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Abstract

Ionizing-radiation-resistant bacteria (IRRB) could be used for biore-
mediation of radioactive wastes and in the therapeutic industry. Limited
computational works are available for the prediction of bacterial ioniz-
ing radiation resistance (IRR). In this chapter, we present some works
that study the causes of the high resistance of IRRB to ionizing radia-
tion. Then we focus on presenting in silico approaches that use protein
sequences of bacteria in order to predict if an unknown bacterium be-
longs to IRRB or ionizing-radiation-sensitive bacteria (IRSB). These ap-
proaches formulate the problem of predicting bacterial IRR as a multiple
instance learning (MIL) problem where bacteria represent the bags and
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primary structure of basal DNA repair proteins of each bacterium repre-
sent the instances inside the bags. We also present a formulation of the
problem of MIL in sequence data and explain how it could be used to
solve the problem of IRR prediction in bacteria. A brief comparison of
the presented approaches is provided.

Keywords: bacterial ionizing radiation resistance, multiple instance learning,
phenotype prediction

1. Introduction

IRRB could be used for the treatment of mixed radioactive wastes by devel-
oping a strain to detoxify both mercury and toluene [1]. These organisms are
also being engineered for in situ bioremediation of radioactive wastes[2]. In
[3], the authors discuss the potential uses of radiation-resistant extremophiles
(e.g. micro-organisms with the ability to survive in extreme environmental con-
ditions) in biotechnology and the therapeutic industry. The major challenges of
therapeutic development using extremophiles are discussed in [4].

Several in vitro and in silico works studied the causes of the high resistance
of IRRB to ionizing radiation to determine peculiar features in their genomes
and improve the treatment of radioactive wastes [5]. However, limited compu-
tational works are provided for the prediction of bacterial IRR [6][7]. In this
work, we present some works that study the causes of the high resistance of
IRRB to ionizing radiation. Then we focus on machine learning approaches
that use protein sequences of bacteria to predict whether a bacterium belongs to
IRRB or IRSB. These approaches formulate the problem of predicting bacterial
IRR as an MIL problem where bacteria represent bags and repair proteins of
each bacterium represent instances. MIL methods are a variation of machine
learning methods that can be used to solve problems in which the labels are
assigned to bags, i.e., a set of instances, rather than individual instances.

The remainder of this chapter is organized as follows. In Section 2, we
present some computational works that aim to analyze IRRB in order to find out
the causes of their resistance to ionizing radiation. In Section 3, we provide a
formalization of the problem of MIL and explain how it could be used to solve
the IRR prediction problem. Then we present some existing in silico approaches
for IRR prediction in bacteria. Section 4 provides a brief comparison of the
presented approaches. Concluding points make the body of Section 5.
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2. Computational Works for Analyzing IRRB

Several in vitro and in silico works are proposed in order to study the causes
of the high resistance of IRRB to ionizing radiation. In fact, determining the
characteristics of IRRB could help to predict if a bacterium belongs to IRRB or
IRSB. In this chapter, we present some of these works and show the pipeline of
existent bioinformatics programs and the statistical methods they use.

In [6], the authors analyze four known genome sequences of IRRB in order
to find out the role of positive Darwinian selection in the evolution of IRR and
the tolerance of desiccation. The used pipeline contains three steps:
Step 1. Finding orthologous relationships using MultiParanoid [8].
Step 2. Aligning the sequences for each ortholog set using CLUSTAL W [9].
Step 3. Testing for positive selection using the DnaSP program [10] that requires
an aligned set of orthologous sequences.
This work concludes that all basal DNA repair genes in IRRB are subject to
positive selection unlike many of their orthologs in IRSB.

In [11], the authors make a comparative analysis of codon and amino
acid usage patterns. The study uses 19 genomes of the phylum Deinococcus-
Thermus and follows a six-step pipeline.
Step 1. The authors make correspondence analysis on relative synonymous
codon usage and amino acid usage using the program CodonW [12]. Then they
use SPSS software [13] to make correlation and variance analysis.
Step 2. In order to find out the variation in amino acid usage between radiation-
sensitive and radiation-resistant genome of the studied bacteria, the STATIS-
TICA software [14] is used and a cluster analysis on amino acid usage is per-
formed.
Step 3. To find out a cluster of orthologous proteins, the authors use the CMG-
Biotools workbench [15] and a BLAST matrix [16].
Step 4. Synonymous and non-synonymous substitution patterns in previously
selected orthologous proteins are then estimated. The PAML software [17] is
used in this step.
Step 5. Several indices are calculated in order to find out the factors influenc-
ing codon and amino acid usage including aromaticity, average hydrophobicity,
isoelectric point and instability index.
Step 6. Finally, a COG [18] functional classification is performed in order to
compare the proteins. The IMG/M system [19] is used in this step as a support
for comparative analysis of metagenomes.
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This study reports significant differences in synonymous codon usage bias
and amino acid usage patterns between the radiation-sensitive and radiation-
resistant genomes of the studied dataset.

In a recent work [20], the authors identify general patterns of microbial re-
sponses to multiple stressors in radioactive environments. They analyze three
datasets including a set of bacteria isolated from soil contaminated by nuclear
waste at the Hanford site (USA) [21]. The other two datasets are out of the
scope of this chapter since they concern fungi and yeasts. In order to develop
a filter procedure for identifying important predictor variables, machine learn-
ing and information theoretic approaches are used. The pipeline contains three
main steps.
Step 1. The authors start by testing the hypothesis which supposes that the col-
lected contaminated soil samples are statistically dependent (samples separated
by 1 meter of soil depth would contain the same bacterial taxa than samples
separated by 10 meters). To do so, they use Mantel tests [22] for spatial auto-
correlation using the ade4 R package [23].
Step 2. In order to find out the variables which are the least important for de-
scribing the data, authors use two machine learning prediction methods: random
forests [24] and random generalized linear modeling [25]. The variables that are
identified as unimportant by both machine learning methods are most likely to
be noise variables and are not used in the rest of the study.
Step 3. All variables are ranked in order of importance and filtered based on
information theoretic approaches [26] [27]. A new model is created using the
retained variables.

3. Multiple Instance Learning Approaches for Bacte-
rial IRR Prediction

As far as we know, only three in silico approaches were proposed in order to pre-
dict the bacterial IRR based on a set of protein sequences. These approaches,
named ABClass, ABSim and MIL naive approach [28], are three machine learn-
ing algorithms that require as input a set of proteins sequences of each bacterium
and provide as output a label response: IRRB if the query bacterium is radio-
resistant and IRSB if not. Since these approaches are based on a MIL formali-
sation, we present in this section the MIL problem formulation and we highlight
some well known MIL algorithms. Then, we provide a description of the above
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cited approaches.

3.1. Problem Formulation

We denote Σ an alphabet defined as a finite set of characters or symbols. A
symbolic sequence is defined as an ordered list of symbols [29]. The primary
structure of a protein is a symbolic sequence since it is described using symbols
(amino acids). Let DB be a learning database that contains a set of n labeled
bags DB = {(Bi, Yi), i = 1, 2 . . . , n} where Yi = {−1, 1} is the label of
the bag Bi. Instances in Bi are sequences and are denoted by Bij . Formally
Bi = {Bij , j = 1, 2 . . . ,m}, where m is the total number of instances in this
bag. We note that according to the problem investigated in this chapter, there
is a relationship between instances of different bags since there are orthologous
proteins in the different bags. This relation is denoted the across bag sequences
relation in [28]. The goal is to learn a multiple instance classifier from DB.
Given a query bag Q = {Qk, k = 1, 2 . . . , q}, where q is the total number of
instances in Q, the classifier should use sequential data in this bag and in each
bag of DB in order to predict the label of Q.

3.2. Multiple Instance Learning: An Overview

In a traditional setting of supervised learning task, the training set is composed
of feature vectors (instances), where each feature vector has a label. In MIL task,
we learn a classifier based on a training set of bags, where each bag contains
multiple feature vectors and it is the bag that carries a label [30]. We do not
know the labels of the instances inside the bags. The task of MIL investigated
in this chapter is to learn a classifier from the training set that correctly predicts
unseen bags.

Several MIL algorithms have been proposed. A review of MIL approaches
with a comparative study could be found in [30] and [31]. A common assump-
tion in MIL field is that a positive bag contains at least one positive instance,
while in a negative bag all of the instances are negative. This assumption
is called the standard multiple instance assumption. Several MIL algorithms
adopt this asymmetrical assumption including MI-SVM [32] and Diverse Den-
sity [33]. MI-SVM is an adaptation of support vector machines (SVM) to the
MIL problem. The key point of Diverse Density algorithm is to find a concept
point in the feature space that is close to at least one instance from every positive
bag and meanwhile far away from instances in negative bags. Other methods



6 Manel Zoghlami, Sabeur Aridhi, Mondher Maddouri et al.

adopt the so called collective assumption which states that all instances in a bag
contribute to define its label. This assumption could be suitable to the problem
investigated in this chapter since we do not know which set of proteins helps
us to classify a bacterium as IRRB. Some algorithms make a positive instance
selection. In a recent work [34], the authors present the MILKDE algorithm
which identifies the most representative instances in each positive bag based on
a likelihood computation.

According to [30], the MIL methods could be categorized according to how
the information existent in the MI data is exploited. Three categories could be
defined depending on the adopted paradigm:

• Methods following the instance-space paradigm assume that the discrim-
inative information is present at the instance-level. We consider the char-
acteristics of individual instances in the learning process without looking
at more global characteristics of the whole bag. The simplest algorithm
in this category is the SIL algorithm [35] which trains a standard super-
vised classifier then simply uses the sum as aggregation rule to obtain the
bag-level classifier.

• Methods following the bag-space paradigm treat each bag as a whole en-
tity. A global bag-level information is used to make the discriminative
decision instead of aggregating instance-level decisions. A commonly
used approach is to define a distance function in order to compare bags.
In [36], the authors present an extension of the classical KNN algorithm
[37] called the Citation-kNN algorithm. It classifies a bag based on the
labels of its neighbors (references and citers).

• Methods following the embedded-space paradigm map each bag to a fea-
ture vector which summarizes the relevant information about the whole
bag. The bag-level information is extracted explicitly through the defini-
tion of a mapping function, while it is done implicitly in the bag-space
paradigm. In [38], the authors propose an MIL algorithm that computes
the dissimilarities of a bag to other bags in the training set and uses these
dissimilarities as a feature representation.

3.3. A Naive MIL Approach for IRR Prediction

In [28], the authors present a naive MIL approach for sequence data with across
bag relationships. Since the bacterial IRR prediction problem could be formal-
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ized as an MIL problem and there is a relationship between protein sequences
across bags (orthologous proteins), then we can apply the naive approach in our
case. This approach contains two steps: a preprocessing step and a learning
step.
Step 1. The preprocessing step transforms the set of sequences into an attribute-
value matrix where each row corresponds to a sequence and each column cor-
responds to an attribute. When we deal with sequence data, the most used tech-
nique to transform data into an attribute-value format is to extract motifs that
serve as attributes. We note that finding a uniform description of all instances
using a set of motifs is not always an easy task. Since the naive approach takes
into account the across bag relationships between instances, the preprocessing
step extracts motifs from each set of related instances. The union of these ex-
tracted motifs is then used as an attribute set to construct the descriptive matrix.
The presence or the absence of a motif in a sequence is respectively denoted
by 1 or 0. It is worthwhile to mention that only a subset of the used attributes
is representative for each processed sequence. Therefore, we may have a big
sparse matrix when trying to present the whole sequence data using an attribute
value format.
Step 2. The second step consists in applying an existing MIL classifier.

3.4. ABClass: Across Bag Sequences Classification Approach

In order to avoid the use of one large vector of features to describe sequence
data, the ABClass approach [28] that takes into account the across bag relation-
ships between instances is proposed. It contains the following steps.
Step 1. A preprocessing step identifies orthologous protein sequences. Ideally,
each protein has an orthologous sequence in each bag. This is defined as an
across bag dependency. This relationship between sequences of different bags
will be used in the learning step. The learning dataset is divided into sets of
orthologous sequences. We note that a protein may not have any ortholog in a
bag.
Step 2. A set of motifs is extracted from each set of orthologous sequences. In
the experimental tests, DMS [39] is used as a motif extraction method. DMS
allows building motifs that can discriminate a family of sequences from other
ones. It first identifies motifs in the protein sequences. Then it filters them in
order to keep only the discriminative and minimal ones.
Step 3. Extracted motifs are used to encode instances in order to create a dis-
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criminative model. Each set of related instances (i.e. orthologous proteins) is
represented by its own motifs vector. This reduces the number of attributes that
are not representative for the processed protein sequence. The WEKA [40] data
mining tool is used in order to apply existing well known classifiers to generate
models. The following three classifiers have been used: SMO [41] [42], J48
[43] and Naive Bayes [44].
Step 4. To predict the IRR of an unlabeled bacterium, the extracted motifs are
used to represent its instances. Each protein sequence is represented using a
vector. Then it is compared with the corresponding model (already generated
from its orthologous proteins) to provide a partial prediction result.
Step 5. Finally, an aggregation step is applied on the partial results in order to
compute the final prediction result.

3.5. ABSim: Across Bag Sequences Similarity Approach

In [28], the authors present ABSim, an algorithm that discriminates bags by
measuring the similarity between each instance sequence in the query bag and
corresponding related sequences in the different bags of the learning database.
ABSim is an extension of a previously proposed algorithm named MIL-Align
[45]. The difference between these two algorithms is that ABSim is more gen-
eral since MIL-Align was originally proposed to deal with biological data while
ABSim aims to deal with MIL in sequence data in general e.g. textual data.
When applied to the problem of bacterial IRR prediction, ABSim uses the local
alignment score as similarity measure to compare protein sequences. The algo-
rithm works as follows:
Step 1. For each protein sequence in the query bag, the algorithm computes the
corresponding alignment scores between this protein and its orthologs in other
bags.
Step 2. Alignment scores are grouped into a matrix. Each line corresponds to a
score vector of a protein against all its orthologs in other bacteria.
Step 3. An aggregation method is applied to the matrix in order to compute the
final prediction result. Two aggregation methods named SMS and WAMS are
proposed by the authors.

3.6. Experimental Results of MIL Approaches

The MIL naive approach, ABClass and ABSim are used in [28] in order to
resolve the problem of phenotype prediction of bacterial IRR. Bacteria rep-
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resent the bags and primary structure of basal DNA repair proteins represent
the sequences. An unknown bacterium is affiliated to either IRRB or IRSB.
The used dataset is described in [45]. It consists of 28 bacteria (14 IRRB
and 14 IRSB). Each bacterium/bag contains 25 to 31 instances that corre-
spond to proteins implicated in basal DNA repair in IRRB. Proteins of the
bacterium Deinococcus radiodurans were downloaded from the UniProt web-
site. Proteomes of other bacteria were downloaded from the NCBI FTP web-
site. ABSim and ABClass tools can be downloaded at the following link:
http://homepages.loria.fr/SAridhi/software/MIL/.

It is worthwhile to mention that ABClass is tested under several different
settings (classifiers and motif extraction settings) and that the obtained accuracy
results depend on the used settings. The over all accuracy results reported in
[28] are very close but a slightly better accuracy rates are provided either by
ABClass or by ABSim according to the used settings. Using both approaches,
two bacteria (M. radiotolerans and B. abortus) generate the lowest rates of suc-
cessful prediction compared to the rate of the other bacteria. These results may
help to understand some characteristics of the studied data. A probable biologi-
cal explanation is provided in [45] and notes that this could be explained by the
increased rate of sequence evolution in endosymbiotic bacteria [46].

4. Comparison

Table 4.1 provides a short comparison of the previously presented approaches.
The three works [6] [20] and [11] are interested in analyzing different charac-
teristics of IRRB. The works in [6] and [11] are based on a pipeline that uses
existent bioinformatics programs in order to perform their studies. The study in
[7] is based on a filter of machine learning and information theoretic approaches.
Although these works are important to understand the causes of the high resis-
tance of IRRB to ionizing radiation, they do not provide a tool to predict if an
unknown bacterium belongs to IRRB or IRSB.

The naive MIL approach, ABClass and ABSim provide as output a predic-
tion label for an unknown bacterium (IRRB or IRSB). The naive MIL approach
uses standard MIL classifiers after making a preprocessing step which extracted
motifs and adapt the data to the required format. This preprocessing step is
time consuming and could lead to a huge matrix. ABCLass takes advantage of
the across bag relationships between sequences in order to reduce the number
of attributes that are not representative for each sequence during the encoding
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Table 4.1. Comparison of the presented approaches on IRR
analyses\prediction in bacteria.

Approach Task Method
Sghaier et al., 2008 [6] Analysis of IRRB Pipeline
Banerjee et al., 2014 [11] Analysis of IRRB Pipeline
Shuryak and Dadachova, 2016 [20] Analysis of IRRB Information theory and

machine learning
MIL Naive Approach [28] IRR Prediction MIL classifiers

and motif extraction
ABClass [28] IRR Prediction MIL model and

optimized use of motifs
ABSim [28] IRR Prediction MIL model and

alignment score

step. This relationship is also used during the learning step when generating
partial models for each set of related sequences. ABSim does not use motifs
to represent data since no encoding step is needed. The local alignment score
is used to perform the prediction. This makes ABSim faster and easier to use
than ABClass unless we already have the representative motifs for each set of
orthologous proteins or if we think that the extraction of motifs will not be an
expensive task (according to the data size, the used motifs extractor and the
extraction settings e.g. required motifs length). As mentioned in the previous
section, a slightly better accuracy result could be provided either by ABClass or
by ABSim according to the used settings.

5. Conclusion

Prediction of IRR in bacteria is a challenging task. Several works were in-
terested in finding out the causes of the resistance of some bacteria to IRR.
These works generally use a pipeline of existing bioinformatics programs. Other
works provide machine learning algorithms in order to predict the bacterial IRR.
They are based on an MIL formalization. In this chapter, we studied existing
works on prediction of IRR in bacteria and we presented a comparison of the
studied approaches. Based on our study, we mention that the used settings in the
preprocessing step and the learning step influence the choice of the approach to
use.
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