. A deformation
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occurs when an external force2 applied to an object results
in the object changing its shape. Moreover, depending on the
response of the object once the external force is removed the
deformation can be either plastic, elastic or elasto-plastic.

A plastic deformation entails a permanent deformation,
that is, an object maintains the shape caused by a
deforming force even when that force is removed. On
the contrary, an elastic deformation results on the object
returning to its undeformed shape once the deforming
force is removed (Callister 2006). Lastly, an elasto-plastic

deformation is a combination of both, elastic and plastic,
deformations; where the object does not return to its original
shape, but it does not hold the deformation entirely. The
deformation types are shown in Figure 2.

(a) Before applying
a force.

(b) Making contact
with the object.

(c) Deforming the
object.

(d) Elastic. (e) Elasto-plastic. (f) Plastic.

Figure 2. Top row: a soft object being deformed by an external
force. Bottom row: the resulting types of deformation once the
external force is removed.

Figure 3 shows an object being deformed by a tensile load.
The amount of deformation induced by stress is referred to as
strain (ε); where stress (σ ) is the ratio between the applied
force F and the cross-section area A0 (Callister 2006). For
linear elastic deformations3, stress and strain are related by
Hooke’s law (Callister 2006):

σ = Eε

Where E is the modulus of elasticity, also called Young’s
modulus, and is measured in pressure units such as Pascal
(N/m2) (Askeland and Fulay 2005).

Another important elasticity parameter is the Poisson’s
ratio (ν), an adimensional number that relates the ratio
between axial and lateral strains (Callister 2006). In Figure 3,
the axial strain is represented by the change of length ( L−L0

L0
),

where lateral strains occur perpendicularly to the applied
force F .

The Young’s modulus E and the Poisson’s ratio ν are
common parameters in modeling the deformation of an
isotropic object, where the deformation’s elastodynamics are

L

F

F

L0

A0

Figure 3. A tensile load (F) producing axial and lateral strains.
The blue dashed lines represent the original, undeformed,
shape and the red solid lines represent the deformed
shape (Callister 2006).

represented by a set of partial differential equations solved
through discretization techniques in order to approximate
the displacement field. However, these parameters are only
valid for linear elasticity. Linear deformation can refer either
to a geometric or a material linearity. Geometrical linearity
is not appropriate for large deformations, since only small
deformations can be modeled accurately (Nealen et al. 2006).
On the other hand, material linearity refers to a deformation
that retains a linear stress-strain relation (Callister 2006).

Modeling a deformation can be done with a variety of
techniques. Usually, these techniques required a deformation
model and a representation of the object’s shape, usually by
a set of particles or a mesh. A mesh represents an object as
set of points (vertices), edges and faces or elements for a two
dimensional or a three dimensional object, respectively. The
faces are usually triangles or quadrilaterals, and the elements
are commonly represented as tetrahedra or hexahedra. The
deformation models provide a function to compute the
position of every vertex based on their current position and
an input force (Nealen et al. 2006).

Deformation models4 that do not require a mesh
are termed mesh-free (or meshless), and particle based
models (Tonnesen 1998) are an example of a meshless
model. The mesh-based models are categorized either as
continuum or lumped (discrete) variable models, according
to the consistency of the mass and stiffness parameters with
the approximated displacement fields in the elements of the
mesh. The discrete based models are mainly represented as
Mass-Spring-Damper (MSD) systems, where the vertices are
treated as mass particles and the edges are considered as
springs. Continuum based methods are commonly modeled
with finite element methods (FEM), where the object is split
into a set of discrete geometric parts called finite elements in
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order to approximate the object’s shape (Moore and Molloy
2007). A comparison between different physically-based
models is shown in Figure 4.

MSD models are more intuitive and simpler to implement
than FEM-based models, however FEM-based models are
able to produce more physically realistic simulation (Moore
and Molloy 2007; Nealen et al. 2006). Furthermore, MSD
models present drawbacks such as inability to preserve
volume and inverting easily (Moore and Molloy 2007; Sin
et al. 2013).

Particle-
based

Physically more realistic

Complexity

Co-rotational
linear FEM

Mooney-
Rivlin Neo-

Hookean

St. Venant-
Kirchhof

Linear
FEM

Mesh-free
Mesh-based

Model types

Elastic
Hyperelastic

Material types

MSD
Nonlinear

MSD

Dynamically
coupled
particles

Discrete
based

Continuum
based

Figure 4. Comparison of physically-based deformation models
based on the evaluation results from (Sin et al. 2013) and the
classification presented in (Nealen et al. 2006).

This section provided merely a brief summary of inter-
disciplinary topics that are involved with the simulation of
deformations. The interested reader is referred to (Nealen
et al. 2006; Moore and Molloy 2007) for more compre-
hensive surveys of deformable models and modeling tech-
niques in computer graphics. The following references are
recommended (Callister 2006; Askeland and Fulay 2005)
for a technical review of mechanical properties and elastic
behavior.

3. Linear objects

The first approaches to manipulate deformable objects
concentrated mostly on deformable linear objects (DLOs),
also called deformable one-dimensional objects (DOOs);
such as ropes, elastic rods, beams, cables, etc. One of
the reasons for these initial research efforts might be the
simplicity of DLOs when compared to planar or solid
objects. Also, their simulation is not as computational
expensive and assumptions such as modeling them as chains
of links allow for simpler algebraic solutions.

The robotic tasks related to DLOs can focus on either
sensing, manipulation or a combination of both. Sensing the
state of a DLO might require estimating the object’s current

shape, possibly caused by a deformation, or its topology (e.g.
sections where an object crosses itself). Manipulation tasks
of DLOs include insertion of a cable through a series of
holes, untangling a rope, manipulating a tube into a desired
shape, and most commonly, tying knots; which remains the
most researched task in robotic manipulation of deformable
linear objects. The latest approaches dealing with DLOs
by a robot manipulator are reviewed in the next sections.
Some examples of the tasks involving DLOs are displayed in
Figure 5, and Table 1 shows a classification of the reviewed
approaches.

3.1 Tying knots

Tying knots tasks require development of dedicated
trajectory planning methods and force control strategies.
They also require perception abilities to detect, localize and
track specific elements in ropes (e.g. intersection points) to
monitor the task’s progress. To meet these requirements,
sensors able to accurately measure forces, joint velocities and
the state of the rope; as well as actuators able to achieve the
necessary robot actions, should be carefully chosen.

Yamakawa et al. (2008) proposed a simple description of
a rope in order to apply manipulation skills to tie a knot. This
description consisted on identifying the intersections created
by the rope crossing itself. Furthermore, they utilized a high-
speed robotic hand with tactile sensing and a vision system
in order to apply the manipulation skills required.

Manipulation primitives are used in Vinh et al. (2012)
to perform the task of knot tying. These primitives are
identified by observing how a human knots a rope using
one hand. Specifically, three primitives were identified: 1)
grasping the rope, 2) producing a loop and 3) pulling the

rope to create the knot. The robot then followed a set of
points, previously extracted from trajectories demonstrated
by a human teacher, to perform these primitives. However,
the object’s behavior is not modeled and thus, the success
of the approach depends only on a open loop execution of
these primitives by the robot. Kudoh et al. (2015) extended
these manipulation primitives to tie a knot in the air with
two dexterous robotic hands (i.e. the fingers are actively
controlled). However, this approach is also not robust against
disturbance, since no model of the object is derived and no
sensor feedback is considered.

Also focusing on tying a knot in the air without a physical
model of the object is the work described in Yamakawa
et al. (2010). Their approach differs however, on a dynamic
manipulation of the rope that relies on high-speed sensors
and actuators (1 KHz). The rope was represented as a chain
of joints which is algebraically related to the robot’s motion.
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(a) Knot tying (Huang
et al. 2015).

(b) String insertion (Weifu
Wang et al. 2015).

(c) Rope untangling (Lui and
Saxena 2013).

(d) Shape
manipulation (Rambow et al.
2012).

Figure 5. Examples of different manipulation tasks performed on linear deformable objects.

Table 1. Classification of approaches to manipulate deformable linear objects using a robot. The state estimation approaches are
divided into discrete and continuous depending on whether they represent the object as a finite set of points/segments or not.

State estimation Discrete Lui and Saxena (2013); Matsuno et al. (2006); Caldwell et al. (2014)
Continuous Javdani et al. (2011); Bretl and McCarthy (2014); Borum et al. (2014)

Manipulation
Shape
control Rambow et al. (2012); Bretl and McCarthy (2014); Yamakawa et al. (2012)

Untangle Lui and Saxena (2013)
Insertion Weifu Wang et al. (2015); Yoshida et al. (2015)

Knot tying
Motion
primitives Yamakawa et al. (2008); Vinh et al. (2012); Kudoh et al. (2015)

Algebraic
formulation Yamakawa et al. (2010); Takizawa et al. (2015)

LfD Lee et al. (2014, 2015); Huang et al. (2015)

Moreover, the position of each joint of the rope is affected by
a time delay factor that is proportional to the distance from
the joint to the grasping point; that is, the time delay at the
grasped joint is zero, while the joints that are farther away
get an increasing time delay. By determining this time delay
parameter they were able to estimate the configuration of the
rope in real time allowing the robot to tie the knot.

Most recently, learning techniques have been applied in
order to solve the problem of tying a knot using a dual-
arm robot. Specifically, in (Lee et al. 2014) learning from
demonstration (LfD) was used to learn a function that maps
a pairs of correspondence points (i.e. from a demonstrated
and a test scene), while minimizing a bending cost (warping
cost). The correspondence points consist of a point cloud
representing the state of the rope as a point cloud (obtained
through an RGB-D sensor) and the gripper’s trajectories,
which were extracted from kinesthetic demonstrations. The
bending cost was computed based on the Thin Plate
Spline Robust Point Matching (TPS-RPM)5. Also relying
on the TPS-RPM to learn a warping function, the approach
presented in (Huang et al. 2015) used a convolutional neural
network to label parts of the rope such as end-points and
crossings.

Another approach, based on a geometric formulation, was
proposed by Takizawa et al. (2015) where a dual-arm robot
manipulated the shape of a rope in order to tie it around a

pipe. However, their approach did not consider the tightness
of the tied knot. This was shown by Lee et al. (2014) to be a
necessary condition to ensure the knot stays tied to the pipe.
In order to solve this issue, Lee et al. (2015) extended their
previous work to incorporate force information into their
learning algorithm and thus achieve a sufficiently tight knot.

3.2 Grasping and manipulation

Several tasks that need to manipulate DLOs, such as insertion
and shape control, require an accurate estimate of the object’s
shape as it is being deformed. This is challenging since
modeling and perceiving deformation can be extremely
complicated in certain configurations, e.g. when the object is
deformed by an unexpected obstacle or when self-occlusion
occurs. Several works attempt to overcome this issue.

Based on their previous work (Yamakawa et al. 2010),
which assumes the object follows the end-effector’s
trajectory if the robot’s motion is fast enough, Yamakawa
et al. (2012) were able to deform a rope into different
shapes such as a rectangular corner and a semi-circle.
The inverse problem of tying ropes, namely untangling
ropes, is tackled by Lui and Saxena (2013). The untangling
of a rope was performed by a PR-2 robot using RGB-
D data to build a graph that represents the object. To
build this graph, the points obtained by the RGB-D sensor
were grouped in segments by using a region-growing
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algorithm which reduced the representation of the rope
from thousands of points to hundreds of segments. With
this simpler representation, a particle filter was applied
to find the best rope configuration for a set of segments.
Subsequently a manipulation action was chosen so that the
current configuration could be transformed into a desired
configuration (i.e. an action that leads to an untangled rope).

Another desired robotic task with ropes is that of
insertion, which has applications such as needle threading
and assembly tasks. Weifu Wang et al. (2015) tackled the
problem of inserting a rope, and a string, through a series
of holes with tight-tolerance diameters with respect to the
rope’s diameter. To achieve this, vector fields were set in the
center of each hole to drive the tip of the rope through the
hole.

A similar task to inserting a DLO was presented
in Yoshida et al. (2015), where an elastic band (O-ring)
was extended such that it could be wrapped around a peg.
Unlike, the approaches described previously in this section,
this approach relied on FEM to simulate the deformation of
an O-ring. A motion planning algorithm6, which combined
different objective functions such as collision avoidance and
minimum deformation, was then used to generate a plan that
inserts the O-ring into a peg with a larger diameter, thus
requiring the O-ring to be deformed in order to insert it.

Other approaches have focused on deforming a linear
object such that it reaches a desired configuration. Rambow
et al. (2012) used a two-arm robot to mount a tube in
a desired configuration based on a single teleoperated
demonstration. The task consisted on manipulating the tube
to pass by two constraining walls, thus keeping the tube in
the required shape. The demonstration recorded the grippers’
poses and the forces produced by the contacts with the
rigid environment. Since a mere repetition of the grippers
trajectory does not account for the position uncertainties
caused by the physically interaction with the environment,
a variable admittance control was applied that allowed for a
good tracking of the position when there were no contacts
but decreased the tracking’s accuracy to achieve a more
compliant behavior, thus maintaining low contact forces
while interacting with the environment. To monitor the
contact forces, the robot was equipped with a force-torque
sensor attached to its end-effector.

A common action among these manipulation tasks is
that of reaching intermediate desired configurations in order
to accomplish a final goal such as tying, or untangling,
a knot. One way to solve this is to use motion planning
algorithms. The seminal work of Kavraki with Lamiraux
and, subsequently with Moll (Lamiraux and Kavraki 2001;

Moll and Kavraki 2004, 2006), focused on path planning for
DLOs and planar objects; where sampling-based roadmap
algorithms (e.g. Rapidly exploring Random Tree) were
applied to find intermediate configurations of the object to
build a plan that reached a specified configuration. The object
was described as a parameterized curve and the sampling
algorithm chose curves with minimal energy, since these
were assumed to represent the most likely configuration of
the object. These, and older works focusing on manipulation
planning of deformable objects, have been covered in more
depth in (Jimenez 2012).

More recently, Roussel and Ta (2014) proposed an
approach that incorporated a physics engine to their motion
planning algorithm. Here, the DLO was described as a
connection of nodes, where the links were modeled using
FEM, and the state space was defined by a vector of all
the nodes and their positions and velocities. As the physics
engine is able to determine the next state of the object based
on its current state and an applied wrench, they sampled
different control commands (i.e. wrenches applied by a
gripper) to find the one that moved the object closer to
their goal state. Additionaly, they exploited the enviroment
to apply additional external wrenches to the object, and thus
reach configurations that would not be possible using only
a gripper. In fact, based on the test scenarios presented,
allowing the object to contact the environment was necessary
to solve the path planning problem. Similarly, Alvarez and
Yamazaki (2016) also used a physics engine to simulate
the behavior of the deformable object, in combination with
a planning algorithm, while allowing a user to modify
the simulated environment in an interactive manner. They
showed that their planning algorithm was robust against
unexpected changes to the environment. An extension of
these approaches was recently described in (Shah and Shah
2016), where a set of interlinked cables is manipulated
into an array of clamps. This problem requires the motion
planning algorithm to handle an extra constraint, namely
that the interlinks between cables do not become taut. They
defined a series of actions for two available manipulators
that were only allowed to grasp a finite set of points on
each cable. Then their planning algorithm searched for the
combination of actions that solved the clamping task without
violating the constraint of overstretching the interlinks.

Although these approaches might be helpful to other tasks,
as they solve the motion planning required to attain desired
configurations; they have, so far, not been shown to work in
real time as finding an adequate plan usually requires long
times (e.g. minutes). Furthermore, these works have only
been tested on simulation environments where the object’s
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behavior, and its interaction with the environment, are greatly
simplified.

3.3 Deformation sensing

Estimating the necessary parameters of a linear deformable
object to manipulate it is a crucial issue. Several approaches
have been proposed with different objectives. For some of
them, the objective was to perceive the configuration of
the object (e.g. are there knots or intersections? and, if so,
where are their locations?); other works have focused on
estimating the global shape by either learning parameters that
describe the object’s deformation or by describing the object
in geometric terms. Depending on the approach, different
assumptions are required as it is noted below.

Matsuno et al. (2006) were able to estimate the state
of a rope using a topological description, that is, the rope
was described as a node graph. The nodes of the graph
represented either the ends of the rope or intersections. In
order to distinguish whether the side of the rope was passing
over, or under, they used the luminance variance on an image
obtained by a stereo vision system.

A more recent approach that is able to perceive the
deformation of a one-dimensional object, such as surgical
suture, was presented in Javdani et al. (2011). Using a stereo
vision system together with a simulator, they were able to
predict the configuration of the object. Specifically, they
learned a set of parameters that minimize an energy function
that considers the bending, twist and gravity effects on the
object. However, this approach assumes the object does not
stretch, that is, its geodesic distance remains unchanged
while being deformed.

Also relying on a simulation, Caldwell et al. (2014)
estimated the stiffness parameters of a flexible loop.
Rather than incorporating visual information, proprioception
sensing (i.e. joint values and forward kinematics) was
used instead to compare with the simulated values of the
object. The object was represented as a series of rigid links
connected by springs, and the optimal values for the springs’
stiffness were found by optimization of an error function
given by the difference between measured and simulated
values.

An analytic formulation to estimate the shape of a flexible
tube was proposed by Bretl and McCarthy (2014). They
assume, however, that the tube cannot be stretched and is
held at both ends. The object was described as a Kirchoff
elastic rod, where the elastic energy is computed based
on three scalar functions that measure strain. When the
object is in static equilibrium, its shape can be described
by geometrically solving an optimal control problem. With

this formulation they were able to describe the possible
equilibrium configurations of the object, based on the poses
of the end-effectors holding each end, using a single global
chart7; and thus, estimate the configuration of the object.
This theoretical framework was later evaluated in simulation
and experimentally on a two-dimensional case, that is, the
deformation was restricted only to remain on a plane (Borum
et al. 2014).

4. Planar objects

In this section we review approaches used on planar objects,
such as printing paper, cards, tennis balls to name a few. Most
of the research, especially at the beginning of this sub-field,
has focused on these type of objects as a simplified version of
three-dimensional objects, e.g. in a simulated environment.

The two most studied manipulation tasks on a planar
object are grasping and controlling its deformation. The
former consists of positioning the fingers of a robotic
manipulator on the object such that the manipulator is able
to lift it and hold it in the air, while the latter consists in
changing the shape of the object into a desired configuration.
Other tasks have concentrated on more specific tasks such as
paper folding, manipulating the pose of the object by relying
on its deformation (e.g. rotating a pizza dough-like object
and reorienting a bill) and sensing the state of a deformed
object. Table 2 summarizes the approaches reviewed in this
section.

4.1 Manipulation

The works on manipulation of planar objects can be
classified into three groups, namely, paper folding, grasping
and rotating an object. Each group raises distinct challenges
due to the different types of objects they manipulate (e.g.
a sheet of paper vs a thin sponge) or the specific task
they focus on. Paper folding requires the robot to perform
precise motions to ensure the paper is being held firmly and
bent in an appropriate manner. To grasp and pick up an
object, the robot must have the ability to decide where to
grasp the object and how tight it should hold it. This would
require different grasp forces depending on the material
type, whose properties might not be known in advance.
Finally, approaches that focused on rotating objects have
either exploited the environment or made use of the object’s
own dynamics. In the following, a review of works that
address this type of manipulation are presented.

4.1.1 Paper folding A clear example of paper manipula-
tion is origami, which Balkcom and Mason (2008) addressed
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Table 2. Classification of approaches that focus on planar objects.

Manipulation
Grasp Guo et al. (2013); Jia et al. (2011); Gopalakrishnan and Goldberg (2004)

Gopalakrishnan (2005); Jia et al. (2013, 2014)
Pick up Jia et al. (2014); Elbrechter et al. (2011); Kristek and Shell (2012)
Rotation Kristek and Shell (2012); Ramirez-Alpizar et al. (2012)

Paper folding Balkcom and Mason (2008); Elbrechter et al. (2012)
Namiki and Yokosawa (2015)

Shape control Single point Das and Sarkar (2010, 2013)
Multiple
points

Wada et al. (1998); Hirai et al. (2001); Fanson and Patriciu (2010)
Das and Sarkar (2011); Kinio and Patriciu (2012); Berenson (2013)

Sensing
Parameter
identification Boonvisut and Cavusoglu (2013)

State
estimation Tian and Jia (2010); Schulman et al. (2013); Boonvisut and Cavusoglu (2014)

using a custom made robotic system that is able to perform a
sequence of folds resulting in an origami pattern (e.g. a paper
plane). The system consisted on a four degrees of freedom
arm, a suction pump to hold and move the paper, and a base
with a clamp that holds the paper while the arm folds it. As
no sensors were used by the system, the arm motions were
performed in an open loop as selected by a simple bread-
first search algorithm. Since this approach relied on applying
a sequence of predefined folds to the paper, no dexterous
manipulation of the paper was performed.

On the contrary, Elbrechter et al. (2011) presented an
approach to first grasp a paper resting on a table with a bi-
manual robot equipped with a five-fingered hand, and they
later extended their approach to fold the paper (Elbrechter
et al. 2012). Both approaches rely on a vision system with
5 calibrated cameras that tracked the position of a set of
fiducial markers on both sides of the paper. Furthermore,
they simulated the paper’s deformation with a physics-
engine, where the paper is modeled as a 2D grid of nodes.
The extension of the latter approach consisted on adding a
connecting link between all neighboring nodes. Each link
in the physics-engine was represented by a distance and a
stiffness coefficient. The stiffness coefficient is decreased if
a crease line, detected by the vision system, passes through
any given link. Thus, the links which cross a crease present a
higher deformation and can render the folding of the paper.

A similar approach, also using a bi-manual robot system,
based on integrating visual information into a physics-engine
simulation was presented in (Namiki and Yokosawa 2015).
However, the paper was modeled with a mass-spring-damper
model. Furthermore a set of dynamic primitives was used
to apply folds to the paper. Unlike the approaches proposed
in (Elbrechter et al. 2011, 2012), the paper is not covered
with fiducial markers. Instead the corners are marked with
different colors to allow the vision system to detect them.

4.1.2 Grasp and pick up We consider a grasp as
the action of holding an object through contact points,
while a pick up is a subsequent action that lifts the
grasped object from a supporting surface. One of the
first works on grasping flat deformable objects was done
by Gopalakrishnan and Goldberg, where they present an
approach that extended the concept of form closure for rigid
objects to deformable planar objects (Gopalakrishnan and
Goldberg 2004; Gopalakrishnan 2005). They assumed that
a set of contacts, e.g. the grippers of a robot, holding a rigid
object in form closure would also hold a deformable object
in deform closure. Deform closure was defined as a set of
contacts holding an object such that an increment of potential
energy is required to release the object. Here, the potential
energy is proportional to the amount that the gripper deforms
the object. In order to determine the potential energy, an
FEM model of the object and its stiffness matrix were
used to compute the internal forces based on the object’s
deformation.

Also relying on an energy-based formulation and using an
FEM model Guo and Jia, in a series of papers, focused on
grasping planar deformable objects using only two fingers.
Their formulation of potential energy, which later they relate
to work, is based on the distance traveled by the fingers times
the force they apply to the object. The translation of the
fingers is described as squeeze grasping, where one finger
moves towards the other while both maintain contact with the
object. In (Jia et al. 2011), they applied this approach only to
hollow objects (e.g. ring shaped objects), thus considerably
reducing the computation complexity as the FEM was only
simulated on segments describing the object’s boundary
rather than on elements describing a solid object. This was
extended to solid planar objects in (Guo et al. 2013) where
they also defined the finger contacts as a set of points that
either stick or slip, in which each of the points coincides
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with a node of the object’s mesh. In order to determine
whether a contact is sticking or slipping, they check if its
friction cone rotates after a change in the squeeze depth8 (see
Figure 6). Based on the state of each contact point (i.e. either
sticking or slipping) they were able to infer, for instance, if
the object was slipping out of the grasp. Based on the nodes
that were in contact, as well as their contact type (stick/slip),
they computed a reduced stiffness matrix which significantly
reduced the computational burden.

Later on, they introduced grasp metrics that can be applied
to deformable objects, namely they defined the concept of
pure and stable squeezes (Jia et al. 2013). A pure squeeze

is defined as a grasp that generates only deformation (i.e.
no translation or rotation are generated while squeezing);
a stable squeeze is a squeeze along a vector such that
minimizes the potential energy on the object (i.e. for all
the grasps with the same squeeze depth, the stable squeeze
is the grasp that generates least deformation). Additionally,
they proposed an optimal method to resist a third finger that
tries to push the object out of the grasp by moving the two
grasping fingers such that the object remains grasped and the
work they apply is the minimum required. Figure 6 shows
an example of a squeeze grasp. It also shows a peculiarity
of deformable objects, namely, the contact point grows into
a contact area as the grasp progresses. Finally, Jia et al.
revised the works described in (Jia et al. 2011; Guo et al.
2013; Jia et al. 2013) and presented an extensive and self-
contained manuscript detailing their approach to grasp a
planar deformable object using only two fingers (Jia et al.
2014). However, their work does not considers dynamics, nor
gravity, while computing the FEM simulation. Furthermore,
because the analysis is based on the assumption of linear
elasticity, large deformations cannot be accurately described.

Figure 6. A two-finger grasp (a) before and (b) after a squeeze
grasp. The points represent contact points, white ones are in
slip mode and black ones in stick mode (Jia et al. 2014).

4.1.3 Rotation Another form of manipulation that does
not require the object to be grasped is that of nonprehensile
manipulation. For instance, Ramirez-Alpizar et al. (2012)

presented an approach that is able to rotate a deformable
planar object, resting on a plate attached to a robot’s
end-effector, using dynamic motions consisting in rotating
around and translating along a single axis of the plate
as shown in Figure 7. They represented the object as
a mass-spring-damper model able to describe bending
and compression. The elasticity parameters were estimated
by experimentation. Although their approach exploits the
deformation of the object in order to rotate it on the plate, it
is not able to control the deformation, e.g. to reach a desired
configuration of the object. Similarly, Kristek and Shell
(2012) also proposed a method to rotate planar deformable
objects using two grippers, however the applied gripper
motions consisted of a set of actions that are executed in
an open-loop manner as they do not use any sensor. They
evaluated their approach using planar objects such as a dollar
bill, a card and various shapes of a foam material. This
approach used two grippers that exploit the environment to
facilitate the task of rotating the object. The first gripper
controlled only one degree of freedom that slides a board
so as to sweep the object against a wall in order to bend it
enough thus, allowing the second gripper to grasp the object
and subsequently rotate it.

Figure 7. The X arrow shows the translational movement and
the Θ arrow the rotational motion. Image extracted
from (Ramirez-Alpizar et al. 2012).

4.2 Deformation control

This section focuses on approaches that address the problem
of controlling the deformation of planar objects in order
to achieve a desired shape. These approaches define this
deformation control problem with the objective to move
a target point, or a set of target points, located on the
object such that once the target point reaches a specified
position the overall shape of the object approximates the
desired deformed shape. Thus, they indirectly control the
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deformation of the object through a target point, or a set of
target points.

This type of problems are sometimes referred to as indirect
simultaneous positioning (ISP) problems, a term proposed
by Wada et al. (1998). They were one of the first researchers
to address the problem of not only grasping a deformable
object, but also actively controlling its deformation (Wada
et al. 1998; Hirai et al. 2001). Here, the object was modeled
as a mesh where the nodes are connected with springs and
two sets of points (coincident with the nodes of the mesh)
are defined, namely, controlled and manipulated points. The
controlled points were located inside the object and were
tracked by a vision system to represent the deformation of
the object. The manipulated points were the contact points
between the fingers of a manipulator and the object. Thus,
they were able to indirectly control the deformation of
the object by moving the manipulated points such that the
controlled points reach a desired configuration. Recently,
there have been several works attempting to solve the ISP
problem. These approaches control the position of several
points (multi-point control) as first proposed in (Wada et al.
1998), or they focus on controlling one internal point on the
object (single-point control).

4.2.1 Single-point control Das and Sarkar (2010, 2013)
used three robotic fingers to deform an object such that a
single internal point on the object reaches a desired position.
They solved this problem using a control system that consists
of a trajectory generator, a controller for each finger and the
object. The finger controller is a PI controller that computes
forces based on a positional error and the trajectory generator
computes the desired velocities of the fingers to reach the
desired position of the target point, both of which are user
defined. In order to guarantee stability, a passivity observer
monitored the energy applied by each finger controller to
the object and two passivity controllers were placed at the
input (trajectory generator side) and the output of the finger
controller to dissipate any excess of energy. They only
presented simulation results were the object’s deformation
was modeled using a Mass-Spring-Damper system with
known coefficients.

4.2.2 Multi-point control Fanson and Patriciu (2010)
proposed a method, based on the concepts of manipulated
and controlled points as described by Wada et al. (1998), that
linearizes the deformation model. The model was linearized
around the origin, i.e. the object’s undeformed state, by using
one state variable that describes both the position of the
points along with their velocities. Having this formulation
they designed an output regulator that drives the control

points to a desired configuration. In order to compute the
position of the control points based on the force applied
at the manipulation points, the object was modeled as
a mesh-free particle system using the reproducing kernel
particle method (RKPM) (Chen et al. 1996). Although their
approach was formulated to manipulate and control several
points simultaneously, in their evaluation they used only
a single control point and a single manipulation point.
Afterwards, Kinio and Patriciu (2012) used an H∞ controller
instead and modeled the object using an FEM based model.
In their evaluations they used two control points and two
manipulation points.

In (Das and Sarkar 2011), a Mass-Spring-Damper model
was used to simulate a deformable object where the links
between nodes are modeled as a Kelvin-Voigt model in series
with a damper. This model was used to deform a planar
object such that its shape, as described by a curve, can be
changed into another desired shape. This approach, however,
requires a significant amount of manipulation points9 to
achieve acceptable results.

Instead of relying on a model, Berenson (2013) proposed
a model-free approach to manipulate an object, grasped by
a set of grippers, into a desired configuration. The object
was described as a set of points. Additionally, it is assumed
that the points of the object that are grasped by a gripper do
not move with respect to that gripper. Thus, the position of
the points farther away from a gripper are affected less by
the gripper’s motion. This assumption, termed diminishing

rigidity, was then used to compute an approximate Jacobian
that relates the motion of the points with respect to the
grippers’ motions.

This approach was recently extended in (McConachie and
Berenson 2016) by choosing among a set of models for
this Jacobian using a multi-arm bandit formulation. Under
this formulation, the “arms” were defined as models based
on their diminishing rigidity and an adaptive Jacobian (as
proposed by Navarro-Alarcón et al., see Subsection 6.3)
with various sets of parameter. Although they presented
simulation results on a rope and a cloth-like object this
approach is better classified based on the task it performed,
namely multi-point control, since the task considered by
these approaches focused on reducing the overall distance
between a set of target points T and a set of points P defined
on the object.

4.3 Deformation sensing

These approaches focus on either determining the object’s
physical parameters during a deformation or estimating
the state of the deformed object. In the former case, the

Prepared using sagej.cls



Sanchez et al. 11

parameters are required as input for the object’s deformation
to be simulated; while the latter might make use of these
parameters, they can also rely solely on the output of devices
like cameras or force-torque sensors. An example of an
approach to identify deformation parameters was proposed
by Boonvisut and Cavusoglu (2013), where the elasticity
parameters of a soft tissue phantom are estimated. In order
to estimate the elasticity parameters, they minimized an
objective function that reduce the difference between an
observed deformation and an FEM simulation. The observed
deformation was obtained by a stereo-vision system that
tracked a set of markers on the object, while the inputs
to the FEM simulation consisted of force and positions
measurements obtained while manipulating the object.

Instead of only identifying parameters, other approaches
used these parameters in physical models to track
deformations of an object. One such example was reported
in (Tian and Jia 2010), where the deformation of thin
shell objects, such as a tennis ball, is tracked by an FEM
simulation that is based on shell theory (Timoshenko and
Woinowsky-Krieger 1959). Schulman et al. (2013) instead
used a probabilistic model in combination with a physics
engine simulator to account for parts of an object that might
not be visible to a depth range sensor. The output of the
depth range sensor consists of a set of observable points
which were used to infer the set of points that conform to
the physical model of the object in simulation. Although the
proposed algorithm was able to track objects in real time,
between 20 and 50 Hz; there is no chance to recover if the
algorithm diverges.

Another application on estimating the state of a
deformable object was presented in (Boonvisut and
Cavusoglu 2014), where the constrained boundaries of an
object were predicted by manipulating the object with a
robot gripper. The object’s boundary was separated into
three sections; namely, a fixed one, a second one that is
free to move and a third one that is manipulated by the
gripper. Stereo vision, together with an FEM model, were
used to track a set of points (nodes) on the object. The nodes
were then grouped into patches to reduce dimensionality.
With the object represented as a collection of patches, a hill
climbing algorithm was applied similarly to an occupancy
grid problem in order to estimate which patches are the fixed
ones.

5. Cloth-like objects

In this section we review clothes and fabric materials such
as towels, sheets, rags, etc. Most of the approaches that

deal with cloth-like objects have focused on solving one or
more tasks from the pipeline described in Figure 8. The first
step requires the robot to locate the clothing item, possibly
identify its configuration, and decide where to grasp (e.g.
a shirt’s collar). Next, the robot needs to grasp and pick
up the item and, depending on the desired task, perform
a preparatory action such as extending, or untangling, the
garment or laying it flat on a surface. Finally, the end-task
might consist on folding or hanging the item in order to store
it or putting the item on a person (i.e. clothing assistance).

Moreover, these approaches can be grouped into three
major types of tasks, namely, sensing, grasp/manipulate and
cloth-specific tasks. The sensing tasks are mainly concerned
with recognizing the state (e.g. the shape) of the garment,
or detecting ideal grasp points for further manipulation. The
grasp/manipulate tasks handle issues such as picking up
clothes and bringing them into a desired configuration (e.g.
lay them flat on a table). Finally, cloth-specific tasks refer to
tasks such as folding and hanging clothes items as well as
aiding disable people with their dressing. A classification of
the reviewed approaches is summarized in Table 3.

5.1 Sensing

5.1.1 State estimation One of the most important
challenges, regarding sensing for cloth-like objects is self-
occlusion. As clothes tend to easily crumple, key features
might be covered by the object itself. We describe below
how previous approaches have dealt with this issue. Kita
et al. (2011) used vision sensing and simulation to recognize
the shape of a garment while being held by a humanoid
robot. The vision system provides 3D visual data used in
combination with a simulation to estimate the deformation
based on the object’s size and softness. The result is a set
of possible shapes defined by the point where the object
is grasped. The robot reduces the uncertainty between the
possible shapes by regrasping the cloth by its rim.

The configuration of different garments (e.g. sweater and
shorts) is estimated using depth data acquired while a robot
manipulator rotates the garment in the approach proposed
by Li et al. (2014). The depth data is used to reconstruct a
3D mesh model of the garment. The reconstructed model
is compared with the mesh models of a database to obtain
the most similar one. This similarity is based on the
Hamming distance between two binary vectors representing
the reconstructed model and each model in the database. To
construct the binary vector, a bounding cylinder is fit to the
mesh model and the cylinder is subsequently divided into
sections. Each section represents a binary number indicating
whether or not a part of the object is in it. By concatenating
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Detection/estimation Grasp Preparation

Fold Hang Clothing assistance

Figure 8. Pipeline describing the common tasks of robotic cloth manipulation.

Table 3. Classification of approaches to manipulate cloth-like objects using a robot.

Detection/
estimation

State
estimation

Lee et al. (2015); Huang et al. (2015); Kita et al. (2011); Yamazaki (2014)
Bergstrom et al. (2012); Li et al. (2014); Cusumano-Towner et al. (2011)
Maitin-Shepard et al. (2010); Bersch et al. (2011); Twardon and Ritter (2015)

Grasp point
detection

Kita et al. (2011); Ramisa et al. (2012); Yamazaki (2014)
Monsó et al. (2012); Maitin-Shepard et al. (2010); Bersch et al. (2011)

Grasp Grasp / lift
Lee et al. (2015); Huang et al. (2015); Kita et al. (2011); Cusumano-Towner et al. (2011)
Maitin-Shepard et al. (2010); Bersch et al. (2011); Twardon and Ritter (2015)
Ramisa et al. (2012); Monsó et al. (2012); Shibata et al. (2009)

Manipulation
Separate Maitin-Shepard et al. (2010); Monsó et al. (2012)

Untangle
Lee et al. (2015); Huang et al. (2015); Cusumano-Towner et al. (2011)
Maitin-Shepard et al. (2010); Bersch et al. (2011); Twardon and Ritter (2015)
Doumanoglou et al. (2014); Li et al. (2015a)

Lay / flatten Lee et al. (2015); Huang et al. (2015); Maitin-Shepard et al. (2010)
Li et al. (2015a); Sun et al. (2015); Kruse et al. (2015)

Final task
Fold

Lee et al. (2015); Huang et al. (2015); Maitin-Shepard et al. (2010)
Bersch et al. (2011); Yamakawa et al. (2011); Miller et al. (2012)
Stria et al. (2014); Balaguer and Carpin (2011); Li et al. (2015b)

Hang Twardon and Ritter (2015)
Clothing
assistance Yamazaki et al. (2014); Tamei et al. (2011)

the sections, a binary vector describing the three-dimensional
garment is formed.

Another application for estimating the state of garment
can be found in (Bergstrom et al. 2012), where the focus is
on estimating the folding of an article (e.g. a T-shirt and a
piece of cloth). In order to determine the folding state of the
article, they estimated its contour using a Hidden Markov
Model (HMM) based on a single feature. This feature is
extracted from a sequence of images and consists of an
histogram of distance between each point on the object’s
contour to the rest of the contour points which is referred to
as Shape context. This representation is much more compact
and thus it allows for a fast estimation of the article’s shape.
Although a lot of local information is lost with this sparse
representation, the use of temporal information proved to be
more informative for correctly estimating whether or not an
article was fold correctly.

Besides the configuration, other interesting characteristics
to understand the behavior of a garment are its material
and fabric pattern. For instance, a laundry robot would
decide either to use warm water for jeans or cool water

for woolen items. This problem was tackled by Kampouris
et al. (2016) using a multi-modal approach that combined
RGB-D, photometric and tactile data. They applied a variety
of machine learning algorithms such as Support Vector
Machines, random forests and HMMs; and then fused
the results using a majority voting. Although their results
showed that the combination of modalities was the most
accurate for the majority of the test cases, there were
particular cases where either using only photometric or
tactile data was clearly more accurate; showing the need for
a better fusion strategy.

5.1.2 Grasp point detection The previous approaches rely
on holding the garment in the air in order to estimate its
configuration. However, before the robot holds the garment,
it is necessary to grasp the garment from a possible crumpled
configuration (a more likely state for clothes that have been
taking out of the drier or dropped on a table). Thus, in order
to grasp a crumpled garment a robot must first decide where
to grasp.
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Ramisa et al. (2012) tried to solve the issue of grasping
polo shirts by detecting their collar. They used a Bag of
Features (BoF) that is generated with SIFT features from
a 2D image and a histogram based on depth data. They
achieved decent results where only one polo shirt was
present, although when other types of garments (such as
pants and t-shirts) were in the field of view of the camera, the
accuracy rate reduced drastically (from ∼70% to ∼30%).

Also focusing on selecting grasp points, Yamazaki (2014)
proposed an approach based solely on depth data to pick
up a crumpled cloth. The object was represented by the
edge of the cloth, along with creases created by wrinkles,
as perceived by the depth data. Thus, this contour (edges and
creases of the cloth) is described by points obtained from a
depth sensor. Then, each point on the contour is compared to
grasp points from a training dataset in order to select the most
similar point to any grasp point in the dataset. This training
dataset was generated with manually assigned grasps from a
set of sample images.

5.2 Grasping and manipulation

Depending on the manipulation task and the particular
state of a clothing article, the robot is required to handle
the article in a particular fashion. For instance, if the
article needs to be flatten or stretched in order to remove
wrinkles, multiple regrasps might be required such that the
article is held by opposite corners. The following works
focused on manipulation tasks that consider different starting
configurations for the articles (e.g. crumpled or lying flat).

5.2.1 Grasping for garment picking-up A geometric
approach to picking up a cloth is described in (Shibata et al.
2009), where a robot generates a wrinkle by deforming the
cloth so that the robot can grasp the cloth. They defined the
concept of wiping deformation, which consists in moving
the jaws of the robot’s gripper towards each other while
maintaining contact with the cloth. In this way, the cloth
moves with respect to the surface but there is no relative
motion between the cloth and the gripper at the contact
points. However, this approach assumes the cloth is lying
flat on a surface, a scenario that is rather uncommon since
cloth-like objects tend to easily crumple.

Not relying on the assumption of the object lying
flat, Monsó et al. (2012) used a robot manipulator to separate
clothes. They considered the inherent sensing uncertainty
to solve this problem using a partially observable Markov
decision problem (POMDP). Here, the state is represented
by the number of clothes on two sides of a table. The
actions consist of either moving a piece of cloth from one

side of the table to the other, thus reducing uncertainty, and
removing a piece cloth from the table once the uncertainty
is below a threshold. Picking more than one piece of cloth
is considered a failure. Observation and transition models
were obtained experimentally. Lastly, the goal was defined as
removing all the clothes from the table with the least amount
of manipulation actions.

5.2.2 Manipulation for garment reconfiguration

Cusumano-Towner et al. (2011) sought to bring a clothing
article into a desired configuration using a PR2 robot. To
do so, they used a HMM, a cloth simulator and a planning
algorithm. The HMM is used to estimate the garment’s
configuration, where the hidden state only includes the
article’s category and size, and the grasp points for both
grippers. These grasp points represent the nodes of the
garment’s mesh model, according to the cloth simulator,
where the gripper is grasping the garment. The robot
then repeatedly regrasps the garment using the planning
algorithm, which relies on the garment state output by the
HMM, until the cloth is brought into a known configuration.
Once the configuration of the piece of cloth is known,
although not the desired one, the robot regrasps the object to
bring it to the desired configuration (e.g. holding a shirt by
its shoulders).

Doumanoglou et al. (2014) were able to solve this problem
much faster by reducing the number of manipulation actions
required to reach the desired configuration of a garment.
Using a robot platform with two arms they begin by grasping
the garment at a random point with one arm and let it hang
to allow the other arm to grasp the lowest hanging point of
the garment, e.g. at the end of a sweater’s sleeve. Then, the
robot releases the first grasp to leave the cloth is hanging by
one of its ends. Once hanging, the robot uses a POMDP to
continuously rotate the garment until a desired grasp point
is detected and it can be grasped by the free arm. This
procedure is repeated for the second arm. Thus, allowing the
robot to unfold the article by extending it by the two grasped
points. To determine the two desired grasp points they used
Hough forests, which are random forests using a generalized
Hough transform (i.e. able to detect arbitrary shapes). To
reduce the number of locations of possible grasp points, they
divided the object’s bounding box in an 8×8 grid.

With help of a thin-shell simulation, Li et al. (2015a) also
proposed an approach to unfold clothes. They first simulate
mesh models of the garments while they are grasped at
different points (e.g. neck, sleeves, etc.) and let them hang
loose under only the effects of gravity in a physics engine.
Next, they built a database out of these models and use it to
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compare it against the sensed data, which consists of depth-
data from multiple-views acquired by rotating the object
back and forth. To reconstruct the model based on these data,
they use Iterative Closest Point (ICP) to first apply a rigid
registration and then a non-rigid registration; where the rigid
registration considers only translation and rotation between
the sensed data and the modeled data, and the non-rigid
registration accounts for the deformation of the garment.
Once the model has been reconstructed they are able to grasp
the required points on the garments, for instance the elbows
of sweater, to unfold them.

Besides unfolding a piece of cloth, or bringing it to a
desired configuration, some approaches rely on the garment
to be laying flat on a surface. Sun et al. (2015) attempted
to solve this task, where a two arm robot stretches a piece
of cloth to flatten out the wrinkles. This approach uses
RGB-D data to detect and locate wrinkles on the cloth and
subsequently plan the required motions for the robot’s arms
to remove the wrinkles. The wrinkles are described as fifth
order polynomial curves and they are assigned a weight
based on their volume. The largest wrinkle is then selected
to be flatten by a predefined motion of the arms, which pulls
the cloth in order to remove the wrinkle.

Using a different approach, namely hybrid force-vision
control, Kruse et al. (2015) also used a two-armed
manipulator to stretch a cloth. However, they include a
human in the control loop which holds one edge of the cloth
while the robot holds the other. This approach uses the output
of an RGB-D sensor and torque sensors to maintain the cloth
taut. They used a vision controller relying on the normals
of each point on the cloth to compute a velocity vector.
The magnitude of this velocity is based on the amount of
normals that are within a user defined threshold, e.g. the
normals should point upwards to keep the cloth stretched,
and the direction is chosen as the mode of the normals that
are not within the threshold. The force information, obtained
through the estimation of joint torques, is used by a force
controller with a damping coefficient to generate a velocity
that maintains a desired tension for the cloth. To obtain the
velocity of the hybrid controller, both of these velocities are
combined by a simple addition.

5.3 Cloth-specific tasks

As previously mentioned, works on cloth-specific tasks have
focused on folding, hanging clothes or assisting in dressing
people. In order to hang clothes, or put them on people, the
robot is required to identify and track openings on the clothes
so they can be put through a hanger or someone’s legs, arms

or head; whereas folding might not require any feedback as
planned actions can be executed with open-loop motions.

5.3.1 Folding One of the most popular tasks regarding
cloth manipulation is that of folding. A fold can be performed
either on a supporting surface, as depicted in Figure 9, or
in the air as shown in Figure 10. The approaches that have
tackled the problem of robotic cloth-folding have relied on a
variety of techniques such as detecting grasp points, learning
by demonstration, geometric representation (e.g. describing
clothes as polygons), etc.

Maitin-Shepard et al. (2010) were the first to enable a
robot manipulator to solve the complete task of folding
clothes starting from an unorganized pile of clothes.
The main focus of their work concentrated on detecting
grasp points to facilitate the folding, since predefined
manipulation actions execute the folding maneuver. Their
algorithm assumes the cloth is of rectangular shape (e.g. a
towel) and they used stereo correspondence to detect the
garment’s corners. Specifically, they applied random sample
consensus (RANSAC) to a border classification algorithm
which detects the edge of the garment based on depth
discontinuities.

Another approach that focuses on detecting grasp points
to fold a piece of cloth is found in (Bersch et al. 2011).
Unlike in (Maitin-Shepard et al. 2010), where only towels are
considered due to their rectangular shape, this work enables
a robot to fold a T-shirt. However, the approach relies on
the T-shirt being completely covered with fiducial markers.
These markers are used to infer the position where a robot’s
gripper is holding the T-shirt by rotating it to generate a 3D
model that includes a point cloud representation along with
the markers’ positions. Once the robot knows the location of
the grasp it uses its free arm to grasp one of the predefined
key points, in this case the shoulders of the T-shirt. This
sequence is repeated until the robot is holding the T-shirt by
both shoulders and then it executes a motion to fold the T-
shirt in an open-loop manner.

Besides detecting grasp points to subsequently fold a
garment, other approaches assume this step has been
performed and focus only on the folding action. For
instance, Yamakawa et al. (2011) proposed an approach
where two robotic hands holding a garment by its corners
fold it in midair. The garment was modeled as grid of nodes,
where the nodes that are grasped by the robotic grippers are
assumed to have the same position as the grippers (e.g. if the
hand moves, the grasped node follows the same trajectory);
and the position of the remaining nodes is determined
proportionally based on the distance to the grasp nodes. This
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Figure 9. A geometry based approach to fold a clothing item laying on a table (Stria et al. 2014).

Figure 10. Sequences of a dynamic in-air fold executed in less than half a second (Bergstrom et al. 2012).

position is then controlled by a single parameter, termed
time delay, which serves as a substitute for the dynamic and
elasticity parameters (e.g. mass, inertia, Young’s modulus,
etc.) of the object. Since this formulation is an algebraic
description, the approach allows to estimate the shape of the
object based on the robot’s kinematics. Thus, by solving a
trajectory of points describing a fold of the garment, they
were able to compute the corresponding joint values of the
robot required to execute that fold.

Like Yamakawa, other approaches have relied on a
simpler model to represent the state of a cloth, namely, a
polygonal description. This polygonal description represents
the surface of a flatten cloth with straight lines, i.e. reducing
the cloth to a two-dimensional model. Based on this
geometric modeling, Miller et al. (2012) used folding actions
based on gravity (g-folds) to fold different types of garments.
Two different type of g-folds were proposed, where one folds
the whole stack10 and the other folds only the previously
folded part by not releasing the grasped points (e.g. after
folding a long-sleeve by pivoting on the shoulder, the sleeve
is then folded such that the end of the sleeve is aligned
with the bottom of the article). Also relying on a polygonal
description of a clothing article, the work presented in (Stria
et al. 2014) was able to fold clothes much faster, requiring
seconds instead of minutes (as in (Miller et al. 2012)). This
major speed-up is achieved during the perception phase and
is due to the novel model they propose. This polygonal
model uses the vertices on the clothing article to define
angles at the vertices and also the lengths between vertices.
Thus, having a compact description of the clothing article
as a set of angles and lengths, which they encode with
probability distributions for a collection of articles of the
same class (e.g. pants would be a class and a short-sleeved
shirt another). Both of these approaches require however

that only a single garment is resting completely spread on
a supporting surface. Recently, Li et al. (2015b) proposed
an approach for a bi-manual robot to fold different garments
such as shirts, pants and towels. Their approach first detects
key points for the robot to grasp (e.g collar, sleeve ends) and
then finds the optimal folding trajectory of the robot’s arms.
The trajectories are parameterized as Bezier curves, and their
points are found by minimizing the cost between the desired
fold and a simulated fold which is computed using a physics
engine.

Machine learning approaches have also been utilized to
solve the task of folding a garment using a robot. For
instance, Balaguer and Carpin (2011) applied reinforcement
learning (RL) to fold a towel using a two-armed robot. In
order to reduce the search space, demonstrations were taught
to the robot by a human teacher. The RL problem was
formulated as finding a map between the trajectory of both
end-effectors and a set of points describing the object. This
set of points was obtained through eight cameras tracking
the position of 28 markers attached to the object’s boundary.
Other approaches that rely on learning techniques to fold
towels can be found in (Lee et al. 2014; Huang et al. 2015)
as reviewed in Section 3.

5.3.2 Others (Clothing assistance, hanging) Other appli-
cations for clothing manipulation found in the literature
concern clothing assistance and hanging of clothes. One case
of clothing assistance, such as helping a person put on a
shirt, was tackled in (Tamei et al. 2011). Here, reinforcement
learning was used on a two-armed robot to put a shirt on
a mannequin. In order to reduce the task’s dimensionality,
they define topological coordinates11, on both the shirt and
the mannequin; and only control one joint on each arm.
A motion capturing system tracked relevant points on the
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mannequin and the T-shirt, which later were used to compute
the topological coordinates. They start by teaching the robot
how to solve the task through kinesthetic training to extract
an initial trajectory, then reinforcement learning modifies the
way-points of the trajectory in order to achieve the task.

Another case of clothing assistance can be seen in the
work of Yamazaki et al. (2014), where a humanoid robot
helps a person putting on a pair of pants. This approach
computes an optical flow on images to detect the state
of the task by comparing the flow with a previously
generated database of flows, e.g. it can identify if a leg
is being introduced in an opening of a pair of pants. It
also incorporates depth data to estimate the location of the
person’s legs and force sensing is used to detect a possible
failure such as having a leg stuck in the pants. If a failure
is detected, the approach is able to recover by modifying a
predefined trajectory. One recent approach, proposed by Yu
et al. (2017), focused on predicting the outcome of dressing
a person with a robot using HMMs. The outcomes, for
a task of pulling a medical gown onto a person’s arm,
were classified as either successful dressing, missing the
arm or getting the arm caught by the gown. Due to the
complexity to gather haptic data that involves a robot to
generate multiple contacts with persons and as this process
is unsafe and time consuming, the authors propose to use
a physics simulation to generate simulated haptic data. By
relying on simulation, they were able to reduce risk, since the
number of data gathered from real interactions with people
was kept at a minimum while still achieving high accuracy
results. Estimating the forces exerted by a garment on a
person, is an important issue to consider when using robots
to assist people with their dressing. Erickson et al. (2017)
recently addressed this problem by using a recurrent neural
network (RNN), a type of network architecture that is ideal
for sequential data, to map variables at the end-effector of a
robot to a force distribution on a person’s simulated limb.
The input consists of nine variables describing the force,
torque and velocity measurements of the end-effector that is
grasping the garment being pulled into a simulated limb; the
output is a force map with hundreds of predefined points that
have being uniformly distributed along the simulated limb.
This approach was able to obtain visually similar results
to the ground truth, and the authors proposed to extend it
to real robots in the future to cope with previously unseen
scenarios (e.g. higher forces and velocities not available in
the simulated data).

As mentioned previously, hanging garments is another
task that requires the manipulation of clothes. An application
of this task is showcased by Twardon and Ritter (2015),

where two robotic hands work in combination to hang a
knit cap on a coat rack. The approach proposed by Twardon
and Ritter begins by generating a graph representation of the
cap from depth data. In order to generate the graph, it first
processed a point cloud to detect edges based on the points’
normals (e.g. by removing smooth curves). Once the edges
were found, a thinning algorithm was applied to reveal the
intersections of the edges. These intersections were selected
as nodes if they had at least three neighbors. Finally, it used
this graph to compute simple cycles to subsequently extract
boundaries that represent, in this case, the opening of the
cap.

6. Solid objects

Solid objects such as sponges, plush toys and food, remain
the least researched type of deformable objects. Perhaps the
main reason for this are the computational costs imposed
when simulating three-dimensional objects which are much
higher than those of simulating planar, or even cloth-
like, objects. However, recent advances in computing have
increased the processing power significantly such that real
time simulation of realistic deformation (e.g. using FEM)
of solid objects is now possible. This progress has led to
an increment of research of solid deformable objects in the
robotics community.

Another kind of solid deformable object is soft
tissue. It has been extensively studied for medical
robotic applications. Since medical applications are subject
to constraints, not shared by domestic and industrial
applications, such as dealing with moving organs in real
time and limited space when performing minimally invasive
surgeries; we cover only those works where the proposed
methodologies could be applied to task in industrial (e.g.
cutting meat) or domestic settings. For a review on medical
robots and their applications to surgery, the reader is referred
to the survey by Taylor et al. (2016). The manipulation tasks
that have been researched for solid objects can be grouped
into three main categories: grasp/manipulate, deformation

sensing and deformation control.

6.1 Grasping and manipulation

Similar to deformable planar objects, grasping and picking
up a solid object was one of the first tasks studied in this
sub-field and it remains an active research topic. Other
manipulation tasks have been investigated for solid objects
as well; for instance, cutting meat, splitting food items and
handling soft tissue to assist in surgery. Depending on the
task, the robot might be required to manipulate the object
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(a) Grasp and lift (Lin et al. 2015).
(b) Cutting with a knife (Gemici and
Saxena 2014).

(c) Shape control (Navarro-Alarcon
et al. 2013b).

Figure 11. Examples of different manipulation tasks performed on solid deformable objects.

Table 4. Classification of approaches to manipulate solid objects using a robot.

Sensing
Parameter
identification Frank et al. (2010, 2014); Fugl et al. (2012); Güler et al. (2015)

Shape
estimation

Khalil et al. (2010); Cretu et al. (2010a,b, 2012); Leizea et al. (2014)
Petit et al. (2015); dos Santos et al. (2014); Malti et al. (2011)

Manipulation

Pick up Howard and Bekey (1999); Delgado et al. (2015, 2016)
Lin et al. (2014, 2015); Zaidi et al. (2017)

Split / cut Long et al. (2014b,a); Gemici and Saxena (2014); Hu et al. (2012)
Suturing Iyer et al. (2013); Leonard et al. (2014a,b); Jackson et al. (2016)

Shape control Higashimori et al. (2010); Yoshimoto et al. (2011); Smolen and Patriciu (2009)
Navarro-Alarcon et al. (2013a,b, 2014, 2016); Navarro-Alarcon and Liu (2014)

in distinct ways, such as holding it firmly or deforming it to
reach a desired configuration. Approaches focusing on the
latter are thoroughly reviewed in subsection 6.3.

One of the first works regarding manipulation of solid
deformable objects was proposed by Howard and Bekey
(1999), which consisted on estimating the minimum force
required to lift an object. Here, the object was modeled
as a lattice of interconnected nodes, where the connections
were described by a Kelvin-Voigt model, i.e. a spring in
parallel with a damper. Two planar end-effectors, equipped
with force sensors, pushed the object against each other to
lift the object. If the object was not lifted, or if it slipped
from the grasp12, the force was increased until a required
lifting force was found. This lifting force was stored in a
database on which they train a neural network that computed
the force required to lift a new object based on its stiffness
and damping coefficients. These coefficients were computed
a priori by grasping the object with the manipulators and
measuring the relation between the applied force and the
manipulators’ displacement.

More recently, Delgado et al. (2015) used a multi-fingered
robot hand equipped with tactile sensors to grasp and hold
a deformable object. A linear relationship is computed
between the distances of the opposing fingers and the
measured forces from the tactile sensors, which they termed
deformability ratio. This deformability ratio is then used to
compute the maximum force allowed to be exerted on the

object, thus reducing the deformation of the object. This
approach was later extended in (Delgado et al. 2016) by
coupling it with a grasp planner to perform tactile servoing,
which consists in moving each finger until a desired force
and a desired contact location on each sensor are reached.

In contrast to these approaches, other approaches require
a physically accurate model13 in order to grasp a deformable
object. For instance, Lin et al. (2014, 2015) proposed an
approach where a deformable object is grasped and lifted
by a robotic gripper that relies only on a mesh model of the
object and the positions of each finger, thus no exteroceptive
sensors (such as tactile or force sensors) are required. To do
so, they used an FEM formulation to solve the deformation
simulation based on the displacements caused by the fingers.
Each finger contact is modeled as a set of points that are
either sliding or sticking. The approach consists in moving
the fingers towards each other in order to squeeze the object
and subsequently lift it, after a lift test is passed. This
lift test is based on the simulated deformation generated
by the set of contact points of each finger. Using this
simulated deformation, they checked whether the majority
of the contact points are not sliding (i.e. are sticking) to
determine if the lift test is passed. Similarly,
citeZaidi2017 applied an FEM simulation with a Mass-
Spring-Damper model to estimate the object’s deformation
caused by a three-finger grasp. As opposed to Lin et al.
(2014, 2015), this approach computes the contact forces

Prepared using sagej.cls



18 Journal Title XX(X)

using a spring-damper contact model based on the fingers’
positions and velocities. The computed forces are the input
to the FEM simulation which outputs the new positions of the
mesh’s nodes, based on the Mass-Spring-Damper model, to
describe the object’s deformation. However, only simulation
results were presented in this work.

Other research works have focused on more complex
manipulation tasks such as cutting deformable objects.
In (Hu et al. 2012), an approach to debone a chicken using
a cutting robot is presented, where cutting through ligamets,
tendons and skin is required. The cutting robot had only two
degrees of freedom and followed a path plan that was derived
based on key points, obtained from a stereo-vision system, of
the chicken such that they form a cutting plane. As cutting
through the bone is undesired due to health hazard, the
robot was also equipped with a force-torque sensor to detect
contact with the bone. In case of contact, the robot switched
to force control and modified, in real time, the initial path
to maintain the force within a specified threshold. Other
efforts by the same group have focused on cutting other food
products, such as potatoes (Zhou et al. 2006a,b). By using
a cutting robot arm with seven degrees of freedom, Long
et al. (2014b) were able to follow a curve (as opposed to a
straight line as presented in (Hu et al. 2012), to separate a
beef muscle. Furthermore, they made use of a second robot
that was rigidly attached to the meat, with a special gripper,
to pull the meat in order to reduce the friction for the cutting
robot. The pulling robot used impedance control to maintain
a desired pulling force; while the cutting robot used position
control to follow the cutting path with a visual feedback that
updated changes caused by the meat deformation. However,
the cutting robot was not able to follow the path completely
due to its inability to overcome the required friction to cut
the meat. This was later addressed in (Long et al. 2014a) by
adding a force-torque sensor to the cutting robot. The force
control applied a slicing motion that reduced the required
cutting force. Note that the meat’s deformation was not
explicitly modeled in these works.

Gemici and Saxena (2014) used a PR2 robot to prepare
a salad, in which the robot actions required cutting and
splitting food objects such as bread, cheese and lettuce. The
approach used haptic data, such as force and tactile data, to
learn the objects’ properties (e.g. brittleness and elasticity)
by performing manipulation actions that stretch, bend and
cut the objects. The properties were assigned a value from
zero to one by human experts, which then the robot learned
using a regression model. The different learned properties
were used to classify the objects and serve to decide a proper
action for a given task. For instance, the task of cutting a

cheese depends on its properties. Since cream cheese is much
brittler than Cheddar cheese, the robot is required to hold the
cream cheese with a fork, instead of using its gripper so as to
not damage the cheese.

Although the works presented in the following paragraphs
do not directly manipulate deformable objects, as they are
concerned with automated surgical suturing, they highlight
intrinsic problems arising when interacting with soft tissue.
For instance, inserting a needle into soft tissue causes
deformation and thus, it might be necessary to either estimate
the contact forces or track the deformations in order to
adapt the suturing trajectory to reduce damage to the tissue.
Since suturing is one of the most common surgical tasks,
automating it would result in considerable reduction times
as well as in a consistency increment. Robotically assisted
surgeries (RAS) have not been, so far, truly autonomous as a
surgeon is still required during the procedure. The following
works have proposed approaches that attempt to automate
the suturing process.

Iyer et al. (2013) required only a set of entry and exit
points defined by a surgeon. They used a six degrees of
freedom manipulator with a suturing tool attached to its
end-effector to give an extra degree of freedom of rotation.
This tool held a circular needle to go through the set of
points to suture the incision. Using a monocular camera,
they estimated the location of the needle by fitting an
ellipse. Once the needle was located, they computed an
ideal center point for the needle to go in and out of the
entry and exit points, respectively. Their results were fairly
consistent, although the approach was highly sensitive to
poor illumination conditions.

A further step towards full automation was achieved
by Leonard et al. (2014b), as they proposed an approach
capable of automatically determine the suturing points given
an incision contour. They used the Smart Tissue Anastomosis
Robot (SMART), which is a robotic system developed for
suturing equipped with a seven degrees of freedom arm, a
monocular camera and a custom made tool that rotates a
circular needle to pass a thread through soft tissue. Based
on the incision contour, the stitches locations required to
perform the suture where computed such that they would be
evenly distributed. Once the locations where the needle was
required to pass were known, a tracking algorithm (based on
Kanade-Lucas-Tomasi) was used to deal with deformations
of the soft tissue caused by the needle. The features used
for the tracking algorithm were based on the distance to the
closest pixel in the target contour, the color of the foreground
and a bounding box of the incision. To perform the suturing,
the robot first tied a knot on one edge of the incision and
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then continued to the next stitch location. Additionally, force
sensing was used to tighten the knot without exceeding
a threshold that was experimentally determined to avoid
damaging the tissue. Their results were four times faster
than surgeons using the same custom made tool and they
also achieved higher accuracy. They later extended their
approach in (Leonard et al. 2014a) by adding a multi-spectral
vision system to detect near-infrared fluorescent (NIRF)
markers. The addition of NIRF markers allowed their system
to deal with occlusions, since they can be detected through
tissue and blood. However, as their approaches relied on
a homography, they were limited to dealing with only flat
surfaces on the phantom.

Focusing on a different aspect of automated suturing,
Jackson et al. (2016) presented an approach to estimate
the deformation forces of the tissue caused by the needle.
Since tissues can be damaged by excessive force, their
approach aims to minimize the internal forces produced by
the needling while suturing. Instead of using a vision system,
their approach relied solely on position and force sensing,
in combination with an Unscented Kalman Filter (UKF),
to estimate the forces caused by the needle. Although the
UKF produce accurate results, it was not run online in their
experimental validation.

6.2 Deformation sensing

The approaches presented in this section address either
parameter identification, to later use those parameters in a
deformation model; or shape estimation, where sensors are
used to directly measure the deformation (or shape) of the
object without the need of identifying parameters, as they are
known in advance or not required at all. While the former
approaches require to actively deform the object in order
to obtain sensor measurements (e.g. through force/tactile or
vision sensors) to infer certain deformation parameters; the
latter approaches mostly focus on detecting changes on the
object’s shape as it is being deformed by another agent (e.g.
a surgeon manipulating soft-tissue) and using those changes
to provide a 3D visualization of the deformed object.

6.2.1 Parameter identification Parameters (either physi-
cally meaningful such as the Young’s Modulus or task-
specific, as a coefficient of deformation) can be estimated
through sensor measurements with or without a model. An
approach that requires a model was presented by Frank
et al. (2010, 2014), where the Young’s modulus and the
Poisson ratio of different flexible objects were estimated.
The estimation was based on force sensor measurements,
obtained by probing the objects, a volumetric model of the

object which was generated using depth data from multiple
views and a co-rotational FEM model. Having the simulation
of the deformation from the FEM model and the observed
deformation, a search for the best values of these parameters
was performed such that the error between the observed and
simulated deformation was minimized.

Instead of an FEM model, Fugl et al. (2012) used a
more limited deformation model, namely the Euler-Bernoulli
beam model, to estimate the Young’s modulus of a flexible
object in order to describe its deformation. In this approach,
the object was divided into sections that have a specific
curvature produced by the deformation. These curvatures,
along with the object’s pose obtained through RGB-D data,
described the deformation state of the object. As well as
the previously mentioned approaches, this approach also
minimized a function that considers both the sensed error and
the simulated error.

Other types of models that do not require a mesh have also
being explored in the field of robotics. For instance, Güler
et al. (2015) used a position-based14 physics simulation
called Meshless Shape Matching (MSM). This simulation
only requires position information, which is obtained using
an optical flow algorithm on a sequence of images. Since
the images are obtained from a single view, only one face
of the object was considered for estimating the deformation.
Instead of relying on the usual elasticity parameters (e.g.
Young’s modulus and Poisson’s ratio), their approach is
based on the computation of a deformability parameter, used
in the simulation, that minimizes the error between the
sensed positions and the simulated positions.

6.2.2 Shape estimation/tracking One of the first works
on deformation estimation used a stereo vision system to
track the surface of an object being deformed by a robotic
gripper (Khalil et al. 2010). It integrated the estimation
in GraspIt! (Miller and Allen 2004) to have a real time
representation of the deformation. Cretu et al. (2010a) were
able to track the contour of an object using a growing neural
gas network while the object was deformed by a robotic
hand. To track the contour, they first identified the foreground
from the background using the HSV value of each pixel
and later applied a Sobel filter to detect the object’ contour.
Lastly, the neural gas network was used to determine the
minimum amount of points that described the contour. Later
on, in (Cretu et al. 2010b), force measurements obtained
with strain gauges at the fingertips of the robotic hand, along
with their positions, were used to learn the elastic behavior
with a neural network that mapped the deformed contour,
obtained through visual data, to the force and position
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measurements. Thus, the neural network input consisted of
a six-dimensional vector containing the force and position
information and its output consisted of the two-dimensional
position of a set of points representing the object’s contour.
A further improvement was then made in (Cretu et al. 2012),
by also tracking lines that formed a grid on the object. These
lines were however artificially marked on the object.

Similarly, an approach to track deformation of objects was
presented in (Leizea et al. 2014), with a focus on augmented
reality applications. The approach consisted as well in
incorporating depth data into a physical model. However,
this approach used a mass-spring model to estimate the
deformations caused by an external force. The chosen
model resulted in a much faster simulation, between 80-120
Hz; with the drawback of not being able to handle large
deformations. Recently, a real time simulation using a FEM
model was presented in (Petit et al. 2015). A known mesh
of the object is assumed and its pose and deformation are
tracked with an RGB-D sensor. They demonstrated accurate
results with a reasonable computational cost, at around 35
Hz.

Another task that requires real time estimation of
deformable objects is soft tissue tracking, which is
essential to automate surgical procedures like minimally
invasive surgeries. As minimally invasive surgeries, such as
laparoscopic procedures, are preferred over open surgery as
they have been shown to reduce recovery times for patients;
there is an increasing need to improve the visualization of
internal anatomy during surgery. One of the most successful
approaches to address this issue has been the geometric
reconstruction of soft tissue in 3D. For example, Malti et al.
(2011) used Shape-from-Motion15 to first construct a 3D
model (template) of a soft tissue before the surgeon caused
any deformation. Once the surgeon started deforming the
tissue, the 3D shape was reconstructed based on monocular
images as obtained by a laparoscopic camera. In order to
account for the deformations caused by the surgeon, their
approach considered shearing and anisotropy scaling while
computing the correspondance between an image and the
template. Their approach was able to produce decent results
on in-vivo experiments. Similarly, dos Santos et al. (2014)
proposed an algorithm to track soft tissue deformations
where, instead of relying on scaling parameters, they used
surface matching to perform the registration. Their method
proved to be accurate and fast enough to be used in clinical
trials. Since the body of works focused on 3D registration
for surgery assistance is beyond the scope of this survey, the
interested reader is referred to (Maier-Hein et al. 2013) for

a thorough review of vision techniques dedicated to sensing
soft-tissue.

6.3 Deformation control

The methods presented in this section extend the technique
firstly proposed by Wada et al. (1998), as reviewed
in subsection 4.2, to three-dimensional objects. These
approaches have been applied to two different types of
objects, namely elastic objects and elasto-plastic objects.
Elastic objects return to their original shape once the external
force is removed, and elasto-plastic objects are objects that
present both plastic and elastic deformations (e. g. a loaf of
bread). A commonality among these works is the use of a set
of target points that are located inside the object which the
robot cannot directly manipulate; thus requiring an indirect
manipulation of the points by deforming the object’s surface.

6.3.1 Elasto-plastic objects In (Higashimori et al. 2010)
a spring-mass-damper model was used to predict the
deformation of a clay-like object and modify its shape to a
desired configuration. The approach consisted of two phases,
namely, a sensing phase and a shaping phase. In the first
phase, the object was pushed by an robotic actuator equipped
with a force sensor to estimate the elasticity parameters of the
object. Afterwards, the force required to reach the desired
shape was computed using the obtained parameters and
the integrated force applied during the sensing phase. The
force was then applied in the shaping phase with a simple
force feedback controller. In this approach, the deformation
was only controlled in one dimension, i.e. it was deformed
by a desired distance. Yoshimoto et al. (2011) extended
this approach to deform the object in two dimensions by
modeling the object as a connection of nodes in 3D space.

6.3.2 Elastic objects One of the first works concerning
elastic, specifically hyperelastic, objects was reported
in Smolen and Patriciu (2009). Based on a meshless model
of the object they controlled a set of control points on the
surface of the object through another set of points termed
manipulation points. The control points were arbitrarily
assigned to deform the object into a desired shape, while the
manipulation points were located on the object’s surface, i.e.
where the manipulators could be positioned. Using these two
set of points a Jacobian was computed in order to actuate the
manipulators such that their motion drove the control points
to a required configuration.

A series of reports by Navarro-Alarcón et al. used a similar
approach, namely defining control and manipulation points
and then commanding the motion of a robotic manipulator,
through visual servoing, to reach a desired configuration for

Prepared using sagej.cls



Sanchez et al. 21

an elastic object. However, these works do not rely on a
model of the object; instead a vision system was used to
track the control points. A distinctive characteristic for these
works, was the use of so-called deformation feature vectors
based on a set of control points to describe the different types
of deformation, such as:

(a) Point-based deformation: The object is deformed in
order to drive one point on the object to a desired target
point.

(b) Distance-based deformation: For instance, moving the
midpoint between two points a specified distance.

(c) Angle-based deformation: A line between two points on
the object can be rotated as desired.

(d) Curvature-based deformation: An arc of three points
on the object can be manipulated to achieve a specific
curvature.

Figure 12 shows a graphic representation of these
deformation features.

Figure 12. Deformation features proposed by Navarro-Alarcon
et al. (2013a).

Furthermore, these approaches are based on estimating
a Jacobian matrix representing the relation between the
manipulator’s motion and the feature vector. This Jacobian is
termed deformation Jacobian, and is estimated online using
the Broyden method16 in (Navarro-Alarcon et al. 2013b,a).
In (Navarro-Alarcon et al. 2014), they proposed a new
online Jacobian estimator that uses views from multiple
cameras. Since these previous approaches only controlled

three degrees of freedom of the manipulator’s gripper,
namely its position; in (Navarro-Alarcon and Liu 2014), they
extended their approach to incorporate the control of the
gripper’s orientation in order to have a 6 DoF controller.
Another limitation of these approaches is that the control
is performed on a two-dimensional projection based on the
cameras’ images, since the control points are described in
pixel coordinates. In other words, this approach only controls
the deformation features on a plane. This limitation was
addressed in (Navarro-Alarcon et al. 2016), by using stereo-
vision to track the points in 3D and subsequently define the
deformation feature vectors also in 3D.

The latest approach by Navarro-Alarcon and Liu (2017)
proposed a different way of describing deformations by using
a truncated Fourier series to approximate a contour shape,
rather than a set of points. This novel representation is able to
describe the contour of the object in a 2D plane and it is used
as a feedback signal to control the deformation of the object.
As the method depends on the number of coefficients used
to describe the object’s 2D shape, a trade-off between speed
and accuracy can be adjusted depending on the application
(e.g. a large number of harmonics can better describe the
shape, but becomes computationally expensive to be used in
real time applications). One limitation of the approach, as it
does not use a physical model, is its inability to guarantee
if a desired shape can be reached in advance. Nevertheless,
it would be interesting to research the viability of extending
this innovative approach to 3D shapes.

7. Discussion and future directions

7.1 Discussion

In the previous sections we reviewed recent approaches used
in robot applications that manipulate deformable objects.
These approaches were categorized according to the type of
objects they manipulate, based on the categories described in
Section 1, and subsequently depending on the manipulation
task they perform upon the objects. The top-level
classification grouped the approaches into four categories
of objects. Approaches used across these categories differ
substantially. Greatly, due to the assumptions employed
by the approaches. For instance, cloth-like objects can be
represented as a polygonal structure, an assumption that has
not been proven effective for solid objects. Another common
assumption made by approaches used in the manipulation
of deformable linear objects is to describe them as a chain
of links, which requires them to be extended to a grid in
order to represent planar objects, as shown, for instance,

Prepared using sagej.cls



22 Journal Title XX(X)

in (Elbrechter et al. 2011, 2012; Namiki and Yokosawa
2015).

A further classification of the approaches was applied in
order to distinguish them based on the manipulation task they
focused on since the approach’s success, and applicability,
highly depends on the particular task at hand. Some tasks
require high accuracy estimation of the deformation (e.g.
deformation control), while other do not have this constraint
(e.g. picking up an object). Based on these differences, three
main types of tasks were identified, namely:

(a) Object grasping is unarguably the most common
manipulation task. Therefore, a vast amount of
approaches have focused on grasping, picking up and
holding a object as a first attempt to manipulate
deformable objects. This is a trend that has been
consistent across all the object types, specially in the
earliest approaches. Also, grasping is usually a necessary
first step in order to execute other manipulation actions
such as lifting the object, folding a garment, or
deforming the shape of an object. Another reason for
the popularity of deformable object grasping might be
related to the fact that rigid body grasping is a very
well studied subject in robotics. So far, some approaches
have tried to extend grasping techniques developed for
rigid objects to deformable objects. For instance, the
concept of form closure was extended to deform closure

in (Gopalakrishnan and Goldberg 2004; Gopalakrishnan
2005) to securely hold a deformable object; and force
closure, in combination with an FEM simulation, was
utilized in (Lin et al. 2014; Zaidi et al. 2017). Other
approaches have developed new strategies, such as,
bulging the object enough for a manipulator to grasp
it (Elbrechter et al. 2011; Kristek and Shell 2012) or
using machine learning to learn the force require to lift
the object (Howard and Bekey 1999).

(b) Specific manipulation tasks arise inherently due to the
kind of object being manipulated. One specific task to
deformable linear object is to tie a knot, whereas for
a cloth-like object, folding a garment is a particular
task. Other specific tasks can be found in more than
one category, as is the case of controlling the object
deformation. Deformation control is a common task for
both planar and solid objects.

(c) Sensing the state of a deformable object is a necessary
requirement for most manipulation tasks. For instance,
a manipulator deforming an object must be able to
sense the object’s shape in order to reach a desired

shape. Sensing tasks can be classified in either parameter

identification or shape tracking. Approaches focusing on
parameter identification tasks use vision, and sometimes
force data, to estimate either elasticity parameters (e.g.
Young’s modulus and Poisson’s ration) that are required
by deformation models, such as, Mass-Spring models
or FEM-based models; or approach-specific parameters,
for instance, a degree of deformation required by a
Meshless Shape Matching simulation (Güler et al. 2015),
the twisting strength and bending angles of a beam that
are used in a Euler-Bernoulli model by Fugl et al. (2012),
or the links’ stiffness in a physics-based simulation of
an object modeled as a series of rigid links (Caldwell
et al. 2014). For shape tracking, there are approaches that
rely only on vision systems to estimate the contour of
the deformed object (Cretu et al. 2010a,b); while others,
combine deformation models with vision to estimate the
object’s shape (Leizea et al. 2014; Petit et al. 2015).

Figure 13 shows the different tasks the reviewed
approaches have focused for each deformable object type.
As shown in the figure, a larger number of approaches have
been applied to on cloth-like objects. This disparity might be
due to the increment of recent projects focusing on solving
laundry-related tasks with robots. Most notably, the UC
Berkeley group17 and the CloPeMa project18 have produced
a lot of results to perform many of the tasks required
to enable a robot to autonomously do the laundry. The
interest on solutions of laundry oriented tasks, within cloth-
like objects, is also apparent in the amount of approaches
that solve a specific task (19) like folding and hanging; in
comparison to approaches focusing on manipulation (10) or
sensing tasks (14).

Another remark from Figure 13 is the limited numbers
of approaches focusing on sensing tasks for planar objects.
A contrast to this, is the amount of approaches that do
focus on sensing task for solid objects. This is not a
surprising fact, since our survey has mostly concentrated
on reviewing recent approaches and as previously noted,
sensing tasks tend to precede manipulation tasks. Therefore,
the amount of approaches focusing sensing deformation on
planar objects (which themselves have preceded approaches
on solid objects) is significantly less than those on solid
objects, which were not as researched until the last few years.

7.2 Future directions

Finally, we discuss open problems within each category and
suggest possible directions to be further researched.
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Figure 13. Classification of the 106 reviewed approaches
based on their task(s) and object type(s). Note that some
approaches appear multiple times across task and object types.

7.2.1 Linear objects A particular issue that has not been
addressed substantially is that of estimating the state of linear
deformable objects when three-dimensional deformations
occur. This might be due to the fact that the majority
of reviewed approaches either making assumptions on the
object’s behavior (e.g. assuming a rope’s shape follows the
trajectory of the gripper grasping it as in (Vinh et al. 2012;
Yamakawa et al. 2010; Takizawa et al. 2015; Yamakawa
et al. 2012)) or simplifying the object’s configuration
to, for instance, a topological description19 as described
in (Yamakawa et al. 2008; Matsuno et al. 2006). Nonetheless,
there have been approaches attempting to estimate the
shape of a linear deformable object. These approaches
either use a modeling framework (Bretl and McCarthy
2014), sensing (Matsuno et al. 2006), or more commonly,
a combination of both (Javdani et al. 2011; Caldwell et al.
2014; Borum et al. 2014).

However, the current state of the art on the state estimation
of deformable objects is limited. On the one hand, modeling
approaches require a priori knowledge of the object
(e.g. elasticity parameters) and tend to be computational
expensive, rendering too slow for real time manipulation
tasks. On the other hand, sensing approaches thus far have
mainly relied on visual sensors; a sensing modality that
is affected greatly by occlusion, which occurs more often
when manipulating the object. Other sensors, such as force-
torque sensors, are currently limited by their sensitivity and
might not be able to detect a significant measurement on
objects that present large strains. Tactile sensing could be an
interesting complementary modality to visual sensing due to
its ability to extract relevant information on the parts of the
objects that are being occluded by the manipulation process,

although the resolution of a given tactile sensor restricts the
sensing of sufficiently thin linear objects.

An accurate estimation of an object’s state could
allow more complex manipulation actions such as routing
cables (e.g. in a car manufacturing facility) and helping
disable people tie their shoe laces. Also, improved sensing
capabilities could detect unexpected events to trigger a re-
planning strategy. This sensing ability will benefit path
planning approaches as it would allow them to adapt
to dynamic environments; and understanding, either by
modeling or sensing, how an object behaves while being
manipulated, could be incorporated into planning strategies
to generate more robust motions.

7.2.2 Planar objects Most planar objects that have been
studied so far are a simplified case of a solid object, where
only one side of the object is considered. For instance,
in (Guo et al. 2013) a sponge-like object is manipulated
while considering only its deformation on a two-dimensional
plane. This was a necessary simplification at the beginning
of the field, since the computational resources were not as
powerful as they are today. By considering one dimension
less of the object, simulation approaches could be applied
that might not have been possible on a solid object as it was
demonstrated in (Jia et al. 2011; Gopalakrishnan 2005).

The state-of-the art computing is now, however, capable
of simulating deformation of solid objects at an acceptable
speed. Thus, the field has focused its attention in other types
of objects such as paper. Paper manipulation remains an
under-researched field, but there have been notable efforts
to improve robots’ abilities to handle paper (Elbrechter et al.
2011, 2012; Namiki and Yokosawa 2015). Similar objects,
e.g. cards and bills, have received even less attention and
the current approaches focus on simple manipulation actions
such as flipping them or rotating them (Kristek and Shell
2012). Developing control algorithms that can be coupled
with recent vision-based approaches, able to reconstruct
deformations of planar surfaces in an online manner (see
for instance (Famouri et al. 2017)), would provide robots
with capabilities to manipulate paper-like objects in real
time. This would allow robots, for example, to take over
tedious office tasks such as sorting documents, making
copies, opening mail and handling bills.

Figure 13 indicates a clear trending on approaches
focusing more on manipulating planar objects rather than
on sensing their deformation. Most recent approaches
have relied on estimating the object’s deformation through
modeling (either using Mass-Spring or FEM based models)
and apply control theory algorithms to manipulate them. A
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potential improvement to these techniques would be to add
sensing information (e.g. force and vision) in the loop to
increase the accuracy of both the deformation estimation and
its control.

7.2.3 Cloth-like objects Most of the focus so far has
been on approaches to solve the so-called laundry problem;
that is, picking up a cloth, place it into a washing
machine/drier, taking it out of the washing machine/drier,
stretching it out, folding it, and putting it away. However,
more complicated tasks involving handling of clothes have
received less attention. For instance, hanging a cap on a
standing hanger was covered in (Twardon and Ritter 2015)
and an approach to iron a shirt with a robot was recently
proposed by Li et al. (2016). Machine learning algorithms,
already used for solving folding tasks, such as learning
from demonstration (Balaguer and Carpin 2011; Huang
et al. 2015; Lee et al. 2015) could be applied to some
of these complex tasks. Another example is that of aiding
a person getting dressed; an initial attempt was presented
in (Yamazaki et al. 2014; Tamei et al. 2011). However,
helping a person button (and unbutton) a shirt proves to
be a much more difficult task for a robot. Another desired
capability for a robot is that of drying a disable person using
a towel, a task that does not only require the manipulation of
the cloth itself, but also the interaction with the person’s body
which should be performed in a safe manner. Handling safety
concerns opens the possibility of incorporating techniques
currently being developed in the field of physical human-
robot interaction.

7.2.4 Solid objects This type of deformable objects
remain the least researched. A reason for this is the
computation complexity required to model a three-
dimensional object in a realistic manner. However, due
to recent computing progress that has allowed complex
modeling and more realistic simulations to be performed
at a reasonable rate; solid objects are now receiving more
attention from the robotics community.

In so far, the research of solid deformable objects has
focused mostly on grasping and holding an object (Lin
et al. 2014, 2015; Zaidi et al. 2017), and on estimating
its deformation (Leizea et al. 2014; Petit et al. 2015) (see
Figure 13). Another direction that remains under-researched
is that of shape-servoing, that is, to deform an object into a
desired shape (Smolen and Patriciu 2009; Navarro-Alarcon
et al. 2013b, 2014). However, the current approaches that
have focused on shape-servoing rely on visual sensing;
which, similarly to the linear objects, they are widely
affected by occlusion and thus, adding force and tactile

sensing could address the shortcomings of vision systems.
Unlike vision sensing, force and tactile sensing require
the robot to physically interact with the object which in
turns require a manipulation strategy to perform different
exploratory actions such as tapping, rubbing, shaking or
grasping an object. Furthermore, these sensing modalities
have demonstrated their ability to extract material properties
to improve the object’s deformation model.

An additional task with a lot of potential is that of
dynamic manipulation of soft objects. For instance, a robot
able to manipulate soft tissue in real time could assist a
surgeon in a medical procedure; or help out in a domestic
setting by handling food items to prepare a meal. As an
example, one recent attempt of dynamic food manipulation
was described in (Satici et al. 2016), where they proposed
a theoretical framework to dynamically manipulate a pizza
dough, specifically; to toss and catch the dough with a
humanoid robot. However, their results are yet to be validated
on a real platform. Improvements on sensing, modeling
and actuation are still required to allow robots to handle
deformable objects in a human-like manner. Accurate, and
real time, sensing would allow the robot to know the state
of the object to better decide how to manipulate it to
achieve a given task. Dexterous and fast manipulators are
also necessary to carry on movements that adapt to an object
constantly changing its shape.

Soft robots, unlike traditional robots, are made of
materials exhibiting large strains (e.g. low Young Modulus)
and could very well be considered deformable objects.
The field of soft robotics shares several issues with
deformable objects. For instance, soft robotics is concerned
with estimating the robot’s deformation and controlling its
configuration by actions that deform the robot. Additionally,
methods such as FEM simulation are common, on both
fields, to model the object/robot’s behavior and, due to their
intrinsic safety; soft robots are also ideal for manipulation
tasks where safety is paramount in handling fragile objects
(e.g. muscles and organs in a surgical operation or humans
themselves while providing elderly care). As soft robotics
covers a wide diversity of topics such as design, fabrication,
modeling and control; we refer the reader to previous
surveys (Trivedi et al. 2008; Kim et al. 2013; Rus and Tolley
2015), where these are discussed in depth.

8. Conclusion

This survey presented a review of recent approaches that
focus on robot applications that manipulate deformable
objects in domestic and industrial environments. A
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categorization of the approaches based on the type of
objects they manipulate was defined, as well as a further
classification that considers the type of task being executed.
We identified four object types: 1) Linear, 2) Planar, 3)
Cloth-like and 4) Solid; and three types of tasks, namely,
sensing, manipulation and tasks particular to each object type
(e.g. folding a shirt). Using this classification, we arranged
the reviewed approaches in tables to offer a concise overview
of the proposed categories.

We also discussed current limitations based on this
classification and provided prospective research lines for
each type of object. We recognize that deformation sensing,
mostly based on vision systems, has seen important
advances recently. In comparison, manipulation skills still
remain underdeveloped, in particular, dynamic manipulation
of deformable objects. Control algorithms, and perhaps
improved hardware, need to be developed to improve end-
effectors’ dexterity such that they can appropriately react
to the object’s deformation in real time. As manipulating
the object might cause occlusions, vision-based sensing
could overcome this by including the output of force and
tactile sensors. This, in turn, requires deformation and
contact models that transform force and tactile signals into
a compatible representation (e.g. geometric information)
obtained by visual systems.

Another insight, obtained by reviewing and classifying
the state of the art on this field, is a clear tendency of
approaches to develop techniques focused on specific tasks,
or by exploiting assumptions that are unique to a given
object type. Thus, a lack of approaches that provide general
solutions for different object types and tasks remains a major
open issue.

Finally, we intend this survey helps researchers new to
the field get an overview of the state-of-the-art techniques
and their applications; and to researchers already in the field,
as a quick guide to relevant approaches on their particular
interests.
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Notes

1. For linear elasticity, large strain implies a low Young’s

modulus, e.g. less than 10 MPa (see Section 2 for a definition

of Young’s modulus).

2. We do not considered deformations produced by other physical

phenomena such as temperature.

3. Linear elastic deformation occurs when the stress and strain are

proportional (Callister 2006).

4. We only consider physically-based deformation models.

5. An image registration algorithm that can be used for non-rigid

registration (i.e. to track a deformable object) (Yang 2011).

6. The planning algorithm is based on the Covariant Hamiltonian

Optimization and Motion Planning (CHOMP) method (Ratliff

et al. 2009).

7. A chart is an invertible map between a simple space (e.g. a 3D

Euclidean space) and a subset of a manifold (Morita 2001).

8. The squeeze depth is the distance traveled by the fingers along

a direction that produces either, a stable or a pure, squeeze.

9. Their simulated evaluation used 12 to 36 manipulation points.

10. A stack here refers to the stack created by a previous fold. For

instance, a towel folded by the middle would result in a stack

of two.

11. In this context, topological coordinates refer to relationships

between segments as introduced in (Ho and Komura 2009).

12. A slip was considered if a vision system detects that the object

was not longer being grasped

13. Volumetric mesh with known elasticity parameters such as

Young’s modulus and Poisson’s ratio.

14. Unlike FEM and MSD models, position-based simulation are

geometrically-based rather than physics-based. They trade off

accuracy for speed in simulation.

15. Shape-from-Motion is a technique that first generates a 3D

template of the target shape. Then, based on a set of points, it

finds the correspondence between images, as the camera moves,

and the previously generated template.

16. The Broyden method computes the Jacobian once at the

beginning and then approximates it at each iteration using the

previous Jacobian and the changes of the feature vectors and the

end-effector’s pose. In this way, the computed Jacobian relates

the changes of the end-effector’s pose with the deformation

feature vector.

17. https://people.eecs.berkeley.edu/

˜pabbeel/personal_robotics.html

18. http://www.clopema.eu/

19. One example of a topological description is to represent the

object as a graph; where each node represents either an end of

a rope or an intersection, and links represent the rope segments

between the nodes.
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