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Abstract

Modeling trace element partition coefficients usthg lattice strain model is a
powerful tool for understanding the effects PfT conditions and mineral and melt
compositions on partition coefficients, thus sigrahtly advancing the geochemical
studies of trace element distributions in nature.tiis model, partition coefficients
describe the strain caused by a volume change opton substitution in the crystal
lattice. In some mantle minerals, divalent, trivéjeand tetravalent trace element cations
are mainly substituted in one specific site. Latstrain model parameters, for instance in
olivine and plagioclase, are thus fit for one aaysite. However, trace element cations
can be substituted in two sites in the cases afxgnes, garnets, amphiboles, micas, or
epidote-group minerals.

To thoroughly study element partitioning in thoseenals, one must consider the
lattice strain parameters of the two sites. In théper, we present a user-friendly
executable program, working on PC, Linux, and Mtosh, to fit a lattice strain model
by an error-weighted differential-evolution-congtied algorithm (Storn, R., and Price,
K. 1997. Differential evolution - A simple and &fent heuristic for global optimization
over continuous spaces. Journal of Global Optinoratl, 341-359). This optimization
procedure is called DOUBLE FIT and is available fadownload on

http://celiadalou.wixsite.com/website/double-fibgram. DOUBLE FIT generates single

or double parabolas fitting experimentally deteredintrace element partition coefficients
using a very limited amount of data (at minimum sixperimental data points) and

accounting for data uncertainties. It is the fastasculation available to obtain the best-
fit lattice strain parameters while accountingtfog elastic response of two different sites

to trace element substitution in various minerals.

Keywords: trace elements, partition coefficientgopenes, lattice strain, fitting

1. Introduction

Elemental partition coefficients between Earth'sag@s are commonly employed to
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interpret geochemical signatures of mantle-deriig@teous melts and rocks. Because
trace element partitioning between equilibrated erafs an melts strongly depends on
their chemical compositions and the melting or w@ijigation pressure R) and
temperatureT) conditions, trace element abundances in magnasamestrain the depth,
temperature, and extent of their partial meltinghe mantle (e.g. Wood and Blundy,
1997; Wood et al., 1999; van Westrenen et al., 18l9et al., 2000; van Westrenen et
al.,, 2000a,b; Salters et al., 2002; Bédard, 200&:; & al., 2009; van Kan Parker et al.,
2010; Dalou et al., 2009, 2012; Cartier et al.,£20Dygert et al., 2014; Bobrov et al.,
2014; Michely et al., 2017). Therefore, partitiavefficients D) cannot be used as fixed
values in geochemical models, and understandinguagation withP-T conditions and
mineral and melt compositions is fundamental.

To do so, results of trace element partitioningl&s are interpreted within the
framework of the lattice strain model (Blundy anddll, 1994), which describes the
substitution parameters of elements in differegstal sites. In mantle minerals such as
olivine or plagioclase, divalent, trivalent, antréalent trace element cations are mainly
substituted in one site, respectively the M2 anadthhedral sites (Wood and Blundy,
2007). Lattice strain model parameters for thoseenails are thus fitted for one crystal
site (M2 in olivine, e.g. Beattie, 1994; Taura kt 8998; Zanetti et al., 2004; Lee et al.,
2007; Michely et al., 2017; or M in plagioclasey.eBlundy and Wood, 1991; Bindeman
et al., 1998; Tepley et al., 2010; Sun et al., 20kv¥ contrast, trace element cations can
be substituted in both the M1 and M2 octahedrassaf pyroxenes and tri-octahedral
micas such as phlogopite and biotite, in the dodedil X site and the octahedral Y site
in garnet (sometimes possibly into its T site)tha three octahedral sites (M1, M2, and
M3), the distorted cubic M4 site, and the distortethoctahedral site A in amphiboles
(Wood and Blundy, 2007; Sun et al., 2018), and/thi® 11-fold coordinated A1 and A2
sites in epidote-group minerals (Frei et al., 2008)vertheless, in many pyroxene-melt
partitioning studies (orthopyroxene, e.g. Greeralgt 2000; Bédard, 2007, Lee et al.,
2007; and clinopyroxene, e.g. Hill et al., 2000;aAdand Green, 2003, 2006; Gaetani et
al., 2003; McDade et al., 2003a,b; Bédard et 8142 Michely et al., 2017), cations in
the M1 site are not accounted for in the latticaistmodel. Similarly, the lattice strain

model is often applied only to the X site in gasét.g. van Westrenen et al., 1999,
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2000b; Green et al., 2000; Klemme et al., 2002;Adad Green, 2003, 2006; Gaetani et
al., 2003; Pertermann et al., 2004; Corgne et24Q4; Dalou et al., 2009). Others

consider multiple sites, but fit them separatelyhe lattice strain model (e.g. Adam and
Green, 2003, 2006; Dygert et al., 2014 for pyrose®zenan et al., 1995; La Tourrette et
al., 1995; Dalpé and Baker, 2000 for amphiboles pinildgopites; and Frei et al., 2003

for epidote-group minerals), overlooking a possibdationship between the elastic

parameters of the two sites.

To apply the lattice strain model to both sites &héxperimentally determined
trace element partition coefficients, several apphes have been proposed. Frei et al.
(2009) and van Kan Parker et al. (2010) fit theipeximental values using a weighted
nonlinear least square Levenberg-Marquardt routisiag the observe®;,°P™e"
weighting factor, and minimizing? = S[(D;°°se™ed_ p;calculatey/p observef (prags et al.,

1992). This method is limited as it is partly fdtby fixing some parameters. Cartier et al.

as a

(2014) opted for a Monte Carlo-type approach; inige-force method is more robust but
requires a large number of data and/or a long tlon time. In addition, both methods
did not account for data uncertainties.

In this paper, we present DOUBLE FIT, a latticastrmodel fit by a differential-
evolution-constrained algorithm (Storn and Pric897) adapted to be error weighted.
The optimization procedure generates double pseadabolas fitting experimentally
determined trace element partition coefficientsigsa very limited amount of data (at
minimum 6 experimental data points, Fig. 1), is tist lattice-strain fitting program
accounting for measurement errors on data pointspéers the fastest calculation of the
best-fit values for the lattice strain parameterdath pyroxene sitesio™!, ro"?, EM!,
EM?, Do™, andDo"™.

2. Latticestrain modelsfor pyroxenes

At equilibrium, the dependence of trace elementitparing on the mineral
composition attests to changes in the crystal straqe.g. Blundy and Wood, 1994; see
also the review by Blundy and Wood, 2003) when erég the crystal structure as an

elastic body (Nagasawa, 1966; Brice, 1975). Suligiit of a trace element cation for an
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essential structural constituent of a crystal affélce lattice energetics of crystallographic
sites due to the misfit between the substitutedogaand the essential structural
constituent whose radius is very close to the idadius of the site (Nagasawa, 1966;
Brice, 1975; Beattie, 1994; Blundy and Wood, 19%pod and Blundy, 1997).

According to their ionic radius and charge, elermeate incorporated into different
crystal sites. Each site is characterized by thearpaters of the lattice strain model
(Brice, 1975; Blundy and Wood, 1994). This modeb&sed on the observation of a

crystal/mel)

pseudo-parabolic relationship between cationiciyagi and InD; values for

crystal/melt ;

isovalent trace elements, (Onuma et al., 1968), in whicb; is the Nernst

partition coefficient based on concentration ratid®is model, applied to the two
pyroxene structural sites, is characterized by psikametersro™ andrg"?, the ideal
(strain-free) radii of the M1 and M2 sites, respegy; EM* andE™?, the elastic response

of the sites to the elastic strain causedrhgifferent thanro"* andro*?; and Do and

M1

Do"?, the fictive strain-free partition coefficientsrfthe cations withrg™* and ro“?,

respectively. Following Frei et al. (2009) 5™ regression to the lattice strain model

is expressed as:

D crystal/melt __
; =

M1 ré\/]z

M1 M2
(rOT (ri—m')? + %(Ti - 7’5\41)3)> + Dg'? exp <a i (— (ri —

T

D(I)Vll exp (d'E -

2 + 0 —r5"2)3)> (1)

—47Ng

whereT is temperature in Kelvin and = with N, the Avogadro constant aril

the gas constant.

3. Algorithms used to resolve thelattice strain modelsfor 2 crystal sites

3.1 Previous work

Previous works have used the nonlinear least squakenberg-Marquardt

algorithm (Frei et al., 2009; van Kan Parker et 2010). The Levenberg-Marquardt

method often works well for nonlinear problems heseathey are guided by the geometry
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of the objective function (e.g. the least squarm)sin parameter space. However, in
many cases, this objective function may presentymacal minima. When there are

numerous minima, the algorithm becomes trappedhm first that it encounters.

Therefore, such algorithms are very sensitive éoitlitial set of parameters, which must
be very close to the optimized values if local rmaiare present.

The Monte-Carlo method, as used by Cartier et28114), randomly generates a
large number of possible solutions within a pradedi range of lattice parameters. The
best solutions are selected according to the demi&iom experimental data. To limit the
number of solutions and therefore the calculattbe, solution domain (i.e. the range of
parameters) must be restricted, either using titeeadata or “by eye” using experimental
data forrg"?, ro"2, D", andDg™2.

During global minimization, these methods are spilioke to failure in relatively
poorly-constrained situations, such as a minimizaif six parameters with relatively
few data constraints. This is illustrated by mappime residual surface of the systematic

rOMZ’ EMl

variation of ro", , and E™? to calculateDo™ and Do by simple matrix

inversion. Figure 2 is a contour plot of the unamty-weighted residual square surface

of EM? versusro“?

, showing isolated local minima near the global imim and a
gradient change at aroumg? = 0.9. Furthermore, we noted significant shiftsgtafbal
minima depending on the mapping resolution. Theddem issues of parameter fitting
lead to the publication of datasets that are afifficult to reconcile.

A solution to minimize these numerical problemsagise a global optimization
procedure, which explores a very large portionhef dbjective function landscape when

searching for the global minimum.
3.2. Differential -evol ution-constrained algorithm

Compared to more classical “random search” meth®dsiutionary algorithms (a
form of global optimization) can be considered gaided random search” algorithms.
They are known as “evolutionary” because they takpiration from natural evolution
concepts like survival of the fittest, crossovend amutation. In other words, more

classical optimization methods consider a singlst ®lution, whereas evolutionary
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algorithms consider a population of candidate smhst within that population, one
candidate is the best, but the others are kepsasfles” from which a better solution
can be found later. Therefore, evolutionary aldwn$ cannot be trapped at local optima
when a better solution can be found far from theeru solution. Evolutionary methods
are thus extremely robust: they have an increabadoe of finding a global or near
global optimum, are easy to implement, and are weiled for discrete optimization
problems. In the case of the lattice strain mothe,global minimum must comply with
crystallographic requirements; therefore, crystagphic boundary conditions are
applied, reducing the parameter space.

Among the evolutionary methods, the differentialolevionary method is a
stochastic direct search method, which optimizesblpms by iteratively trying to
improve a candidate solution based on a given tyuatiterion. This method has the
advantage of being easily “applied to experimentalimization where the cost value is
derived from a physical experiment” (Storn and &rit997). Applied to the lattice strain

model as the objective functio (p) (Eq. 1), we consider an experimental data set,

accounting for uncertainties on the data, here stamdard deviation of a set of

measurements, withl measured pointse (r;, DiX’Y), wherer; is the ionic radius of

XY

elementi andD;™" the partition coefficient between phaséandY, withi =1, 2,....N.

The modeled data set/= D;”Y(r;, p), is computed assuming a lattice strain model with
n continuous adjustable parametprs {pi1, pz,..., f}- The simulated data set/  is then
compared to@ using the objective functior®(p). The differential evolution algorithm
will attempt to find the optimal vectop guided by © (p), starting with an initial

population of randomly generated parameter vectdngch evolve during mutation,
cross-over, and selection cycles (Fig. 3), by mining two cost functions using the
Nash criterion (>0.9995) and the root mean squag €RMSE < 0.03). This evolution
reduces calculation time and can adapt to a venitdd number of input experimental
data.

The DOUBLE FIT program can fit the lattice strairodel with as few as six

Dipx/melt

experimental values, and calculates the six model parametdrs. i§ possible

because DOUBLE FIT accounts for the associated (endequal) errors on the data
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values. Analytical constraints (interferences, gsialtime, measurement accuracy) or the
chemical system itself (e.g. the number of divalemtl tetravalent cations is generally
limited) often limit petrologists to selecting anited number of elements to analyze, and
thus a limited number of partition coefficientsfito(e.g., Fig. 1). To allow calculation of
standard deviations on each lattice parameterD@EBLE FIT optimization runs 50
times. Calculation times vary between 20 and 40epedding on the number of

experimental data and the chosen parameter ranges.
4. Description and use of the program
DOUBLE FIT is an executable program written in tRgthon programming

language and transformed as an executable (.app)lalsle for download at
http://celiadalou.wixsite.com/website. DOUBLE Fliins on PC (64 bits only), Linux,

and Macintosh, requiring only spreadsheet softwarereate a .csv data file. The input
data files and variables can be entered directlysar-friendly windows following a
straightforward procedure. DOUBLE FIT is thus easitcessible for users with no prior
coding experience.

DOUBLE FIT provides four options:

- two options for a single fit procedure (one psepdaabola), for use

with minerals where trace elements substitute imiyane site (i.e.
olivine and plagioclase), and

- two options for a double fit procedure applied tmenals where trace

elements can substitute in two sites (i.e. pyroxgaenet, micas, and
epidote-group minerals).

For either the single or double fits, the progreaitulates the best-fit parameters
based on the experimental data, and plots pseudtqdas. Published lattice strain
parameters and partition coefficients can be sjgecibr both the single and double fits
to plot the pseudo-parabolas with the same forn@ts figures output by the DOUBLE
FIT optimization program. This option facilitatesnasparison between the DOUBLE FIT

optimization and literature data.



255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

4.1. Input data files

Experimental data are called from a .csv file asented in Figure 4. Individual
files must be created for divalent, trivalent, asiavalent cations.

Cationic radii (first column, Ri) can be found im&non (1976) accounting for
the coordination of the substitution site of thedsd mineral. For instance, as shown in
Figure 4 for trivalent cations, cations in orthopyene are in 6-fold coordination in both
octahedral sites, while in clinopyroxene, they eré&-fold coordination in the M1 site
and 8-fold coordination in the M2 site. When onhecsubstitution site is considered (e.g.
only Sc and rare earth elements, REE, are fittedtHe trivalent cations), cations of
interest are 6-fold coordinated in the olivine M& s8-fold coordinated in the garnet X
site or plagioclase A site, and 12-fold coordinatethe Ca-perovskite Ca site. However,
as cations can change coordination or substitdii@depending on mineral composition
(e.g. Ba in amphiboles; Tiepolo et al., 2007) andheir valence with oxygen fugacity
(e.g. Eu in plagioclase; Aigner-Torres et al., 200/Cr, and Ti in pyroxenes; Cartier et
al., 2014), special attention should be paid whssigaing ionic radii to each cation. For
instance, to determine the proportion of"Euersus Etf, i.e. to recalculat®g.,. and
Deus+, Aigner-Torres et al. (2007) used a rearrangedgioerof the lattice strain model
equation of Blundy and Wood (1994) in whiDigandr; are replaced respectively by the
measured partition coefficient and ionic radiusSofto calculateDg,,+ and of another
REE® (preferably Gd or Sm) foPguss, andro®*" and E®**" are fixed values taken
from Blundy and Wood (2003). This method allowsiriy the recalculate®g,,+with
other divalent cations and the recalculdDeds.with other trivalent cations.

The second column (D) of the data file correspotmd$he measured partition
coefficients and the third column (eD) to theimstard deviations. The minimum number
of data is six partition coefficients for the doalit options and three for the single fit
options. Although the fitting procedure works willese minimum numbers of data, if all
data are on the same side of the parabola, thélffihot reflect the true crystallographic
parameters. The ideal case to predict an accuatteel strain model is to have data on
each side of they value in the case of the simple fit and on eadk sf ther"* andry"?

in the case of the double fit.
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The data file must be saved in .csv format, usifigidr decimals and ";" for

separation between columns.

4.2 Procedure: example applied to clinopyroxene/melt partition coefficients

We recommend saving the DOUBLE FIT program (__DOBBEIT_m or
w64 __ folder) and data test files within the sanreatiory. Once the executable file is
started, it opens a terminal window and asks feritiput data file path (Supplementary
Fig. Sla), defaulting to a Data_test/CPX_test.cgation provided as an example. The
second window asks for the experimental temperatudegrees Celsius (Supplementary
Fig. S1b).

The third window (Supplementary Fig. S1c) allowe thser to enter known
parameters or continue with the full optimizatialmgedure. Parameters must be entered
in the correct unitsk in Pa andro in m. This option simply offers the possibility to
compare lattice strain parameters obtained viahemahethod in the same graphic output
as our program. To continue with the full optimiaatprocedure, users should proceed
without entering any parameters (leaving the fiddtik). The fourth window asks for
the valence of the trace element to be fitted (&rppntary Fig. S2a).

To reduce the possibility of multiple solutions dathe optimization time), we
propose a range of thzy""}, Do*?, EM*, E?, ™, andro“? parameters within which the
optimization procedure searches for the best-fiapeters; this default range appears in
the fifth window (Supplementary Fig. S2b) and chesidepending on the valence of the
trace elements (see Catrtier et al., 2014). To eduextend the parameter ranges (and
thus run time), new minima and maxima can be edtgr¢he fifth window. If no values
are entered, the optimization will continue witle thefault parameter ranges.

The procedure presented above also applies tartgke dit procedure for single-
substitution-site minerals. For the single fit opti the input data file path defaults to a
SData_test/OL_test.csv location provided as an elanfior olivine/melt partition
coefficients of trivalent cations. Additional exalep of the double fit option, including
partition coefficients of trivalent cations for bdpyroxene, amphibole, and garnet, are

available for download at the same location.

10
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4.3 Results

After 20—40 s, results are available in the terin{Saipplementary Fig. S3a) and
in a results.txt file generated simultaneously. gBreal results are displayed another 2 s
later as a .png figure in a Python graphical wing®wpplementary Fig. S3b). The figure
title includes the data file path and the run terapee of the sample. Best-fit parameters
with their standard deviations (after 50 iteratjoase displayed on the figure. The figure
can be saved as .eps, .pdf, .ps, .svg, or .svgndaiification in vector graphical editors
for publication. Finally, users can continue usihg same data file, select a new file, or

exit the program (Supplementary Fig. S3c) aftesiolg the Python graphical window.

4.4 Limitations

The lattice strain parameters must be constraioadinimize the cost functions,
reduce run time, and avoid multiple convergencesipdgies. We observe that when the
parameter space is left very large (@¢"* andDy"? [ [0.001 ; 100] andE™* andEM? O
[100 ; 10000] GPa), statistical criteria are notisfi?@d, such as a subminimal Nash
criterion (<0.950), root mean square error (RMSE) >errors on best-fit parameters
>100%, and/or a visually unsatisfactory fit.

Dalou et al. (2012) fit trivalent cations using thiéferential-evolution-constrained
algorithm (Storn and Price, 1997) via a primitiversion of the DOUBLE FIT program,
and chose to minimize the cost functions using\tash criterion (>0.9997) and RMSE <
0.04 while running the program in an acceptables tfmaximum 30 s). To fulfill those
requirements, they constrained each parameter “waéhlistic boundary values”
(according to the accuracy of the measured datag. garameter space was defined to
avoid a priori determination (e.gE™? O [100 ; 1000] GPa). However, in a few cases
when data uncertainties were too significant, egfigcon La, they choose to decrease
the parameter space to allow convergence in amehotime (i.eE™? O [350 ; 430]
GPa).

11
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These limitations arise directly from the differahtevolutionary algorithm,
which does not guarantee that a best-fit solutam lze found. Here, for instance, when

DiX/Y

standard deviations on one or m@¢&” (i.e. on the experimental data (r;, )) are

too large, the algorithm cannot minimize the castction according to the criteria
chosen (Nash criterion > 0.9997 and RMSE < 0.04)ef\this occurs, users can either
discard experimental data with large uncertaintieseduce the parameter space.

Another limitation is that, because DOUBLE FIT wiesigned to run over a large
parameter space, no convergence is possible imame than one experimental datum,
errors exceed the partition coefficient values (BeB3). This generally applies to the
largest most-incompatible cations such as La andv@ieh are quite difficult to measure
in pyroxenes as they are at very low concentratenms their measurements are easily
contaminated by surrounding melt. In that casem#dy be best to discard very
incompatible cation data to fit the lattice strenndel.

Whereas for trivalent cations, a large numberratd elements are measured,
fewer, generally five or less, are typically measufor divalent (Ba, Pb, Sr, Ca, and Co)
and tetravalent cations (Th, U, Zr, Hf, and Ti)ddy extension mono- and pentavalent
cations. This limitation can be overcome if the gmaeter space is reduced from the
default range, as shown on Fig. 5a for tetravatations. The addition of Mg and Ni data
in the M1 site allows using DOUBLE FIT for divalecdtions (Fig. 5¢). However, when
errors are large, it might be best to considerviddially fitting the M1 and M2 sites
using the single fit option. For trivalent catioritee DOUBLE FIT program and the
weighted non-linear least square Levenberg-Mardquardine (Frei et al., 2009) result in

equally good results (Fig. 5b).

5. Example of application: Search for chemical equilibrium among orthopyroxene

partitioning experiments

Because most incompatible elements are conceditiatelinopyroxene rather
than orthopyroxene, more mineral/melt partition fioent data and lattice strain
modeling are available for clinopyroxene than fathopyroxene. One of the main

reasons for this is the difficulty in accuratelyasaring low trace element concentrations
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in orthopyroxene. Another limitation lies in thepedilities of measuring trace element
concentrations in orthopyroxene not contaminated rbglt, implying very large
orthopyroxene or a very small analytical beam (domes <20 pm). The best example is
La; the measured partition coefficient is often laoge to represent the accurate La
partition coefficient between mineral and melt (ez@n Westrenen et al., 1999). In most
cases, La is discarded from the dataset and ndttod# lattice strain models (Cartier et
al., 2014).

One fundamental aspect of studying experimentalgtermined partition
coefficients is the attainment of chemical equilibr. For major elements, one can use
textural observations (i.e. crystal shape), lackahpositional zoning in the crystal and
heterogeneity in the melt pool, the value of Fe-Ekrhange coefficients between
minerals and melts, or convergence of mass balaRoe. trace elements, most
experimental petrologists use the lattice strai@i® arguing that if their trace element
partition coefficients can be plotted using the eldtien their partitioning data are near
chemical equilibrium. We suggest using this argunwéth caution, especially when the
experimental data are fitted with biases such xedfiparameters or narrow parameter
spaces. As shown on Fig. 5, multiple possibilitiesst depending on the size of the
parameter space. This result is an outcome of &oritkhm (not just DOUBLE FIT)
applied to the lattice strain model for a givenadset. Decisions regarding the size of the
parameter space must be based on sound crystallogitanowledge to fully interpret the
lattice strain model: although interpretation oé tlattice strain model provides hints to
partitioning data, it may not reflect equilibrium.

By calculating the energetics of ion substitutioging atomistic simulation
techniques, Purton et al. (1996) obtained latticairs parameters fitting trace elements
partition coefficients for CaO, diopside, orthoextisé and forsterite. Without a reduced
parameter space (especially B for the orthoenstatite), DOUBLE FIT is unable i f
the Ni partition coefficients (Fig. 6a). This denstnated the limitation of an empirical
model, without prior constraints on cation siteigiesient. Prior determination of the
main host cation for each site allows to reduceptmameter space fog and to evaluate

eachE, and guarantees a more accurate fit.
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Finally, when many assumptions and constraintsapmied to the lattice strain
fitting methods, even with data close to chemiogikrium (Cartier et al., 2014),
extreme values can be obtained, especiallyf andDy"?. For instance, Cartier et al.
(2014) obtained very low,"* for 3+ cations (0.66 to 0.79; Fig. 6b), which wabirnply
the absence of Ca and other large cations in theidd2In fact, the radius of the M2 site
in orthopyroxene is generally around 0.81-0.8'his tange of composition, i.e. Ca + Na
+ Mn = 0.15-1.1 wt% with Ca > Na >> Mn (Cameron &apike, 1981). When the same
dataset is fit with DOUBLE FIT, only very incomplale cations do not obey the lattice
strain model, and best-fit lattice strain paranse{€ig. 6b) are more comparable to other
orthopyroxene/melt partitioning studies (i.e. Da&al., 2012; Frei et al., 2009).

Conclusions

DOUBLE FIT applies a differential evolutionary algbm (Storn and Price,
1997) to solve the lattice strain model for twostey sites when a limited number of
experimental data are available. It is the fagtesgiram to date applied to this model. It
is designed to be user friendly and easily acclsdir users with no prior coding

experience.
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Figure 1: Example of the lattice strain model applied to experimentally determined partition
coefficients between orthopyroxene and a basaltic melt for trivalent cations (sample F4p#3a,
Dalou et a., 2012). The solid curve represents the fit of the lattice-strain model to D;°P/™!,
i.e. the sum of DMY™" (dotted parabola) and D;M?™" (dashed parabola). Circles represent

Opx/melt

measured D; , 1.e. the concentration of element i in orthopyroxene (opx) over the

concentration of the same element in the equilibrated melt.
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Figure 2: Contour plot of the uncertainty-weighted residual square surface of Eg“? versus

ro"%. Toillustrate the subtle structure, the log of the residual value is shown:
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Note the presence of two small local minima, as well as the change of the gradient at around
ro"? = 0.9. Because there are six parameters to solve for, it is impossible to visualize the true
residual surfacein a2-D plot. The plot shown here is chosen to illustrate our point by picking
a plane passing through the true global minimum of the mapped area. The two most varying

parameters were chosen to define the plane.
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Figure 3: Illustration of the mutation, cross-over, and selection processes of the differential
evolutionary algorithm for p = 6 parameters. See text for details.



ORTHOPYROXENE_example.csv CLINOPYROXENE_example.csv

Ri D eD Ri D eD
1.032 0.003 0.001 1.016 0.054 0.018
0.947 0.026 0.001 1.066 0.273 0.006
0.938 0.048 0.001 1.053 0.323 0.027
0.901 0.102 0.002 1.015 0.467 0.006
0.861 0.187 0.004 0.977 0.461 0.010
0.745 0.873 0.009 0.745 1.213 0.017
0.615 5.606 0.042 0.615 6.543 0.020
0.535 0.374 0.032 0.535 0.376 0.173

OLIVINE_example.csv GARNET_example.csv

Ri D eD Ri D eD
0.947 0.003 0.001 1.016 0.001 0.001
0.938 0.006 0.003 1.066 0.288 0.024
0.901 0.013 0.004 1.053 0.573 0.044
0.861 0.033 0.004 1.015 2.369 0.502
0.745 0.196 0.013 0.977 5.822 0.502
0.535 0.004 0.001 0.870 6.904 0.165

Figure 4. Example of the required data file format applied to orthopyroxene, clinopyroxene,
olivine, and garnet. Note that no assumption is made in the data file of the location (M1 or M2
site) of the cations.
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Figure 5. Example results of the DOUBLE FIT program using orthopyroxene/melt
partitioning data of sample 2303-04-02 (Frei et a., 2009) for a) tetravalent cations, b)
trivalent cations, and c¢) divalent cations. Depending on the size of the parameter space,
DOUBLE FIT gives different results. With a reduced parameter space (Do"'min = 0.15,
EMmin = 2000, and EM“max = 500), DOUBLE FIT fits the lattice strain model with five
points for the tetravalent cations. However, with only Bain the M2 site, DOUBLE FIT cannot
properly fit the divalent data even when constrained with D2 [ [0.001 ; 0.01] EM? O[30 ;
100] GPa)
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Figure 6: Comparison of the empirical fit of DOUBLE FIT (black curves) with methods
fitting parameters a) E and ro (Purton et al. 1996), and b) EM! and EM? (Cartier et al. 2014)
based on the energetics of ion substitution (dark grey curves in (a) and (b)). Cartier et a.

(2014) determined Dy and r( for the M1 and M2 sites by a Monte Carlo method. Light grey
curves shows DOUBLE FIT model using the default parameter space.




DOUBLE FIT applies to solve the lattice strain model for two crystal sites
mineral.

It uses adifferential evolutionary algorithm (Storn and Price, 1997).

It works even when alimited number of experimental data are available.

It is the fastest program to date applied to this model.

It is designed to be user friendly for users with no prior coding experience.



